
An Incremental Deployment Algorithm for Mobile Robot Teams

Andrew Howard, Maja J Matarić and Gaurav S Sukhatme

Robotics Research Laboratory, Computer Science Department, University of Southern California
ahoward@usc.edu, mataric@usc.edu, gaurav@usc.edu

Abstract

This paper describes an algorithm for deploying the
members of a mobile robot team into an unknown en-
vironment. The algorithm deploys robots one-at-a-time,
with each robot making use of information gathered by
the previous robots to determine the next deployment lo-
cation. The deployment pattern is designed to maximize
the area covered by the robots’ sensors, while simulta-
neously ensuring that the robots maintain line-of-sight
contact with one another. This paper describes the ba-
sic algorithm and presents results obtained from a series
of experiments conducted using both real and simulated
robots.

1 Introduction

This paper describes an algorithm for deploying the
members of a mobile robot team into an unknown envi-
ronment; the algorithm is designed to maximize the area
covered by the robots’ sensors while simultaneously en-
suring that the robots maintain line-of-sight contact with
one another. The algorithm is intended for use in appli-
cations such as search-and-rescue operations and emer-
gency environment monitoring. Consider, for example, a
scenario involving a hazardous materials leak in a dam-
aged structure. We would like the members of our mobile
robot team to deploy themselves throughout this struc-
ture such that the area ‘covered’ by the robots’ on-board
chemical sensors is maximized. The robots can then
transmit information about the location and concentra-
tion of hazards to a base station located some distance
away. A key feature of this scenario is that prior mod-
els of the environment are likely to be either unavailable,
incomplete or inaccurate. This has two important con-
sequences. First, it is not possible to compute an ‘op-
timal’ a priori deployment pattern; the deployment al-
gorithm must instead make decisions based entirely on
sensed data from the robots being deployed. Second, in
the absence of prior models, it may be difficult to local-
ize the robots (we assume that GPS is unavailable due
to signal obstructions or multi-path effects). The robots
must therefore use each other as landmarks [7, 8], which
implies that each robot must retain line-of-sight contact
with at least one other robot.

The deployment algorithm described in this paper is both
incremental and greedy. Robots are deployed one-at-a-
time, with each node making use of data gathered from
previously deployed robots to determine its optimal de-
ployment location. The algorithm is greedy in the sense
that it attempts to determine, for each robot, the loca-
tion that will produce the maximum increase in cover-
age area, while simultaneously ensuring that the robot
remains within line-of-sight of at least one other robot.
Determining the ‘optimal’ placement – even in a greedy
sense – is a fundamentally difficult problem; the deploy-
ment algorithm described in this paper therefore relies on
a number of heuristics to guide the selection of deploy-
ment locations.

The algorithm also addresses another problem: obstruc-
tion. Obstruction occurs when one of the robots being
deployed cannot reach its deployment location because it
is being blocked by another robot. We have developed a
relatively simple resolution strategy for overcoming such
obstructions that exploits the homogeneity of the robot
team; put simply, each robot is allowed to recursively
swap roles with any of the robots that are obstructing it.

We have conducted a series of experiments aimed at char-
acterizing the performance of the incremental deploy-
ment algorithm, using large numbers of simulated robots.
We have also conducted preliminary experiments with
real robots aimed at validating the algorithm under con-
trolled real-world conditions. The remainder of this paper
describes the basic deployment algorithm in more detail
and presents the results obtained from these experiments.

2 Related Work

The concept of coverage as a paradigm for evaluating
multi-robot systems was introduced by Gage [4]. Gage
defines three basic types of coverage: blanket coverage,
where the object is to achieve a static arrangement of
nodes that maximizes the total detection area; barrier cov-
erage, where the object is to minimize the probability
of undetected penetration through the barrier; and sweep
coverage, which is more-or-less equivalent to a moving
barrier. According to this taxonomy, the algorithm de-
scribed in this paper is a blanket coverage algorithm.



The problem of exploration by a single robot in an un-
known environment has been considered by a number of
authors [14, 15, 16]. The frontier-based approach of Ya-
mauchi et al. [14, 15] is particularly pertinent: this ex-
ploration algorithm proceeds by incrementally building a
global occupancy map of the environment, which is then
analyzed to find the ‘frontiers’ between free and unknown
space. The robot is directed to the nearest such fron-
tier. The deployment algorithm described in this paper
shares a number of similarities with this algorithm: we
also build a global occupancy grid of the environment and
direct nodes to the frontier between free and unknown
space. Our deployment algorithm, however, must satisfy
an additional constraint: the deployment locations must
be such that each robot is visible to at least one other
robot.

The problem of multi-robot exploration has also been ex-
plored by a number of authors [1, 11, 12]. In this context,
the heuristics used in this paper to select deployment lo-
cations are strikingly similar to those used by both Sim-
mons [11] and Burgard [1] to select locations for explo-
ration. In effect, these heuristics state that one should
not only explore the boundary of known space, but that
one should also bias the exploration towards regions in
which a robot is likely to uncover large areas of previ-
ously unknown space. Burgard describes an adaptive al-
gorithm for making estimates of these otherwise unpre-
dictable quantities. The deployment problem described
in this paper is closely related to the multi-robot explo-
ration problem.

Finally, we note the problem of deployment is related to
the traditional art gallery problem in computational ge-
ometry [10]. The art gallery problem seeks to determine,
for some polygonal environment, the minimum number
of cameras that can be placed such that the entire envi-
ronment is observed. While there exist a number of al-
gorithms designed to solve the art gallery problem, all of
these assume that we possess good prior models of the
environment. In contrast, we assume that no prior mod-
els; robots must therefore empirically and incrementally
determine the structure of the environment.

3 The Incremental Deployment Algorithm

The incremental deployment algorithm relies on a num-
ber of key assumptions. First, we assume that the robots
are homogeneous, and that every robot is equipped with a
range sensor (such as a laser range finder or sonar array)
and a broadcast communications device (such as wireless
Ethernet). Second, we assume that the environment is
static, at least to the extent that gross topology remains
unchanged while the robots are deploying. We assume,
for example, that open doors remain open. Note that the
deployment process itself will modify the environment,
as the robots will tend to obstruct one another. Third,
we assume that the pose of every robot is known in some

global (but possibly arbitrary) coordinate system. In our
previous work on team localization [7, 8], we have shown
how robots can determine their pose in an arbitrary global
coordinate system, by using other robots as landmarks.
Naturally, this localization method requires that robots
maintain at least intermittent line-of-sight contact, which
gives rise to an important constraint: each robot must be
visible to at least one other robot at its final deployed lo-
cation. Finally, it should be noted that we do not assume
the existence of some prior model of the environment.
This algorithm is intended for applications in which en-
vironment models are unavailable, incomplete or inaccu-
rate, and a key task for the team may be to generate such
models.

The incremental deployment algorithm is designed to
maximize a single performance metric: coverage, i.e.,
the total area visible to the team’s sensors. Ideally, we
would like to compare the coverage produced by this al-
gorithm with that produced by an optimal solution. Un-
fortunately, finding the optimal solute for any non-trivial
example is extremely difficult, even when we have good
a priori maps of the environment. Consequently, in this
paper, we make no attempt to find such solutions.

3.1 Algorithm Overview

The incremental deployment algorithm has four phases:
initialization, election, assignment and execution.

• Initialization. Robots are assigned one of three states:
waiting, active or deployed. Initially, the state of all
robots is set to waiting, with the exception of a single
robot that is set to deployed. This latter robot provides
a starting point, or ‘anchor’, for the team.

• Selection. Sensor data from the deployed nodes is
combined to form a unified map of the environment.
This map is analyzed to select the deployment loca-
tion, or goal, for the next node.

• Assignment. In the simplest case, the selected goal is
assigned to the first waiting robot, whose state is then
changed from waiting to active. Assignment is compli-
cated by the fact that deployed robots tend to obstruct
the passage of waiting robots, necessitating a more
complex assignment algorithm. This algorithm may
need to re-assign the goals for any number of already
deployed robot, changing their state from deployed to
active.

• Execution. Active robots are deployed sequentially to
their goal locations. The state of each robot is changed
from active to deployed upon arrival at the goal.

The algorithm iterates through the selection, assignment
and execution phases, terminating only when all robots
have been deployed, or the environment is completely
covered.



(a) (b) (c) (d)

Figure 1: (a) A fragment of the simulated environment containing a single robot. (b) Occupancy grid: black cells are
occupied, white cells are free, gray cells are unknown. (c) Configuration grid: black cells are occupied, white cells are
free, gray cells are unknown. (d) Reachability grid: white cells are reachable, gray cells are unreachable.

3.2 Selection Phase

The selection phase determines the next deployment lo-
cation, or goal. Ideally, the selected goal should max-
imize the coverage metric while simultaneously satis-
fying the visibility constraint. In practice, of course,
there is no way of determining the ‘optimal’ goal from
the incomplete information we have available (lacking
a prior model of the environment, we must rely entirely
on sensed data from the previously deployed nodes). We
therefore eschew such reasoning and instead make use of
a number of relatively simple goal selection policies that
rely on heuristics to guide the selection process.

As a first step, sensor data from the deployed robots are
combined to form an occupancy grid [2, 3]. Each cell in
this grid is assigned one of three states: free, occupied or
unknown. We use a standard Bayesian technique [3] to
determine the probability that each cell is occupied, then
threshold this probability to determine the state of each
cell. Any cell that can be seen by one or more robots will
be marked as either free or occupied; only those cells that
cannot be seen by any robot will be marked as unknown.

The basic occupancy grid is then analyzed to produce two
more grids: a configuration grid and a reachability grid.
As the name suggests, the configuration grid is a repre-
sentation of the robots’ configuration space [9]. Each
cell in the configuration grid can have one of three states:
free, occupied and unknown. A cell is free if and only
if all the occupancy grid cells lying within one robot ra-
dius are also free, and occupied if there are one or more
occupancy grid cells within one robot radius that are oc-
cupied. All other cells are marked as unknown. A robot
can safely be placed in any free cell in the configuration
grid. Not all such cells, however, will be reachable; a
robot may, for example, be able to see free space through
an opening that is too narrow to allow passage. There-
fore, we further process the configuration grid to derive
the reachability grid. This is done by applying a flood-fill
algorithm to free space in the configuration grid, starting
from the location of each deployed robot in turn. Cells in
the reachability grid are thus labeled as either reachable

or unreachable.

Figure 1 shows an example of the occupancy, configu-
ration and reachability grids generated for a single node
in a simulated environment. Note that the set of reach-
able cells is a subset of the set of free configuration cells,
which is in turn a subset of the set of free occupancy cells.
Thus, by selecting a goal that lies within a reachable cell,
we simultaneously ensure that the deploying robot will
be visible to at least one other robot, that it will not be
in collision, and that there exists some path such that the
robot can reach the goal.

Having determined the reachability space, the selection
algorithm makes use of two heuristics to guide final goal
selection: a boundary heuristic and a coverage heuris-
tic. The boundary heuristic states that robots should de-
ploy to the boundary between free and unknown space.
This heuristic seeks to place nodes in such a way that
there is minimal overlap between sensory fields, thereby
maximizing the coverage metric. The coverage heuristic
states that nodes should deploy to the location at which
they will ‘cover’ the greatest area of presently unknown
space. This heuristic seeks to place nodes at the location
at which they have the greatest potential to increase the
coverage area, given that we make the optimistic assump-
tion that all unknown areas are, in fact, free space.

In and of themselves, these heuristics do not necessarily
specify a unique goal. They can, however, be incorpo-
rated into a number of goal selection policies; we have
implemented four such policies:

• P1: randomly select a location in free (reachable)
space.

• P2: randomly select a location on the free/unknown
boundary.

• P3: select the free space location that maximizes the
coverage heuristic.

• P4: select the free/unknown boundary location that
maximizes the coverage heuristic.

These policies express all possible combinations of the
two heuristics, including the ‘control’ case (P1) in which



(a) (b)

Figure 2: (a) A typical obstruction problem, with a wait-
ing robot unable to reach its deployment location. The
gray area indicates the region of space that is not yet
covered by the team. (b) The obstruction is resolved by
re-assigning the deployment location to another robot.

neither heuristic is used (the goal selection is random).
Note that P4 is a special case of P3; it is included partly
for completeness, and partly because it can be computed
much more rapidly than P3. In Section 4, we will com-
pare the performance of these four policies in an experi-
mental context, and attempt to determine the relative con-
tributions of the underlying heuristics.

3.3 Assignment Phase

The assignment phase attempts to assign the newly se-
lected goal to a waiting robot. This process is compli-
cated by the fact that robots may find themselves unable
to reach some parts of the environment due to obstruc-
tion by previously deployed robots. Such obstruction be-
comes increasingly likely as the size of the robots ap-
proaches the size of openings in the environment. There
is, fortunately, a very natural solution to this problem
that exploits the homogeneity of the robot team: an ob-
structed robot may swap goals with the robot obstructing
it. Thus, if robot A is obstructed by robot B, robot B

can move to A’s deployment location, while A replaces
B at its original deployment location. For complex en-
vironments, with many obstructions, this resolution strat-
egy may need to be applied recursively: A replaces B, B

replaces C, C replaces D and so on.

The assignment phase uses a slightly modified version
of this procedure. First, we construct a graph in which
each vertex represents a robot and each edge represents a
reachability relationship between two robots (i.e. robot
A can reach robot B’s position, and vice versa). The
length of each edge corresponds to the distance between
the robots, and the goal is represented by a dummy ver-
tex. Second, we find the shortest path from the first wait-
ing robot to the goal (the length of any path through the
graph is given by the sum of edge lengths). Finally, we
mark every node on the shortest path as active, and assign
each robot the goal of reaching the position currently oc-
cupied by the next robot along the path.

This algorithm is illustrated in Figure 2, which shows
a prototypical graph with the shortest path highlighted.

While the solution is somewhat sub-optimal (it is not
strictly necessary for all robots on this path to move), the
potential obstructions have been successfully resolved.

3.4 Execution Phase

During the execution phase, active robots are deployed
to their goal locations. Robots are deployed using se-
quential execution; i.e., we wait for each robot to reach
its goal before deploying the next robot. Robots are de-
ployed in the order in which they were assigned goals: the
first robot will move to the new deployment location, the
second will move to take up the first robot’s old location,
and so on. Since there is only one robot in motion at any
given point in time, and since the goal resolution algo-
rithm ensures that each successive goal is unobstructed,
there is no possibility for interference among robots.

4 Experiments

We have conducted a series of realistic simulated experi-
ments aimed at measuring the overall performance of the
algorithm, as well as determining the relative merits of
the four goal selection polices described in Section 3.2.
We have also conducted an experiment with real robots,
for the purpose of validating the algorithm in the presence
of real sensor and actuator nose.

4.1 A Simulated Experiment

The simulated experiments were conducted using the
Stage multi-agent simulator [13, 5]. Stage simulates the
behavior of real sensors and actuators with a high degree
of fidelity, such that algorithms developed using Stage
can usually be transferred to real hardware with little or
no modification. The team for this experiment consisted
of 50 robots, each equipped with a scanning laser range
finder with a 360 degree field-of-view and a maximum
range of 4m. The team was placed in the environment
shown in Figure 3; this is a fragment of a much larger
environment representing a single floor in a hospital. Lo-
calization information for this experiment was provided
by the simulator, which is used in place of the team lo-
calization method described in [7, 8]; this latter method
has not yet been merged with the incremental deployment
algorithm.

We conducted a large set of trials, varying for each trial
the selection policy and starting location. For policies
P1 and P2 (which are stochastic), we conducted 10 trials
from each of 10 initial location (a total of 100 trials for
each policy). For policies P3 and P4 (which are deter-
ministic), we conducted a single trial for each of the 10
initial locations.

The results of these trials are summarized in Figure 3(c),
which shows the coverage (averaged across all trials
for each policy) plotted against the number of deployed
robots. Since all four curves are approximately linear, we



0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50

C
ov

er
ag

e 
(m

^2
)

Deployed nodes

Selection policy P1
Selection policy P2
Selection policy P3
Selection policy P4

(a) (b) (c)

Figure 3: (a) A fragment of the simulated environment. (b) Occupancy grid produced by a typical deployment (policy
P4). (c) Total coverage for selection policies P1 to P4; most of the error bars have been suppressed for clarity.

can determine, for each policy, a value α that measures
the average area ‘covered’ by each robot; i.e., α is such
that the total coverage is approximately equal to αn,
where n is the number of deployed robots. The α values
for policies P1 through P4 are as follows:

Policy α Policy α

P1 4.01 ± 0.20 P3 13.31 ± 0.11

P2 10.56 ± 0.13 P4 13.42 ± 0.09

Comparing these results, it is clear that the three
goal selection policies that incorporate one or more of
the heuristics described in Section 3.2 (policies P2 to
P4) perform significantly better than the control case
(policy P1). Policies P3 and P4, in fact, produce a 3-fold
improvement over simple random deployment. It is also
apparent that most of this improvement can be achieved
using the boundary heuristic alone: policy P2 (which
uses only the boundary heuristic) is almost as good
as policy P3 (which uses only the coverage heuristic).
Furthermore, policies P3 and P4 are almost indistin-
guishable, suggesting that the coverage heuristic will, in
almost all situations, deploy nodes to the free/unknown
boundary. It therefore makes sense to use policy P4
in preference to policy P3, since the latter requires
much more time to compute and produces negligible
improvement in coverage.

These results also suggest that there remains room for im-
provement in the deployment algorithm. The upper limit
on α for a laser range-finder with a 360

◦ field-of-view
and range of 4m is 50.27m2; our best policies are achiev-
ing around one-fifth of this value. While we do not expect
this upper bound to be achievable in practice (nor in prin-
ciple, since this bound ignores packing considerations)
we would like to explore the relationship between α, sen-
sor range and environmental complexity. This topic is,
however, beyond the scope of this paper.

4.2 A Real-World Experiment

The robot team for the real-world experiment consisted
of four Pioneer 2DX mobile robots equipped with SICK
LMS200 scanning laser range-finders. The robots have
an on-board Pentium-class processor and communicate

Figure 5: The environment used for the real-world exper-
iment.

using 802.11 wireless Ethernet. Each robot runs the
Player [6, 5] robot server, which allows robots to be con-
trolled remotely over the network. For this experiment,
all four robots were controlled by a single 450MHz PIII
workstation.

The environment for this experiment was constructed in
the laboratory from wooden partitions. The layout of the
environment is shown in Figure 5. Since this environment
is less than 7m across, we artificially limited the range
of the laser range finders to 4m rather than their usual
8m (thus making the deployment more difficult). Local-
ization was provided by a beacon-based system that was
once again used in place of the team localization method
described in [7, 8].

We conducted a single deployment trial using policy P3.
Figure 4 shows a series of ‘snap-shots’ taken during this
trial. Each snap-shot shows the occupancy grid gener-
ated by the deployment algorithm, with the position of
each robot superimposed. The path taken by robots be-
tween snap-shots is also indicated. The trial starts with
four robots in the bottom-left corner of the environment,
with the right-most robot being used to anchor the team
(i.e., this robot remains stationary). Robots deploy se-
quentially, pushing back the free/unknown with each suc-
cessive deployment. Note that since the topology of the
environment is effectively linear, the robots move in a
‘Conga line’: as the lead robot moves forward, the robot
immediately behind it steps forward to take its place; this



Figure 4: Results for the real-world experiment: occupancy grid generated with one, two, three and four deployed
robots.

robot is in turn replaced by the one behind it, and so on.

While this experiment is limited in scope, it clearly
demonstrates that the incremental deployment algorithm
can be implemented on real hardware and function under
(controlled) real-world conditions.

5 Conclusion and Further Work

The experiments described in Section 4 clearly establish
the utility of the incremental deployment algorithm and
the heuristics on which it is based. Furthermore, while
we have not yet fully characterized the scaling properties
of the algorithm, we have empirically demonstrated that
this is a practical algorithm for teams containing up to
50 robots (our simulation experiments were performed in
real-time on an individual workstation).

The key weakness of these experiments is their reliance
on global localization mechanisms other than the team lo-
calization method for which the incremental deployment
algorithm was designed. We are currently integrating this
method, and expect to demonstrate a combined system in
the near future.

Our experiments are also far from exhaustive. There re-
main many issues to explore, including: how does the al-
gorithm scale with team size (in terms of computational
cost, bandwidth requirements, and physical deployment
time)? How does the algorithm perform in different envi-
ronments? And what is the impact of changing the sensor
range or the physical size of the robot (thereby increasing
or decreasing the number of obstructions)? These issues
remain the subject of ongoing research.

Acknowledgments

This work is supported in part by the DARPA MARS Program
grant DABT63-99-1-0015, ONR grant N000140110354, and
ONR DURIP grant N00014-00-1-0638.

References

[1] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Col-
laborative multi-robot exploration. In Proc. of IEEE International
Conferenceon Robotics and Automation (ICRA), volume 1, pages
476–81, 2000.

[2] A. Elfes. Sonar-based real-world mapping and navigation. IEEE
Journal of Robotics and Automation, RA-3(3):249–265, 1987.

[3] A. Elfes. Occupancy grids: A stochastic spatial representation for
active robot perception. In Proceedings of the Sixth Conference on
Uncertainty in AI. Morgan Kaufmann Publishers, Inc, July 1990.

[4] D. W. Gage. Command control for many-robot systems. In AUVS-
92, the Nineteenth Annual AUVS Technical Symposium, pages 22–
24, Hunstville Alabama, USA, June 1992. Reprinted in Unmanned
Systems Magazine, Fall 1992, Volume 10, Number 4, pp 28-34.

[5] B. Gerkey, R. Vaughan, and A. Howard. Player/Stage homepage.
http://robotics.usc.edu/player/, September 2001.

[6] B. P. Gerkey, R. T. Vaughan, K. Støy, A. Howard, G. S. Sukhatme,
and M. J. Matarić. Most valuable player: A robot device server
for distributed control. In Proc. of the IEEE/RSJ Intl. Conf. on In-
telligent Robots and Systems (IROS01), pages 1226–1231, Wailea,
Hawaii, Oct. 2001.

[7] A. Howard, M. J. Matarić, and G. S. Sukhatme. Localization for
mobile robot teams: A maximum likelihood approach. Technical
Report IRIS-01-407, Institute for Robotics and Intelligent Systems
Technical Report, University of Sourthern California, 2001.

[8] A. Howard, M. J. Matarić, and G. S. Sukhatme. Localization for
mobile robot teams using maximum likelihood estimation. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, EPFL, Switzerland, September 2002. To ap-
pear.

[9] T. Lozano-Perez and M. Mason. Automatic synthesis of fine-
motion strategies for robots. International Journal of Robotics Re-
search, 3(1):3–24, 1984.

[10] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford Uni-
versity Press, New York, August 1987.

[11] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,
S. Thrun, and H. Younes. Coordination for multi-robot exploration
and mapping. In Proc. of the Seventeenth National Conference on
Artificial Intelligence (AAAI-2000), pages 852–858, 2000.

[12] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA2000), volume 1, pages 321–328, 2000.

[13] R. T. Vaughan. Stage: a multiple robot simulator. Technical Report
IRIS-00-393, Institute for Robotics and Intelligent Systems, Uni-
versity of Southern California, 2000.

[14] B. Yamauchi. Frontier-based approach for autonomous exploration.
In Proceedings of the IEEE International Symposium on Compu-
tational Intelligence, Robotics and Automation, pages 146–151,
1997.

[15] B. Yamauchi, A. Shultz, and W. Adams. Mobile robot exploration
and map-building with continuous localization. In Proceedings
of the 1998 IEEE/RSJ International Conference on Robotics and
Automation, volume 4, pages 3175–3720, San Francisco, U.S.A.,
1998.

[16] A. Zelinksy. A mobile robot exploration algorithm. IEEE Transac-
tions on Robotics and Automation, 8(2):707–717, 1992.


