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Abstract—Object pose estimation is a long-standing problem
in computer vision. Recently, attention-based vision transformer
models have achieved state-of-the-art results in many computer
vision applications. Exploiting the permutation-invariant nature
of the attention mechanism, a family of vision transformer models
formulate multi-object pose estimation as a set prediction prob-
lem. However, existing vision transformer models for multi-object
pose estimation rely exclusively on the attention mechanism.
Convolutional neural networks, on the other hand, hard-wire
various inductive biases into their architecture. In this paper, we
investigate incorporating inductive biases in vision transformer
models for multi-object pose estimation, which facilitates learning
long-range dependencies while circumventing the costly global
attention. In particular, we use multi-resolution deformable atten-
tion, where the attention operation is performed only between a
few deformed reference points. Furthermore, we propose a query
aggregation mechanism that enables increasing the number of
object queries without increasing the computational complexity.
We evaluate the proposed model on the challenging YCB-Video
dataset and report state-of-the-art results.

I. INTRODUCTION

Object pose estimation is the task of predicting the position
and the orientation of objects with respect to the sensor
coordinate frame. It plays a vital role in many autonomous
robotic systems and augmented and virtual reality applica-
tions. Occlusion, object reflectance properties, and lighting
conditions increase the complexity of the task. Despite the
recent deep-learning-driven progress, object pose estimation
remains challenging. RGB-D methods, in general, perform
better than the RGB-only methods. The depth information
facilitates easier learning of the geometric features compared
to the RGB input. However, transparent and reflecting ob-
jects present significant challenges for RGB-D cameras. The
resolution and frame rate of the RGB-D sensors are limited,
compared to RGB cameras. Additionally, in large-scale real-
world deployment, RGB-D sensors need calibration, which is
time and resource-consuming. Motivated by these limitations
of the RGB-D sensors, we focus on RGB methods in this
paper.

In the last decade, convolutional neural networks (CNNs)
have become the standard machine learning tool for solv-
ing many computer vision tasks. The success of CNNs is
largely attributed to the inductive biases incorporated into
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Fig. 1. Multi-resolution deformable attention model. Our architecture utilizes
an attention-based encoder-decoder design. In the encoder, image patch
features of multiple resolutions are extracted using linear projection, and
the self-attention mechanism is used to generate encoder embeddings. In the
decoder, cross-attention is performed between the encoder embeddings and
learned embeddings known as object queries to generate object embeddings.
The object queries are initialized randomly at the beginning of training
and learned jointly with the training objective. During inference, the object
queries remain fixed. In contrast to standard attention, in which attention
is computed between all image patch features, in deformable attention, the
attention operation is performed only between the deformed reference points.
From the object embeddings, object predictions are generated using feed-
forward neural networks (FFNs) in parallel. Object pose predictions generated
by our model are visualized using 3D bounding boxes.

their architectural design [1]–[4]. Lately, transformer-based
architectures have found great success in many computer
vision tasks. The core component of the transformer model
is the multi-head attention mechanism that allows learning
dependencies in the input data over a long range. Carion et al.
[5] introduced DETR, an end-to-end differentiable architecture
for object detection combining a CNN model for feature
extraction and a transformer-based encoder-decoder model
for generating a set of object predictions. Inspired by their
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work, we formulate multi-object pose estimation as a set
prediction problem. However, instead of relying completely
on the computationally costly global attention mechanism,
to facilitate efficient architectures, we investigate CNN-like
inductive biases in our design.
In this work, we present the following contributions:

• an efficient multi-resolution deformable attention model
for multi-object pose estimation,

• a query aggregation mechanism to increase the number
of object queries without increasing the computational
complexity, and

• a thorough evaluation on the YCB-Video dataset [6] with
state-of-the-art results.

II. RELATED WORK

A. Object Pose Estimation

The prominent deep learning methods can be classified
as direct regression [6]–[8], keypoint-based [9]–[11], and
refinement-based [12]–[14]. The direct regression methods for-
mulate pose estimation as a regression task. Given the image
crop consisting of the target object, the direct regression meth-
ods predict the 6D pose parameters. In contrast, the keypoint-
based methods estimate the pixel coordinates of 3D keypoints
in the image and with known 2D-3D correspondence, the
6D pose is recovered employing the perspective-n-point (PnP)
algorithm. The refinement-based methods are orthogonal to
both direct regression and keypoint-based methods in terms
of the approach. They formulate pose estimation as a problem
of pose refinement using the render-and-compare framework.
With the notable exception of Capellen et al. [15] and Hu
et al. [11], most of the CNN architectures for object pose
estimation decouple pose estimation from object detection
and follow a two-stage approach in which the 2D bounding
boxes are estimated in the first stage; and in the second stage,
only the crop containing the target object is processed to
estimate the 6D pose. To realize an end-to-end differentiable
architecture for pose estimation, these methods rely on mod-
ules like non-maximum suppression (NMS), region of interest
(ROI) pooling, anchor box proposal [16]–[18], differentiable
implementations of the Hough transform [6], [15], and random
sample consensus (RANSAC) [19].

B. Vision Transformers

Vaswani et al. [20] introduced the Transformer architecture
with a multi-head attention mechanism to model long-range
dependencies in natural language processing and achieved
significant improvements on a variety of tasks. The success
of the transformer architecture inspired many approaches that
incorporate attention mechanisms to solve computer vision
tasks either by supplementing or by replacing CNN mod-
ules. Dosovitskiy et al. [21] introduced Vision Transformer
(ViT), an architecture without any CNN modules. While ViT
achieved impressive results using a simple architecture, the
computational cost of attention was higher than CNN modules.
Subsequent methods showed that incorporating CNN-like in-
ductive biases into the vision transformer architecture reduced

computational costs and improved performance across a wide
range of tasks. Liu et al. [22] introduced the Swin Transformer
model, which limits self-attention to local non-overlapping
shifted windows and uses cross-attention for cross-window
connections. They also incorporated hierarchical processing
into their architecture. Yang et al. [23] introduced focal
self-attention, an efficient attention mechanism in which the
pixels in the closest surrounding tokens are attended at a fine
granularity but the pixels far away are processed at a coarse
granularity. DETR [5] formulated multi-object detection as
a set prediction problem and proposed a transformer-based
encoder-decoder architecture for set prediction. Zhu et al. [24]
proposed deformable attention to reduce computational cost
in DETR-like architectures. Amini et al. [7] extended DETR
for multi-object 6D pose regression. Amini et al. [25] and
Periyasamy et al. [26] introduced YOLOPose, a DETR-like
architecture for keypoint-based multi-object pose estimation.
In contrast to the multi-stage pose estimation models discussed
in Section II-A, they realized a single-stage multi-object pose
estimation without using NMS, ROI, or anchor box proposal
modules.

III. METHOD

In this section, we introduce the multi-object pose estima-
tion as a set prediction task formulation and briefly describe
the existing YOLOPose model [25] that we use as the baseline.
Later, we discuss the improvements to the baseline model
incorporating various inductive biases.

Multi-head attention (MHA) introduced by Vaswani et al.
[20] performs scaled dot-product attention between the query-
key pairs. Let q ∈ Ωq be a query element with feature zq ∈ Rd

and k ∈ Ωk be a key element with feature xk ∈ Rd, where d
is the dimension of the features and Ωq/k are the sets of query
and key elements, respectively. Then the multi-head attention
feature is computed as:

MHA(zq, x) =

M∑
m=1

Wm

[ ∑
k∈Ωk

Amqk ·W
′

mxk

]
, (1)

where m ∈ M represents the attention head, W
′

m ∈ Rdv×d

and Wm ∈ Rd×dv are learnable projection parameters,
dv = d/M , and A represents the normalized attention weight.
MHA is the core component of the transformer architecture.

Formulating pose estimation as a set prediction problem
enables multi-object pose estimation in which objects are
detected and their 6D pose are estimated in one single forward
pass. Given the set of object predictions Ŷ of cardinality N
and ground-truth set Y padded with Ø class, we search for
the optimal permutation σ̂ among the possible permutations
σ ∈ SN defined by the matching cost Lmatch. Formally,

σ̂ = argmin
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)). (2)

The transformer-based baseline model YOLOPose utilizes
a CNN backbone to extract image features and an encoder-
decoder architecture followed by feed-forward networks for
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Fig. 2. Hierarchical processing of image features. White grids represent the
image patches and red grids represent the self-attention windows. Layers are
grouped into blocks. The size of the self-attention window and the number
of feature maps remain fixed for all the layers inside each block but increase
through the hierarchy. Restricting attention to a local window helps reduce
the computational complexity.
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Fig. 3. Shifting window local attention mechanism. Self-attention is restricted
to the local window shown in red grids. The windows are shifted between the
layers, enabling global interaction within each block.

generating a set of object predictions. Since the transformer
architecture is permutation invariant, the image features are
supplemented with positional encoding [20]. The encoder per-
forms self-attention between the image features. The decoder
performs cross-attention between the encoder output and the
learned embeddings known as object queries. Object queries
are initialized randomly at the beginning of the training and
are learned along with the training objective. While performing
cross-attention, the encoder output embeddings act as the key
and the value, whereas the object queries act as the query.
The resulting object embeddings are processed in parallel
using multi-layer perceptrons (MLPs) to generate object pre-
dictions. During inference, the object queries are fixed. While
YOLOPose achieves impressive results, it relies solely on
the attention mechanism to learn joint object detection and
pose estimation. Thus, it does not benefit from incorporating
inductive biases into its architecture. To this end, we discuss
various design strategies for imbuing inductive biases into the
YOLOPose model in the following sections.

A. Local Hierarchical Shifting Window Attention

The encoder module in YOLOPose utilizes self-attention
between the image features extracted by a CNN backbone.
This enables aggregating information from all spatial locations
in the encoder module. In terms of the design, one of the main
shortcomings of YOLOPose is that the backbone module is

exclusively CNN-based and the encoder module is exclusively
attention-based. Thus, the backbone module does not benefit
from the self-attention mechanism. Vision Transformer models
(ViT) [21] addressed this issue by designing a backbone model
based exclusively on the transformer architecture. Raghu et
al. [27] noted that in ViT, the similarity of the lower layer
features and the higher layer features is stronger than in the
case of CNN-based ResNet model. Based on this observation,
the authors concluded that the self-attention mechanism along
with the skip connections enables lower layers in the ViT
model to learn global features. However, ViT suffers from two
major limitations:

1) feature maps used in the model are low resolution and
2) complexity of the attention mechanism increases

quadratically.
These factors limit the suitability of ViT as a backbone model.
To address this issue, Liu et al. [22] proposed to incorporate
hierarchical processing and local sliding window attention in
the design of the transformer model. The pixels are divided
into crops. All pixels belonging to an image crop are projected
linearly to features of dimension d. The hierarchical processing
of the features is shown in Fig. 2. Unlike ViT, in which all
the image patches in any particular layer interact with all
other patches, the interaction is restricted to a local window
(shown in Fig. 3). The layers of the model are grouped into
blocks. The size of the attention window and the number of
feature maps increases progressively higher in the hierarchy.
The attention window is shifted between the layers in the
same block. This ensures the global interaction of the features
within each block. The hierarchical processing of features and
limiting the attention to a local window enables linearly scal-
ing computational complexity. We refer to our implementation
of the pose estimation model with local hierarchical shifting
window attention as Model-A.

B. Deformable Multi-resolution Attention
The attention mechanism offers a simple yet effective mech-

anism to model long-range dependencies in input tokens. De-
spite the advantages the attention mechanism offers for com-
puter vision tasks, the computational cost of MHA, especially
for high-resolution images, remains high. To address this issue,
Zhu et al. [24] introduced deformable multi-head attention
(DMHA). In Fig. 1, we depict the DMHA model for pose
estimation. For a query token z, instead of computing attention
over all the key tokens Ωx, DMHA computes attention over a
small set of 2D reference points p ∈ Ωp. The reference points
are allowed to deform and the deformation is learned from
the input tokens. Formally, MHA, introduced in Eq. (1), is
extended as,

DMHA(zq, pq, x) =
M∑

m=1

Wm

[
K∑

k=1

Amqk ·W
′

mx(pq +∆pmqk))

]
, (3)

where k represents the sampled key tokens and ∆pmqk denotes
deformation offset. Bilinear interpolation enables fractional
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Fig. 4. Early fusion of object queries. The patch embeddings and the object
queries interact within the encoder module at all layers. Thus, not only the
high-level features interact with the object queries but the features of all
resolutions.

offsets. Furthermore, we incorporate multi-resolution feature
processing (MR-DMHA) into the deformable attention:

MR-DMHA(zq, pq, {x}Ll=1) =
M∑

m=1

Wm

[
L∑

l=1

K∑
k=1

Amqk ·W
′

mxl(ϕ(p̂q) + ∆pmqk)

]
, (4)

where l represents the feature level, and the function ϕ(p̂q) re-
scales the pixel coordinates corresponding to the feature level.
We refer to our multi-object pose estimation model based on
MR-DMHA as Model-B.

C. Early Fusion of Object Queries

While the MR-DMHA enables efficient attention with linear
complexity, the encoder module interacts with the object
queries only at the final encoder layer. This results in the
encoder module learning generic features in the earlier layers
and only the final layer learning features relevant to object
prediction. Enabling encoder-object query interaction at the
early layers helps the encoder to focus on features more
relevant to the object predictions. Following Song et al. [28],
we introduce cross-attention between object queries and patch
embeddings early in the encoder module. In each encoder
layer, self-attention is performed between the patch embed-
dings and additionally, cross-attention is performed between
object queries and patch embeddings of the previous layer,
as shown in Fig. 4. In the decoder module, cross-attention is
performed between the aggregated patch embeddings from the
encoder and the object query to generate object embeddings.
The object embeddings are processed by the FFNs to generate
object predictions. We call this variant Model-C.

D. Query Aggregation

The learned object queries play a crucial role in DETR-like
architectures. Despite their importance, the object queries are
not fully understood. One of the major reasons behind this
lack of understanding is the fact that neither the architecture
itself nor the loss function contains any mechanism to bind
the object queries specifically to object classes or locations.
Zhang et al. [29] observed that using more object queries
improves model accuracy. In our models, the number of object

N ∗ m

d d d d

m ∗ dm ∗ d

Final Decoder Layer

FFPNs

Set of Predictions of cardinality N

Fig. 5. Query Aggregation. In contrast to the standard approach of using
the same number of object queries as the cardinality of the set N , in the
query aggregation approach, we set the number of object queries to N ×m.
The query aggregation factor m is a hyperparameter. N ×m decoder output
embeddings of dimension d are concatenated to form N object embeddings
of dimension d × m that are processed by the FFNs to generate N object
predictions.

queries equals the cardinality of the set we predict. Thus,
increasing the number of object queries also increases the
computation cost of bipartite matching and thus, the overall
training time. We propose a novel approach for increasing
the number of object queries while keeping the computational
cost low. We call this method query aggregation (shown in
Fig. 5). To generate a set of predictions of cardinality N , the
standard approach uses N object queries of dimension d. In
contrast to the standard approach, in the query aggregation
approach, we set the number of object queries to N × m,
where the aggregation factor m is a hyperparameter. After the
last decoder layer, we concatenate each set of m embeddings
to generate one object embedding. Thus, from N ×m output
embeddings we generate N object embeddings. The FFNs
process the N object embeddings to generate a set of object
predictions. By decoupling the number of decoder output
embeddings and the number of object embeddings, we enable
a larger number of embeddings in the decoder layer without
increasing the cardinality of the predicted set.

E. Refinement of the Object Predictions

The decoder module in the standard architecture consists
of six decoder layers. The output embeddings of each of
the decoder layer serves an input for the subsequent decoder
layer. The output embeddings of the final decoder layer are
processed by the FFNs to generate object predictions. Instead
of generating object predictions directly once, generating an
initial prediction and refining it to generate the final object
predictions allows the model to iteratively improve the initial
predictions as well as the overall accuracy. The design of
decoder layers naturally suits refinement. In Fig. 6, we show
the refinement of the object predictions in the decoder module.
Each decoder layer contains its own independent set of FFNs.
The first decoder layer performs cross-attention between the
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Fig. 6. Prediction refinement. At each decoder layer, only a small ∆ is
predicted on top of the previous predictions enabling the refinement of
predictions through the decoder layers.

encoder embeddings and the object queries to generate decoder
embeddings that are processed by a corresponding set of
FFNs to generate object predictions. The FFNs of subsequent
decoder layers generate only a small ∆ to refine the predictions
made by the previous layer. This allows for the model to
iteratively refine the initial predictions and generate more
accurate final predictions.

F. Loss Function

Our model is trained to minimize the Hungarian loss be-
tween the predicted and the ground-truth sets. The Hungarian
loss is the dissimilarity measure between the matched pre-
dicted and the ground-truth pairs. To establish the matching
pairs, we employ the differentiable bipartite matching algo-
rithm [5], [30].

The Hungarian loss we use consists of four components:
bounding box, class probability, translation, and key points.
However, the matching cost we employ comprises only the
bounding box and the class probability components.

Given the matching ground-truth and predicted sets Y and
Ŷσ , respectively, the Hungarian loss is computed as:

LHungarian(Y, Ŷσ) =

N∑
i

Lclass + 1ci ̸=Ø

[
Lbox(bi, b̂σ̂(i))

+ λkpLkp(ki, k̂σ̂(i)) + λposeLpose(Ri, ti, R̂σ̂(i), t̂σ̂(i))
]
. (5)

The individual components of the Hungarian loss are the
following.

1) Class Probability Loss:

Lclass(ci, p̂σ(i)) = −log p̂σ̂(i)(ci), (6)

The standard negative log-likelihood is used to measure
the dissimilarity of the predicted class probability scores p̂σ
and the ground-truth class labels c, represented as one-hot
encoding. The images in the YCB-Video dataset [6] comprise
between three and eleven objects per frame. In our model,
the cardinality of the set N is set to 20. Thus, padding the
ground-truth set with Ø class creates a heavy class imbalance
between the Ø class and the rest of the classes. To counter
the class imbalance, we weigh the loss for the Ø class with a
factor of 0.1.

2) Bounding Box Loss: A weighted combination of the
Generalized IoU (GIoU) [31] and ℓ1-loss is employed as the
measure of dissimilarity between the predicted and the ground-
truth bounding boxes, bi and bσ(i), respectively:

Lbox(bi, b̂σ(i)) = αLiou(bi, b̂σ(i)) + β||bi − b̂σ(i)||, (7)

where α and β are hyperparameters.
3) Keypoint Loss: The keypoint loss is a combination of ℓ1

loss and cross-ratio consistency loss:

Lkp(Ki, K̂σ̂(i)) = γ||Ki − K̂σ̂(i)||1 + δLCR, (8)

where Ki and K̂σ̂(i) are ground truth and the predicted
keypoint coordinates, respectively, LCR is the Smoothℓ1 loss
between the ground truth and predicted cross-ratio, and γ &
δ are weighting factors.

4) Pose Loss: We compute the dissimilarity between the
ground-truth pose parameters Ri and ti, and the predicted
pose parameters R̂σ(i) and t̂σ(i) using the disentangled pose
loss:

Lpose(Ri, ti, R̂σ(i), t̂σ(i)) = Lrot(Ri, R̂σ(i))+

+ ||ti − t̂σ(i)||1. (9)

We employ PLoss and SLoss [6] for the rotation component,
and ℓ1 loss for the translation component:

Lrot =


1

|Mi|

∑
x1∈Mi

min
x2∈Mi

||Rix1 − R̂σ(i)x2||1 if symmetric,

1
|Mi|

∑
x∈Mi

||Rix − R̂σ(i)x||1 otherwise,

(10)
where Mi indicates the subsampled 3D model points.

IV. EXPERIMENTS

A. Dataset

We evaluate the proposed method on the challenging YCB-
Video dataset [6]. The dataset comprises 92 video sequences of
the cluttered tabletop scenes. Each video sequence consists of
a randomly selected subset of objects from a total of 21 objects
placed in a random configuration. The 6D pose annotations
and the bounding box annotations were generated using a
semi-automatic procedure in which the first frame of each
video sequence is manually annotated and extrapolated for
the rest of the frames employing visual odometry techniques.
Overall, the dataset consists of 133,827 images. Out of the 92
video sequences, twelve are used for testing and the remaining
ones are used for training and validation. We also use the
COCO dataset for pre-training our model, which consists
of 123,287 images and 886,284 bounding box annotations
belonging to 80 categories.

B. Metrics

We report the standard area under the curve (AUC) ADD
and ADD-S metrics [6], computed using a varying threshold
between 10 cm to 1 cm. Given the ground-truth 6D pose
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Fig. 7. Results from query aggregation experiment.

TABLE I
EFFECT OF PRETRAINING ON THE COCO DATASET FOR

OBJECT DETECTION.

Method AUC of
ADD-S

AUC of
ADD(-S) ADD(-S)

Without pretraining 71.0 82.7 42.5
With pretraining 81.4 90.1 61.1

annotation with rotation and translation components R and
t, and the predicted rotation and translation components R̂
and t̂, the ADD metric is the average ℓ2 distance between
the subsampled mesh points M in the ground truth and the
predicted pose, whereas the symmetry-aware ADD-S metric is
the average ℓ2 distance between the closest subsampled mesh
points M in the ground-truth and predicted pose.

The ADD(-S) metric corresponds to ADD-S for symmetric
objects and ADD for non-symmetric objects.

C. Implementation Details

We implement our models using the PyTorch [32] library.
Our models are trained using NVIDIA A100 GPUs with 40
GBs of memory. The size of the input images is 640×480. The
models are trained for 200 epochs with a batch size of 32 using
AdamW optimizer with an initial learning rate of 10−4. During
training, we supplement the training images with the synthetic
images provided with the dataset. The hyperparameters α,
β, γ, and δ in Eqs. (7) and (8) are set to 2, 5, 10, and 1,
respectively.

D. Results

In Fig. 8, we show pose estimation for exemplar scenes;
and in Table II, we report the quantitative comparison of
our model with the state-of-the-art RGB pose estimation
models. The best-performing variant of our model is based
on deformable multi-resolution attention (Model-B) discussed
in Section III-B utilizing 16 deformable points. Our model
achieves an impressive AUC of ADD-S score of 92.0 and
AUC of ADD(-S) score of 84.7. Among the object categories,
our model performs worse for extra-large clamp and scissors–
both exhibit challenging geometry. In Fig. 9, we show typical

Fig. 8. Qualitative results on YCB-Video dataset [6]. Ground truth and
predicted object poses are visualized as object contours in green and blue
colors, respectively.

(a) (b)

(c) (d)

Fig. 9. Typical failure cases. Ground truth and predicted object poses are
visualized as object contours in green and blue colors, respectively. Occlusion
negatively influences the accuracy of our model.

failure cases of our model. bowl, for example, is often pre-
dicted upside down. Occlusion still remains a big challenge
for our model. In Table III, we compare the accuracy of the
different models we discussed in Section III.

In comparison to Model-B, Model-A performs a little worse.
This demonstrates that despite the careful design employing
shifted window attention, the model suffers from inefficiencies
in global dependency modeling. Moreover, Zhou et al. [33]
noted that the models based on local hierarchical shifting
windows suffer from a lack of robustness. Although Model-C,
based on the early fusion of object queries, performed better
than Model-A, it did not match the performance of Model-B.
However, in terms of the inference speed, Model-A performs
better than other models—except for the baseline YOLOPose
model. Model-B is the slowest. This is caused by accessing
random memory locations in the deformable attention compu-
tation.

E. Ablation Study

Query Aggregation: In Fig. 7, we present the results of
training our model with different query aggregation factors.
The performance of the model increases with the query
aggregation factor and reaches the highest accuracy for factor
3 but drops for factor 4.

Need for COCO Pre-training: Training the vision trans-
former models for set prediction is harder than training CNN



TABLE II
RESULTS ON THE YCB-VIDEO DATASET [6].

Metric AUC of ADD-S AUC of ADD(-S)

Method
GDR-Net

[8]
DeepIM

[12]
YOLOPose

[25]
YOLOPose

V2 [26] Ours
GDR-Net

[8]
DeepIM

[12]
YOLOPose

[25]
YOLOPose

V2 [26] Ours

master chef can 96.6 93.1 91.3 91.7 90.3 71.1 71.2 64.0 71.3 66.7
cracker box 84.9 91.0 86.8 92.0 92.3 63.5 83.6 77.9 83.3 86.0
sugar box 98.3 96.2 92.6 91.5 94.4 93.2 94.1 87.3 83.6 89.1
tomato soup can 96.1 92.4 90.5 87.8 89.2 88.9 86.1 77.8 72.9 76.3
mustard bottle 99.5 95.1 93.6 96.7 96.5 93.8 91.5 87.9 93.4 93.3
tuna fish can 95.1 96.1 94.3 94.9 94.5 85.1 87.7 74.4 70.5 67.4
pudding box 94.8 90.7 92.3 92.6 95.5 86.5 82.7 87.9 87.0 91.9
gelatin box 95.3 94.3 90.1 92.2 95.4 88.5 91.9 83.4 85.7 91.8
potted meat can 82.9 86.4 85.8 85.0 88.9 72.9 76.2 76.7 71.4 76.4
banana 96.0 91.3 90.0 95.8 95.4 85.2 81.2 88.2 90.0 91.0
pitcher base 98.8 94.6 93.6 95.2 94.9 94.3 90.1 88.5 90.8 89.9
bleach cleanser 94.4 90.3 85.3 83.1 87.3 80.5 81.2 73.0 70.8 73.9
bowl∗ 84.0 81.4 92.3 93.4 91.9 84.0 81.4 92.3 93.4 91.9
mug 96.9 91.3 84.9 95.5 95.5 87.6 81.4 69.6 90.0 89.3
power drill 91.9 92.3 92.6 92.5 94.6 78.7 85.5 86.1 85.2 88.9
wood block∗ 77.3 81.9 84.3 93.0 93.0 77.3 81.9 84.3 93.0 93.0
scissors 68.4 75.4 93.3 80.9 89.5 43.7 60.9 87.0 71.2 76.2
large marker 87.4 86.2 84.9 85.2 84.5 76.2 75.6 76.6 77.0 77.4
large clamp∗ 69.3 74.3 92.0 94.7 94.2 69.3 74.3 92.0 94.7 94.2
extra large clamp∗ 73.6 73.3 88.9 80.7 79.2 73.6 73.3 88.9 80.7 79.2
foam brick∗ 90.4 81.9 90.7 93.8 95.0 90.4 81.9 90.7 93.8 95.0

Mean 89.1 88.1 90.1 91.2 92.0 80.2 81.9 82.6 83.3 84.7

The best results are shown in bold.

TABLE III
RESULTS FROM ABLATION STUDY.

Method AUC of
ADD-S

AUC of
ADD(-S)

Params
×106

fps

YOLOPose [25] 90.1 82.6 48.6 41.8
YOLOPose V2 [26] 91.2 83.3 53.2 39.1
CosyPose [13] 89.8 84.5 - 2.5

Model-A 90.1 81.4 57 39.5
Model-B 16 def pts 92.0 84.7 55.2 25.9
Model-B 6 def pts 81.9 89.3 51.7 28.1
Model-B 6 def pts + refine 90.2 83.0 87.1 25.6
Model-C 90.3 82.1 48.7 34.8

Model-A: Local hierarchical attention-based model discussed in Section III-A.
Model-B: Model based on multi-resolution deformable multi-head attention
discussed in Section III-B.
Model-C: Model utilizing early fusion discussed in Section III-C.
def pts: Number of deformable points.

models to perform single object pose prediction due to the
usage of bipartite matching to find the matching pairs between
the predicted and the ground-truth sets, which results in slower
convergence. Moreover, training data requirements are also
much larger for the set predictions task, compared to single
object prediction. We hypothesize that in the initial phase of
the training, the model learns to detect multiple objects in the
image and only in the later stages the model learns to predict
keypoints and the pose parameters. Although the YCB-Video
dataset [6] is considerably larger than the other pose annotation
datasets, it is not big enough to train vision transformer models
for multi-object pose estimation. To overcome this limitation,
we train our model initially on the COCO dataset for the
task of multi-object detection (class probability and bounding
box prediction) and then train the model for multi-object
pose estimation on the YCB-Video dataset. In Table I, we

compare the pose estimation accuracy of models trained using
only the YCB-Video dataset [6] and using COCO dataset for
pretraining. The model pretrained using the COCO dataset
outperforms the model trained using only the YCB-Video
dataset, highlighting the importance of large-scale pretraining
for training vision transformers to learn the task of multi-object
prediction.

Prediction Refinement: In Table III, we present the re-
sults of the prediction refinement experiment. Refinement
boosted the performance of Model-B constructed with six
deformable points by 0.9 and 1.1 accuracy points in terms
of the AUC of ADD-S and AUC of ADD-(S) metrics, re-
spectively. However, the improvements come at a cost of
an increased number of parameters: 87.1×106 compared to
51.7×106. Interestingly, for the Model-B constructed using
16 deformable points that achieves an impressive accuracy of
92 AUC of ADD-S and 84.7 AUC of ADD-(S), the boost in
performance is negligible.

F. Limitations

While formulating multi-object pose estimation as a set
prediction problem facilitates the prediction of a varying
number of objects in the given image, training the model needs
complete set annotations for all objects in the given image.
Most of the commonly used pose estimation datasets like
Linemod-Occluded [34] and Linemod [35] offer only partial
annotations for training images. Thus, they are unsuitable for
training our models. Acquiring complete pose annotations can
be prohibitively expensive in real-world settings.



V. CONCLUSION

In this paper, we investigated various inductive biases in
the design of multi-object pose estimation models, namely,
local hierarchical shifting window attention, deformable multi-
resolution attention, and early fusion of object queries. More-
over, we proposed a query aggregation mechanism to increase
the number of object queries without increasing the compu-
tational complexity of our model. The best-performing model
based on deformable multi-resolution attention achieves state-
of-the-art results on the challenging YCB-Video dataset.
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