
Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 351 – 356, Nov. 2004.

Coordinating Human Operators and Computer Agents

for Recovery-Oriented Computing
Sreekanth K. Bhaskaran and Baback Izadi

Dept. of Electrical and Computer Engineering
State University of New York

New Paltz, New York 12561, USA

Lisa Spainhower
Systems and Technology Group

IBM
Poughkeepsie, New York 12601, USA

Abstract
This paper examines the errors committed by human

operators of large networks and systems. It proposes a
formal procedure in which system defense mechanisms
are used to improve the coordination between human
operators and computer agents. Further, it discusses and
compares the effectiveness of different types of system
defense mechanisms by performing experiments with
web-based GUI screens. In the process, the paper offers
definitions of human errors and proposes methods to
quantify such errors. Our experimental results have
shown that more layers of system defense can play a
pivotal role in minimizing commonly encountered human
errors.

1. Introduction
The study of service outages in large systems and

networks points to human errors as the primary reason for
the outage in a majority of the cases [1, 2, 3, 4]. Analysis
of network outages consistently shows that operator errors
account for more than 50% of unplanned downtime [1].

Operator error refers to an action performed by a
human operator that is determined to be the root cause of
a service disruption. Several classifications for human
errors are found in [5, 6]. Very broadly, operator error can
result from either a formulated procedure performed
incorrectly by the operator or the procedure itself being
incorrect in the first place [1]. In this paper, we examine
the former. Other researchers have examined the building
of user interfaces based on cognitive engineering methods
to reduce human errors [7]. Human operators and
computer agents could perform many of the tasks jointly.
Partial Global Planning (PGP) is a coordination
mechanism between humans and agents [8] that attempts
to optimize the human and computer resources to achieve
a common goal. PGP offers a dynamic task-sharing
procedure for multi-agent systems that maximizes the
capacity of every agent. Task allocation among several
computer agents in real-time multiprocessor systems has
been studied in detail. An optimal task allocation
mechanism for real-time computing systems has been
presented in [9]. However, the task allocation between

computers and humans poses a different kind of challenge
and is often dynamic. A direct effort to reduce the
identified risks can bring about a net increase in the very
same category of risks [10, 11]. There is a need to
develop an analytical methodology that can perform task
allocation adaptively [7]. Machine learning could be used
effectively for this purpose and several machine-learning
techniques have been developed, such as reinforcement
learning [13], Q-based learning [14], and case-based
reasoning [15].

This paper examines non-deliberate operational faults
made during human-computer interaction and presents a
formal procedure to reduce human errors. It proposes to
use machine-learning methods employing case-based
reasoning to reduce human errors. The rest of the paper is
organized as follows. The next section introduces the
concept of system defense. Section 3 discusses how
machine learning can be used effectively for improved
system defensiveness thus achieving better coordination
between humans and computer agents. Section 4 presents
a formal procedure in which system defense mechanisms
are used to improve the coordination between human
operators and computer agents. Section 5 discusses our
experimental study that analyzes the effect of machine
learning on human and computer coordination. Finally,
the concluding remarks are given in Section 6.

2. System Defense

It is virtually impossible to eliminate human operator
intervention to achieve the goals of large systems. Figure
1 shows a sequence that could be visualized as the
interleaving of operator actions and agent actions. After
every operator action, the agent could examine current
operator behavior against past actions. Moreover, it could
generate warnings for the user if the operator action is a
deviation from successful actions taken by operators in
the past.

We define system defensiveness as the intelligence
built into the system to warn the users of potentially
detrimental actions. It could be considered as a method of
implementing the automated agent checks. The system

 351

Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 351 – 356, Nov. 2004.

reacts to operator actions with a defensiveness warning
and does not let the operator proceed unless an
acknowledgement is provided to the defensiveness
warning.

Figure 1. Agent checks that c

The system determines
demanded from the operator,
the simplest form, the operator
as of having high, medium or
of the company. Accordingly
acknowledgement from the o
For instance, there could be a s
a low impact action, an a
operator password for an act
confirmation from multiple o
high impact. Diversity am
distribution of trust [10]
safeguards against common op

Table 1. System D

Actions Weights

(Cost in $)
Action 1 Low

Action 2 Medium

Action 3 High

System defense can be sta

or informatory. A static system
pose the same defense questio
user performs a specific action
be file deletion in Microsof
attempts to delete a file, th
acknowledge that the file de
defense strategy is sufficient
deficiency with the scheme
increasingly ignore it if the
posed over and over again. Th
the execution of the action (
one) but not a more careful exe

A dynamic defense strategy would incorporate the
current environmental conditions and past knowledge
before posing a defense question. Every time the user
initiates an action, the intelligent agent gathers
environmental data, searches the database containing past
actions, and poses a defense question that is custom-made
for the specific situation. Machine-learning agents,

time

Human operator’s
action

Computer
agent’s a

capable of adapting to the environment and even learning
from other agents, can be effective towards achieving

at
autonomic computing [12]. Of course, the downside is the
computational overhead and the delay associated with it.

Autom ed agent checks
ction
ould reduce operator error

 the level of attention
as illustrated in Table 1. In
 action severity is classified

 low impact to the revenues
, the system could demand
perator in varying degrees.
imple user confirmation for
cknowledgement requiring
ion of medium impact and
perators for an action with
ong operators [5] and

could be very effective
erator errors.

efense strategies

Defense Strategy

Simple user
confirmation
User Confirmation
with password
Confirmation from
multiple users

tic or dynamic, preemptive
 defense mechanism would

n to the user every time the
. An example of this would
t Windows; when a user
e system asks the user to
letion is intentional. Such
 for most applications. A
 is that people tend to
same defense question is

e result is usually a delay in
two ‘OK’ clicks instead of
cution.

The overhead could be justified in critical systems and
networks, which could reduce operator errors by a more
careful coordination between the humans and computer
agents. The defense question and information can be
purely informative, which gives the user a chance to
correct any inadvertent mistakes. When the defense is
preemptive, the information is not only informatory but
the agent will not proceed with the execution of the user
action unless the user overrides system defensiveness.

3. Machine Learning in System Defensiveness

Machine learning can be used effectively to pose
defense questions that are customized for each instance of
user action. To do so requires maintaining a record of past
actions, classifying them and prompting the user in real-
time with a defense question that is based on the
knowledge thus gathered. Knowledge-based systems
could also be used very effectively to perform sensible
system defense actions. Given that the intervention of a
human operator is inevitable in the operation of large
networks and systems, and that human error is inevitable,
the agent’s job is to pose sensible defense questions to the
user and avert as many undesirable actions as possible. A
dynamic defense mechanism that gets its inputs from a
variety of sources that could include other agents, the
human operator and the knowledge of past events could
prove effective in reducing many of the commonly
encountered operator errors.

3.1 Case-based Reasoning

We found case-based reasoning [15] particularly
attractive for machine learning of tasks because of its
simplicity. It was chosen for building the agent discussed
later. The agent stores past successful tasks in a database
and a matching is performed between the task in question
and other instances of the same task stored in the
database.
 A task consists of generic sub-tasks that could be
considered as an ordered pair of attributes and values. An
attribute refers to an action. The value of an attribute is a
parameter that qualifies the attribute in specific instance
of occurrence of the attribute.

352

Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 351 – 356, Nov. 2004.

Ti = {Si1 , Si2 , ……, Si m)} = {(Ai1 , Vi1), ……(Ai m , Vi m)}

 To illustrate this, let us consider two tasks with their

attributes and values, as shown in Figure 2. Task 1 is to
make an omelet and Task 2 is to make pancakes. In Figure
2, ‘Utensil placed on fire’ is an attribute. The value ‘pan’
qualifies this attribute further for the current instance.
Similarity of two attributes, x and y is defined by
Sim-a(x, y) in the simplest form as

Sim-a (x,y) = (1)
⎩
⎨
⎧
0
1

otherwise
yxif =

Similarity of values could be defined in the same way.

Sim-v (x,y) =
⎩
⎨
⎧
0
1

otherwise
yxif =

In the example shown in Figure 2, the first attribute of
both tasks is identical. Therefore, Sim-a (Ai1, Aj1,) = 1.
Distance between two sub-tasks Sir and Sjs is defined by

Dist (Sir , Sjs) = Sim-a (Air , Ajs) ^ Sim-v (Vir , Vjs) (2)

In the example in Figure 2, the attributes as well as value
for the first item are the same. Therefore, Dist (Ai1, Aj1,) =
1^ 1 = 1. Similarity between tasks could be computed
using the distance between every pair of sub-tasks.

Sim (Ti ,Tj) = Dist (S∑
=

m

r 1
∑

=

n

s 1
ir ,Sjs) (3)

In the example in Figure 2, the similarity between tasks is

Sim (Ti, Tj) = (1 + 1 + 0 + 1 + 1 + 1) = 5.

A demand on the similarity of tasks Ti and Tj is defined by
Equation 4, where α indicates a pre-specified threshold
value.

Dem-Sim (Ti ,Tj) = { Sim (Ti,Tj) > α } (4)

There are several issues with having such a simplistic
analysis of tasks. For one, the attributes and their values in
the tasks alone do not determine the extent of similarity
between the tasks. For instance, in the previous example,
even if the sequence of sub-tasks in Task 2 were totally
reversed, the same similarity would be computed. This is
an anomaly because in the real world, the sequence of
actions in a task determines, to a great degree, the level of
similarity between tasks. Taking this into account,
Equation 3 is modified as

 Sim (Ti , Tj) = (Dist (S∑
=

m

r 1
∑

=

n

s 1
ir , Sjs)) + SF (Ti , Tj)

 Task 1: Making Omelet

Steps Attribute Value

1 Utensil

-- placed on

fire

Pan

2 Wait for --- 1 min

3 Add --- in

utensil

 Broken

eggs

4 Wait for -- 0.5 min

5 Flip item -- Once

6 Serve in --- Plate

 Task 2: Making Pancakes

Attribute Value

Utensil

-- placed on

fire

Pan

Wait for --- 1 min

Add --- in

utensil

Pancake

batter

Wait for --- 0.5 min

Flip item --- Once

Serve in --- Plate

Figure 2. Calculating similarity of tasks

where SF is the Sequence Factor and is given by

SF (Ti , Tj) =

 (5)

))., V(VSim) , A(ASim
m

k

m

r

m

r

jksikr

n

s

jksikr

n

s
∑ ∑ ∑∑∑

= = = ==

+
1 1 1 11

 (

To compute SF between two tasks Ti and Tj, matching
sequences are located starting from the first attribute. In
Equation 5, the variable k denotes the iteration. In the
example in Figure 2, for the first iteration (k = 1), we start
at the first sub-task of Task T1 and T2 and see that the
attribute and value are matching. i.e. = 1
and = 1. This contributes a value of 1 +
1 = 2 to SF. Next, we increment r and s and still see that
the attribute and value match for the second item as well.
Again + = 1+ 1 = 2 is
contributed to SF. In the third item, the attribute matches
but not the value. This adds 1+ 0 = 1 to SF. Thus, at the
end of iteration 1, SF gets a value of 11. We start the
second iteration from the attribute ‘Wait for?’ starting
from + = 1+ 1 = 2 and
proceed in a similar way to get a value of 9. At the end of
sixth iteration, SF will have a value of 11+9+8+6+4+2 =
40.

) A , (A 211111Sim
) V , (V 211111Sim

) A , (A 212112Sim) V , (V 211111Sim

) A , (A 221121Sim) V , (V 221121Sim

The sequence factor could have the highest possible
value if the compared tasks, Ti, Tj are identical. In the
example given in Figure 2, there are six sub-tasks and
their maximum SF value is 12+10+8+6+4+2 =
2(6+5+4+3+2+1) = (2× 6× 7)/2 = 42. In general, the

 353

Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 351 – 356, Nov. 2004.

maximum value of SF, for two identical tasks with n sub-
tasks is n (n+1). The tasks discussed above are simple in
that they are composed of sub-tasks, each having an
attribute and a value. More complex tasks will have
several levels of abstraction. The sub-task of a task could
be so complex that the sub-task itself would need to be
broken down into smaller sub-tasks. This is represented
 in Figure 3. The formulae discussed in equations (3) and
(5) could be modified to have several levels of nesting.

Task Sub-task
level-n

… Sub-task
level-2

Sub-task
level-1

Attributes,
values

 Increasing granularity →

Figure 3. Decomposing a task.

3.2 Quantifying Human Errors

Quantification of human errors is necessary to
analyze the kind of mistakes operators commit and to
drive the creation of automation benchmarks. Measuring
human errors is challenging, especially because errors and
tasks vary across applications. The definition of what an
error is would be different for each kind of task. For an
installer of LAN, connecting incompatible devices would
be an error and for an administrator who uses GUI for
provisioning services, a typo would be an error. We
concentrate on unintentional GUI operator errors. The
GUI is also more suitable for system defensiveness
because humans better observe it.

Human error is quantified based on the following
criteria:

• The extent of damage that it creates in terms of
revenues, Er.

• The extent of variation from the expected action,
Ev.

• The amount of delay it creates; this includes
undoing any harm caused by the erroneous action
plus the time required to perform the correct
action, Ed.

 The extent of damage caused in terms of revenues is
subjective and would vary from place to place and time to
time. The benefit-loss function (BLF) discussed in [15]
attempts to quantify errors of this kind. In that, a system
engineer assigns the accuracy loss in an event to a
consequent benefit loss value. Error could also be
expressed as a function of the three measures described
above.

E = f (Er , Ev , Ed) (6)

The proposed error quantification that is based on
variation from an expected action (Ev) could be calculated

from the principles of similarity. Maximum similarity of
two tasks is Sim(Ti ,Tj) in Equation 5 could be normalized
to have a maximum value of 1. Therefore, dissimilarity
between tasks is defined as,

Dissim (Ti ,Tj) = 1 – Sim (Ti ,Tj) (7)

Dissimilarity between erroneous instance and last
successful instance could be used as a measure of error.

 Ev = Dissim (Xi , Xi)
 = 1 – Sim (Xi , Xi) (8)
where Xj is erroneous task instance and Xi is successful
task instance.

4. A Formal Procedure

Systems that try to improve human-computer

coordination could use the following step-by-step
procedure to achieve a dynamic defense mechanism.
i. Identify the operation for which dynamic system

defense could be applied. This might appear trivial
but it is crucial that the selected operation satisfies
some basic criteria like having a logical beginning
and end.

ii. Analyze the operation and create valid task paths.
The operation is split into several sub-tasks. The set
of valid task paths is determined.

iii. Build the infrastructure. This is largely a software
architectural issue. The choice of infrastructure
depends on the size of the desired database and the
technology used in the operation under study.

iv. Create the learning system. The learning system is
created by inputting seed cases for all valid paths into
the database.

v. Periodically maintain the learning system. Failures do
occur and when such occurrences are analyzed, the
entries in the database pertaining to the failures need
to be removed. This is because the agent should learn
from good examples and not from bad examples.
Seed cases of new tasks might have to be added to the
database.

vi. Fine-tune and customize. The behavior varies across
different people and their fatigue levels. Individual
characteristics of operators as well as general human
behavioral characteristics could provide vital clues
regarding psychological and physical fatigue level.
These could in turn be used for appropriate defense
question.

vii. Analyze and specify the performance of the defense
mechanism. It is important to determine whether the
learning agent put in place is actually beneficial in
reducing the human operator errors. Another
important consideration would be to see whether the
delay and computational overhead associated with the

 354

Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 351 – 356, Nov. 2004.

defense mechanism could be justified by its benefits.
The delays should be minimized using optimal
queries to the database and by keeping the database
size manageable. The upper limit for database size
could be determined using the acceptable delay and
its lower limit could be determined by the least
acceptable level of learning deemed necessary .

5. Experiments and Results

 To study the effect of several layers of system
defense on unintentional human operator errors, a series
of experiments were devised and conducted. The
experiments studied the effectiveness of agents in using
machine learning to reduce human operators.

Figure 4. GUI used for experiments

A GUI screen similar to the one of the most popular

commercial IP products (Figure 4) was chosen for the
experiments. A large group of students with sufficient
computer skills were asked to enter five sets of data in the
GUI screen from a printout. For the first experiment, the
values entered by the user were committed to a mySQL
database without any defense mechanism. In the second
experiment, called Static defense, the entered values were
displayed back to the user and user confirmation was
requested before committing them into the database. The
user responses for each of the experiments were recorded
in a database. The users’ responses and the number of
human errors encountered were analyzed. Figure 5 shows
the percentage of fully successful entries for the
experiments. Accordingly, our Static defense mechanism
improved the system performance, compared with no
defense mechanism, by nearly 9%. In the third
experiment, called Dynamic-1, the agent software
performed a matching of the received values with the ones
obtained from the past using PHP scripts, and displayed
the matched values along with the entered values back to
the user. The data was only accepted to the database after
the user decided that the extent of displayed match was
acceptable. Surprisingly, Dynamic-1 resulted in worse
performance than the one with even no defense
mechanism. In the final experiment, called Dynamic-2,

the matched values along with the entered values were
displayed to the user and additional inspection was
requested only if the mismatched value crossed a
predetermined threshold. The threshold level was
determined by taking into account that there were five sets
of data and there could be several incorrect entries. Our
experimental result shows that Dynamic-2 defense
mechanism used in the fourth experiment resulted in a
smaller percentage of errors compared to the other three
experiments; it resulted in over 90% success rate. The
defense mechanism in the third experiment offered no
improvement to the case where there was no system
defense at all. Possibly, more information resulted in more
confusion for the operators. But when the user was
interrupted with the additional information only when it
was necessary, that is, only when a certain threshold was
crossed, there were fewer errors committed. This
strengthens the idea that system defense mechanisms
could be effective in reducing human operator errors
when relevant information is provided at the proper time.

0

20

40

60

80

100

None Static Dynamic-1 Dynamic-2

Figure 5. Percentage of successful entries for experiments

The types of errors committed in each of the experiments
were also analyzed. The errors were classified into two
broad categories. Errors of omission [5], where an
element of a sequence <a, b, c, d> is accidentally left out
as in <a, b, d>, and errors of commission, where another
element is placed instead of the right one, e.g., <a, x, c, d>
instead of <a, b, c, d>. The error classification for each of
the three experiments is shown in Figure 6.

 It was observed that the percentage of total errors due
to omission was reduced significantly when a static
defense mechanism was used. Most of the errors in
Dynamic-1 were of omission type. Finally, Dynamic-2
resulted in the least omission and commission errors.

 355

Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 351 – 356, Nov. 2004.

0

10

20

30

40

None Static Dynamic-1 Dynamic-2

Commission
Omission

Figure 6. Percentage of errors observed for various
defense mechanisms

6. Conclusion

In this paper, we examined a mechanism to reduce
the errors committed by human operators of large
networks and systems. A formal procedure in which
system defense mechanisms are used to improve the
coordination between human operators and computer
agents was presented. The paper provided methods to
analyze and quantify the errors committed by human
operators. It studied and compared human errors in
scenarios with different levels of system defense. A
simple static defense mechanism was determined to be
very effective against interface errors committed by
operators. A defense mechanism that employed the past
knowledge of user entries and interrupted the user only
when there was considerable mismatch resulted in
minimum operator errors.
 A dynamic defense strategy employing more criteria
would likely have better results. These criteria could
include the state of the operator [13], which is a function
of the operator’s fatigue level and cognitive capability
level. For instance, the layers of defense could adapt to
become more restrictive as the fatigue level increases.
However, this could bring about the exact opposite effect
and is best studied with further experiments. Further
research will compare and study intelligent agents to
accurately determine the benefits of dynamic defense.

References

1. D. A. Patterson, D. Oppenheimer, “Architecture and

Dependability of Large-Scale Internet Services,”
IEEE Internet Computing, pp. 41-49, Sep-Oct 2002.

2. D. A. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W.
Tetzlaff, J. Traupman and N. Treuhaft, “Recovery-
Oriented Computing (ROC): Motivation, Definition,
Techniques, and Case Studies,” UC Berkeley
Computer Science Technical Report UCB//CSD-02-
1175, March 15, 2002.

3. J. M. Christensen and J. M. Howard, “Field
Experience in Maintenance. Human Detection and
Diagnosis of System Failures,” Proceedings of the
NATO Symposium on Human Detection and
Diagnosis of System Failures, J. Rasmussen and W.
Rouse (Eds.). New York: Plenum Press, pp. 111–133,
1981.

4. J. Gray, “Why Do Computers Stop and What Can Be
Done About It?” Symposium on Reliability in
Distributed Software and Database Systems, pp. 3–
12, 1986.

5. Y. DesWarte, K. Kanoun, J-C Laprie, “Diversity
against accidental and deliberate Faults.” IEEE
Computer Security, Dependability, and Assurance:
From Needs to Solutions,” pp. 171-182, July 1998.

6. R. E. Fields, P. C. Wright and M. D. Harrison, ”A
Task Centered Approach to Analyzing Human Error
Tolerance Requirements.,” Proc. Of the Second IEEE
International Symposium on Requirements
Engineering (RE’95), pp. 18-26, 1995.

7. W. P. Marshak, M. M. Pohlenz, “Modeling for
Cognitive Engineering of User Interfaces: Need,
Basis and One Promising Implementation,” Proc. of
the 3rd IEEE Symposium on Human Interaction with
Complex Systems (HICS’96), pp. 170-178, 1996.

8. K. Decker and V. Lesser, “Designing a family of
coordination mechanisms,” Proceedings of the First
International Conf. On Multi-Agent Systems (ICMAS-
95), pp. 73-80, June 1995.

9. K. H. Kim, Y. Kim, “An Experimental Investigation
of the Potential of BLF-driven Scheduling of Real-
Time Threads,” Proc of the 2nd IEEE International
Conference on Engineering of Complex Computer
Systems (ICECCS’96), pp. 60-66, 1996.

10. D. Dalcher, “Trust, Systems and Accidents:
Designing Complex Systems,” Proc. of the 10th IEEE
International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS’03),
pp. 31-39, 2003.

11. A. Wildavsky, “Searching for Safety,” Transaction
 Books, Oxford, 1988.
12. J. O. Kephart, D. M. Chess, “The vision of

Autonomic Computing,” IEEE Computer magazine,
pp. 41-50, January 2003.

13. L.P. Kaelbing, M. L. Littman, and A. W. Moore,
“Reinforcement learning: A survey,” Journal of AI
Research, no.4, pp. 237-285, 1996.

14. C. J. Watkins, “ Learning from Delayed Rewards,”
PhD Thesis, King’s College, Cambridge University,
1989.

15. G. Weiss, “Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence”, Cygnus
Software Ltd, August 2000.

 356

	Introduction

