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Abstract

Multirobot coordination, if made efficient and robust,
promises high impact on automation. The challenge is
to enable robots to work together in an intelligent
manner to execute a global task. The market approach
has had considerable success in the multirobot
coordination domain. This paper investigates the effects
of introducing opportunistic optimization with leaders
to enhance market-based multirobot coordination.
Leaders are able to optimize within subgroups of robots
by collecting information about their tasks and status,
and re-allocating the tasks within the subgroup in a
more profitable manner. The presented work considers
the effects of a leader optimizing a single subgroup, and
some effects of multiple leaders optimizing overlapping
subgroups. The implementations were tested on a
variation of the distributed traveling salesman problem.
Presented results show that global costs can be
reduced, and hence task allocation can be improved,
utilizing leaders.

1 Introduction

The growing demand for robotic solutions to
increasingly complex and varied problems has dictated
that a single robot is no longer the best solution for
many application domains; instead, teams of robots
must coordinate intelligently for successful task
execution. Driven by these demands, many research
efforts have focused on the challenge of multirobot
coordination. Dias and Stentz [2] present a detailed
description of multirobot application domains and their
demands and show that robot teams are more effective
than a single robot in many application domains.
Simply increasing the number of robots assigned to a
task does not necessarily solve a problem more
efficiently; multiple robots must cooperate to achieve
high efficiency. The difficulty arises in coordinating
many robots to perform a complex, global task.
Dynamic environments, malfunctioning robots, and
multiple user requirements add to the complexity of the
multirobot coordination problem. Dias and Stentz [2]
explore some of these issues, and present some of the
principal efforts in this field of research.

One approach is to design the team such that a single
robot or central computer acts as a “leader” and is
responsible for planning the actions of the entire group.
The principal advantage of such centralized approaches
is that they allow optimal planning. However, they
suffer from several disadvantages including sluggish
response to dynamic conditions, intractable solutions for
large teams, communication difficulties, and the leader
becoming a central point of failure.

Local and distributed approaches address these
problems by distributing the planning responsibilities
amongst all members of the team. Each robot operates

independently, relying on its local sensor information.
Many research efforts have modeled distributed systems
inspired by biology, physics, and economics. The
principal drawback of distributed approaches is that
they often result in highly sub-optimal solutions because
all plans are based solely on local information.

Recently, negotiation-based and economy/market-based
multirobot coordination has gained popularity. This
work in multirobot coordination draws from the
software agents literature that began with Smith’s
Contract Net Protocol [9], its extension by Sandholm
and Lesser [7], and the general concepts of market-
aware agents developed by Wellman and Wurman [12].
These concepts have since been extended to control a
variety of multiagent (and more recently multirobot)
systems. Golfarelli and Rizzi [5] proposed a swap-
based negotiation protocol for multirobot coordination
that restricted negotiations to task-swaps. Stentz and
Dias [10] proposed a more capable market-based
approach for multirobot coordination which aims to
opportunistically introduce pockets of centralized
optimal planning into a distributed system, thereby
exploiting the desirable properties of both distributed
and centralized approaches. Thayer et al. [11], Gerkey
and Mataric [4], and Zlot et al. [13] have since produced
market-based multirobot coordination results.
Economic approaches are not without their
disadvantages. Negotiation protocols, mapping of task
domains to appropriate cost functions, and introducing
relevant de-commitment penalty schemes can quickly
complicate the design of a control architecture.
Furthermore, some negotiation schemes can drastically
increase communication requirements. Thus, all of
these factors must be considered when designing a
market-based architecture.

2 The Market Approach

Stentz and Dias [10] first introduced the concept of
using a market approach to coordinate multiple robots to
cooperatively complete a task, building on the contract
net protocol by Smith [9], its extension by Sandholm
and Lesser [7], and the general concepts of market-
aware agents developed by Wellman and Wurman [12].
This work introduced the methodology of applying
market mechanisms to intra-team robot coordination
(i.e. in typically non-competitive environments) as
opposed to competitive multirobot domains and
competitive inter-agent interactions in domains such as
E-commerce. Simulation results using this approach
were produced by Dias and Stentz [3], and proven robot
results were presented by Thayer et al. [11], and Zlot et
al. [13]. A brief introduction to this approach is
presented here.

Consider a team of robots assembled to perform a
particular set of tasks. Consider further, that each robot



in the team is modeled as a self-interested agent, and the
team of robots as an economy. The goal of the team is
to complete the tasks successfully while minimizing
overall costs. Each robot aims to maximize its
individual profit (which often translates to minimizing
individual cost where possible); however, since all
revenue is derived from satisfying team objectives, the
robots’ self-interest equates to doing global good.
Moreover, all robots can only increase their profit by
eliminating unnecessary waste (i.e. excess cost). Hence,
if the global cost is determined by the summation of
individual robot costs, each deal made by a robot (note
that robots will only make profitable deals) will result in
global cost reduction. The competitive element of the
robots bidding for different tasks enables the systems to
decipher the competing local information of each robot,
while the currency exchange provides grounding for the
competing local costs in terms of the global value of the
tasks being performed.

2.1 Revenues, Costs, the Role of Price and the
Bidding Process

Appropriate functions are needed to map possible task
outcomes onto revenue values and to map possible
schemes for performing the task onto cost values. As a
team, the goal is to execute some plan such that the
overall profit (the excess of revenue over cost), is
maximized. Furthermore, these functions must provide a
means for distributing the revenue and assessing costs to
individual robots.

Thus, robots receive revenue and incur costs for
accomplishing a specific team-task, but the team’s
revenue function is not the only source of income. A
robot can also receive revenue from another robot in
exchange for goods or services. The price dictates the
payment amount for the good or service. A common
approach is to bid for a good or service in order to arrive
at a mutually acceptable price.

2.2 Cooperation, Competition, Learning and
Adaptation

Two robots are cooperative if they have complementary
roles; that is, if both robots can make more profit by
working together than by working individually.
Conversely, two robots are competitive if they have the
same role; that is, if the amount of profit that one can
make is negatively affected by the presence of the other
robot. The flexibility of the market-model allows the
robots to cooperate and compete as necessary to
accomplish a task.

Moreover, the robot economy is amenable to learning
new behaviors and strategies as it executes its complex
global task. An added strength of the market approach is
its ability to deal opportunistically with dynamic
environments.

2.3 Self Organization

Conspicuously absent from the market approach is a
rigid, top-down hierarchy. Instead, the robots organize
themselves in a way that is mutually beneficial. Since
the aggregate profit amassed by the individuals is

directly tied to the success of the task, this self-
organization yields the best results.

Consider a group of ten robots. An eleventh robot, A,
offers its services as their leader. It does not become
their leader by coercion or decree, but by convincing the
group that they will make more profit by following its
advice than by acting individually or in subgroups. A
does this by investigating “plans” for utilizing all ten
robots. If A comes up with a truly good plan, it will
maximize profit across the whole group. The
prospective leader can use this large profit to bid for the
services of the group members, and of course, retain a
portion of the profit for itself. Note that all relevant
robots will have to commit to the plan before the plan
can be sold. The leader may be bidding not only against
the individuals’ plans, but also against group plans
produced by other prospective leaders. Note that the
leader acts both as a benevolent and a self-interested
agent since it receives personal compensation for efforts
benefiting the entire group.

But there is a limit to this organization. As the group
becomes larger, the combinatorics become intractable
and the process of gathering all of the relevant
information to produce a good plan becomes
increasingly difficult. A leader will realize this when it
can no longer convince its subjects (via bidding for their
services) to follow its plans.

3 Contribution

The work presented in this paper explores some effects
of opportunistic optimization with leaders in market-
based multirobot coordination. Furthermore, this work
addressed one of the key limitations of our
implementation of this approach thus far: the restriction
of negotiations to single-party, single-task deals. In
many cases, this restriction limits the global cost
reduction, since the robots do not have the negotiation
tools to reason their way out of shallow, local minima.
The work presented here extends these tools to permit
multi-party and multi-task deals with better global cost
reduction potential.

4 Optimizing with Leaders

An important contribution of this work is the
development of a “leader” role that allows a robot with
the necessary resources to assess the current plans of a
group of robots and provide more optimal plans for the
group. The leader can gain knowledge of the group’s
current state via communication or some form of
observation. A prospective leader can use the profits
generated by an optimized plan to bid for the services of
the group members, and retain a portion of the profit for
itself. The leader may bid not only against the
individuals’ plans, but also against group plans
produced by other prospective leaders. Centralized and
distributed approaches are two extremes along a
continuum. The introduction of leaders allows the
market-based approach to slide along this continuum in
the direction of improved profitability in an



opportunistic manner. In this work we implement a
preliminary version of the leader capability by means of
a combinatorial exchange, as proposed in [2].

4.1 Clustering for Multi-Task Processing

The capability to negotiate multi-task deals greatly
enhances the market approach because it allows a robot
to escape some local minima in task allocation
solutions. However, if the robots bid on every possible
combination of tasks, the number of bids submitted will
grow exponentially with the number of tasks.
Consequently, processing these bids will be impossible
for more than a few tasks. Hence, some form of
clustering algorithm is necessary to determine the
clusters of tasks to bid on. The possibilities for such
clustering algorithms are numerous [6].

The clustering algorithm used in this work is chosen to
ensure a span in size (from single-task clusters to a
wholly inclusive cluster) and task membership (i.e.
ensure that every task is included in at least one cluster).
These properties are important because a robot cannot
necessarily predict the interaction of the clusters it
offers with the tasks of other bidders, and hence, needs
to give the allocator ample flexibility in offloading
tasks. The chosen clustering algorithm operates as
follows:

1. Create a list of edges spanning all tasks on offer
(N), where each edge joins two tasks and the cost of
the edge represents the distance in cost space
between the two tasks. A low edge value implies,
but does not guarantee, that two tasks can be
performed more cost-effectively together than
apart.

2. Sort the edge list from lowest to highest cost.

3. Form the first group of clusters by creating a single-
task cluster for each task on offer.

4. For cluster sizes ranging from 2 to N, recursively
form new clusters by adding the next best available
edge (an edge is unavailable if it is either already
included in a previous cluster or if the edge
connects two tasks which are not included in any of
the previous clusters) to a cluster in the previous
cluster-list. (Note, when new clusters are formed,
all previous clusters are preserved). Thus,
recursively form a forest of minimum spanning
trees (MSTs) [1] ranging in size from 1 to N.

This algorithm can be applied in general to determine
which tasks are best dealt with in clusters, without
computing every possible cluster. Suitable variations of
this algorithm (or others) can be chosen to enable multi-
task negotiations in different task domains. The
presented work is verified on a multi-depot distributed
traveling salesman problem (TSP), and hence, the MSTs
are decomposed into tours as follows. If a newly added
edge breaks the continuity of the tour, the MST is
adjusted by removing one of the edges connecting to the
newly added edge and adding the necessary edge to
preserve the continuity of the tour with the least
addition to the cost of the tour. Note that this change
still preserves the bounds of the MST, which guarantees

that the cost of the tour does not exceed twice the
optimal cost. This holds true for metric cost spaces
where the triangle inequality is preserved.

Allowing robots to include the offloading of an owned
cluster when bidding to accept a new cluster of tasks
further enhances the bidding capability of the robots.

4.2 Combinatorial Exchange for Multi-Party
Optimizations

A combinatorial exchange (a market where bidders can
jointly buy and sell a combination of goods and services
within a single bid) is chosen to enable multi-party
optimizations for a team. A combinatorial exchange
enables a leader to locally optimize the task assignments
of a subgroup of robots and to potentially achieve a
greater global cost reduction. Many researchers
including Sandholm and Suri [8] have presented
valuable insight on how to efficiently implement and
clear combinatorial exchanges for E-commerce
applications. However, many of these tools are
relatively complex and are not used in this work for
simplicity. Instead, the basic recommendation of
searching a binary bid tree is applied. The chosen
implementation for clearing the combinatorial exchange
in this work is a depth first search on a binary tree
where each node of the tree represents a bid and the
binary aspect of the tree represents accepting or
rejecting that bid. The tree is pruned to disallow
accepting multiple bids from any single bidder, and to
disallow exchanging of any single task more than once.
Note that the pruning does not affect the solution except
by improving the runtime.

The preliminary version of the leader role in the market
approach is implemented as follows. A leader queries
surrounding robots to discover what tasks they have to
offer and their current states, and re-allocates tasks
within the group using the combinatorial exchange
mechanism. Note that this is just one way in which the
leader can reduce the cost within the group (and thereby
the global cost). Other schemes could involve the
leader using different mechanisms to re-distribute tasks
and even generating new tasks to coordinate the group
more efficiently. Moreover, some tasks (for example,
cooperative automated construction and cooperative
maneuvering of large objects) may require tight
coordination where a leader has to closely monitor the
progress of individual team members and accordingly
direct the efforts of other members of the team.

4.3 Competing Local Groups

When leaders are allowed to opportunistically optimize
sub-groups, occasions could arise where two leaders are
in competition for the services of the robots that overlap
between the two groups. If a robot bids on tasks from
both leaders, it could win both bids and be unable to
perform them or find it unprofitable to do so. There are
several ways to address this “synchronization” issue.
For example, broken deals with a penalty can be
allowed, or bids can be stamped with an expiration time
during which they are valid and offers can be dealt with
on a first-come-first-serve or last-come-first-serve basis.



In the work presented here, the groups are allowed to
negotiate in round robin fashion, thus forcing serial
synchronization.

5 Experimentation

The proposed multi-task and multi-party enhancements
are developed and tested in a simulated distributed
sensing task. A group of robots, located at different
starting positions in a known simulated world, are
assigned the task of visiting a set of pre-selected
observation points. This problem is a variation of the
multi-depot distributed traveling salesman problem,
where the observation points are the cities to visit. Note
that many multirobot application domains require an
effective solution to the distributed traveling salesman
problem. The costs are the lengths of the straight-line
paths between locations, interpreted as money. Let cij

be the cost for the jth robot to visit the ith city from the
(i-1th) city in its tour (where the 0th city is the starting
location).

The robot cost function for the jth robot is computed as
follows:

where nj is the number of cities in the tour for robot j.

The team cost function is:

where m is the number of robots.

The team revenue and robot revenue functions are
determined by the negotiated prices. All robots
(bidders) adopt the same simplistic strategy of bidding a
fixed 10% markup above the cost of completing the
task. According to this strategy, if an announced task
costs c to execute, a robot computes its bid as 1.1 c.
Thus, the robots bid for each city based on their
estimated costs to visit that city. Similarly, if a robot
offers up a task that will cost it c to execute, in an
attempt to buy the services of another robot to complete
that task, the maximum price it offers for this service is
set as 0.9 c.

Tasks and robot positions are randomly generated
within a 100x100 world, and initial task allocations are
made by randomly distributing the tasks among the
robots. Heterogeneous robot capabilities are considered
by restricting some robots’ capabilities such that they
can only process single-task (ST) deals, while other
robots can process multi-task (MT) deals. Robots
capable of playing leader roles are allowed the
additional capability of performing multi-party (MP)
optimizations via either a single-goods exchange or a
combinatorial exchange, depending on their capability.
Sections 5.1 through 5.4 describe in detail the scenarios
of robots negotiating in the absence of a leader (TPST
and TPMT) and the optimization scenarios with leaders
(MPST and MPMT). Section 5.5 describes the scenario
where robots have limited communication range and
hence can only trade within subgroups.

5.1 Two-Party, Single-Task (TPST) Negotiations

In this case, once the initial random task assignments
are made, each of the robots, in turn, offers all its
assigned tasks to all the other robots, in turn. Thus,
interactions are limited to two parties at any given time
as illustrated in Figure 1.

Figure 1: TPST Illustration

Each bidder then submits a bid for each task. In order to
estimate the additional cost of inserting a task into its
queue, the bidder uses the cluster generation algorithm
described above to generate an MST with its current
queue of tasks plus the offered task, and computes the
cost difference between the resulting and original
queues. The offerer accepts the most profitable bid it
receives. The cost of the offerer’s resulting queue is
computed by removing from its queue the task that was
transferred through the winning bid, clustering the
remaining tasks using the clustering algorithm, and
computing the cost of the resulting queue. Hence, in the
TPST scenario, only single-task (ST) deals are
considered, and pairs of robots continue to negotiate
amongst themselves in round-robin fashion until no
new, mutually profitable deals are possible. Therefore,
negotiations cease once the system settles into a local
minimum for the global cost function.

5.2 Two-Party, Multi-Task (TPMT) Negotiations

In this case, the previous case is repeated with clusters
of tasks being the atomic unit of the negotiations as
shown in Figure 2.

Figure 2: TPMT Illustration

That is, the initial assignments are followed by each of
the robots, in turn, offering all of its assigned tasks to all
the other robots, in turn. The robots then bid for
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clusters of these tasks. Once again, costs are computed
by using the clustering algorithm to cluster all tasks
under consideration and compute the cost of the
resulting queues, and negotiations are always between
two robots.

5.3 Leader Performing Multi-Party Single-Task
(MPST) Optimizations

A leader, whose capability is restricted to dealing in
single-task deals, is introduced in this case. The leader
queries all the robots, and gathers all the tasks of all the
robots along with each robot’s state information. The
leader then sets up an exchange by formulating single-
task bids for the robots in the sub-group based on the
gathered information. The exchange used in the MPST
scenario is a single-task exchange (i.e. a single bid can
contain buying of a single task and selling of another
single task). The exchange is then cleared to maximize
the leader’s profit. These interactions are illustrated in
Figure 3.

Figure 3: MPST Illustration

This process is repeated until the exchange cannot
produce any further profit, and the corresponding task
re-allocation is proposed to the sub-group of robots. If
the leader’s plan reduces the global cost, the resulting
excess profit can be distributed among the entire
subgroup (including the leader) such that the robots in
the subgroup accept the leader’s task re-allocation.

5.4 Leader Performing Multi-Party, Multi-Task
(MPMT) Optimizations

Figure 4: MPMT Illustration

Here, the previous case was repeated with the added
capability of the leader to process MT bids as shown in
Figure 4. That is, the leader sets up and clears a
combinatorial exchange to determine the re-allocation
of tasks. In a combinatorial exchange, clusters of tasks
can be bought and sold within a single bid.

5.5 Multiple Competing Local Groups

This set of experiments involved 8 robots divided into 3
groups of 4 robots each (with the middle group
overlapping the other two groups) and 10 tasks.
Trading and optimization with leaders are restricted to
within the subgroups. The robots are evenly spread
throughout a 2000x2000 world and the cities (tasks) are
randomly generated. Scenarios with and without
leaders, and with ST-capable and MT-capable robots are
considered.

6 Results and Discussion

The results for the experiments described above are
shown below. Figure 5 and Figure 6 show the final
tours of each robot for a 2-robot, 10-city TSP and a 4-
robot, 10-city TSP respectively. In both figures, the
robots are shown as circles and the cities are shown as
squares.

Figure 5: Solutions to a 2-robot, 10-task TSP with and
without leader-optimization

Cost Itns Improved Opt. Error
Random 351 - 0.0 % 65.6 %
No Leader
2 ST 256 2 25.9 % 21.4 %

2 MT 231 1 33.0 % 9.0 %
ST Leader 245 2 29.0 % 16.2 %
MT Leader 227 1 34.4 % 7.0 %
Optimal 212 - 38.6 % 0.0 %

Table 1: Performance averaged over 100 randomly
generated 2-robot, 10-task TSPs
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Figure 6: Solutions to a 4-robot, 10-task TSP with and
without leader-optimization

The first illustration in each figure shows the tours after
the initial random allocation of tasks. The second
illustration shows the resulting tours after the robots
have completed TPST deals and reached a local
minimum in global cost. The third and fourth
illustrations show the results of the MPST and MPMT
scenarios. In the illustrated cases, the optimal allocation
is reached in the MPMT scenario.

Cost Itns Improved Opt. Error
Random 411 - 0.0 % 124.6 %
No Leader
4 ST 230 5 42.7 % 27.7 %
2ST+2MT 222 5 44.6 % 23.3 %
1ST+3MT 209 4 47.8 % 16.2 %
4MT 197 4 50.9 % 9.7 %
ST Leader 218 3 45.8 % 21.1 %
MT Leader 193 2 51.8 % 7.5 %
Optimal 183 - - 0.0 %
Table 2: Results averaged over 100 randomly generated

4-robot (heterogeneous), 10-task TSPs

Table 1, Table 2, and Table 3 report the performance
averaged over 100 randomly generated task
distributions for the 2-robot-10-task case, the 4-robot-
10-task case, and the 4-robot-20-task case respectively.
As evident from these results, on average, an MT-
capable leader can improve the profit of the group
significantly. An ST-capable leader can only improve
the profit of the group on average for groups of robots
where there are at most 50% MT-capable robots.

Cost Iterations Improved
Random 725 - 0.0%
No Leader
4 ST 400 10 44.1%
2ST+2MT 388 9 45.7%
1ST+3MT 359 7 49.8%
4MT 336 5 53.0%
ST Leader 373 6 47.7%
MT Leader 322 3 54.9%

Table 3: Performance averaged over 100 randomly
generated 4-robot (heterogeneous), 20-task TSPs

Figure 7 and Table 4 illustrate preliminary results for
the competing subgroup scenario. The subgroups of
robots are circled in Figure 7, which depicts the results
of a single run. Table 4 reports the performance
averaged over 100 randomly generated task
distributions. Again, the results show that on average
the local optimization with leaders improves the global
profit.

Cost Iterations Improved
Random 9091 - 0.0%
No Leader
4 ST 4598 8 48.9%
2ST+2MT 4379 9 51.2%
ST Leader 4312 6 52.1%
MT Leader 3687 6 58.9%

Table 4: Performance averaged over 100 randomly
generated 8-robot (heterogeneous), 10-task TSPs with 3

overlapping groups of 4 robots each

Figure 7: Solution for TSP with 3 overlapping
subgroups of 4 robots each and 10 tasks

The presented work only addresses scenarios where
leaders run exchanges to optimize task allocation within
a group of robots. Some leaders are also capable of
clustering tasks and hence can conduct combinatorial



exchanges. It is also possible to have combinatorial
exchanges and leaders as distinct entities within the
economy. For example, there could be a leader that
simply clusters tasks and sells these cluster plans to a
combinatorial exchange. Note that the leader is not
selling the actual cluster of tasks—just a plan for which
tasks to cluster. The exchange could then buy all of the
component tasks, sell off the resultant cluster, and pay a
fee to the leader. The presented results indicate that the
benefit from the ability to cluster tasks and participate in
multi-task negotiations exceeds the benefit from the
ability to perform multi-party negotiations. Leaders
could also use other approaches to generate plans for a
subgroup of robots. Finally, a leader could simply act
as a means of enabling trade between subgroups of
robots who are otherwise unable to communicate, thus
enriching the possible trades.

7 Conclusions and Future Work

Presented results show that leaders can considerably
reduce global costs in market-based multirobot
coordination. Initial experiments for optimizing within
robot sub-groups with leaders also proved promising.
Future work includes implementing these capabilities on
a robot team and further extensions of the market
approach. Proposed enhancements include more
detailed analysis of optimizing with leaders, dealing
with time constraints, and experimentation with
different task domains. The goal of this work is to
produce an efficient and robust market-based multirobot
coordination architecture.
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