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1 Introduction

In this paper we present a collaborative effort to
design and implement a cooperative material handling
system by a small team of human and robotic agents
in an unstructured indoor environment. Qur approach
makes fundamental use of the human agents’ expertise
for aspects of task planning, task monitoring, and error
recovery. Our system is neither fully autonomous nor
fully teleoperated. It is designed to make effective use
of the human’s abilities within the present state of the
art of autonomous systems. Our robotic agents refer
to systems which are each equipped with at least one
sensing modality and which possess some capability for
self-orientation and/or mobility. Our robotic agents
are not required to be homogeneous with respect to
either capabilities or function.

Our research stresses both paradigms and testbed
experimentation. Theory issues include the requisite
coordination principles and techniques which are fun-
damental to a cooperative multiagent system’s basic
functioning. We have constructed an experimental dis-
tributed multiagent-architecture testbed facility. The
required modular components of this testbed are cur-
rently operational and have been tested individually.
Our current research focuses on the agents’ integration
in a scenario for cooperative material handling.

1.1 Related Work

There are several groups addressing the issues of
cooperation at many different levels. Some of the ap-
proaches study variations of the mobility problem and
are motivated by the ethological studies of animal so-
cieties. In these scenarios the societies of agents are
homogeneous and the tasks such as exploration, wan-
dering, and foraging for food are usually achievable by
a single agent [3, 14, 6, 24]. For heterogeneous mobile
robots, the roles in the team need to change dynami-
cally, based on the changes in the environment or the
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individual robot’s capabilities [22]. The cooperation
issues are addressed more at the task level with no di-
rect physical interactions between agents. Cooperation
examples at the physical level can be found in cellu-
lar robots [27] or multi-arm manipulation [8]. As the
task’s complexity increases, requiring agents with dif-
ferent capabilities, the cooperation issues must be ad-
dressed at both high and low levels [20, 7, 10]. The task
decomposition problem brings another crucial issue to
the control of a society of agents, that is the tradeoff
between local and global control. In other words, to
what extent should the team members be aware of the
team’s global intentions as opposed to just acting upon
local information sensed through the environment [21]7
The amount of global control needed is task-dependent
and generally the tasks which require some global re-
source optimization (e.g. time, space, energy) require
a global view [19].

1.2 Assumptions

We constrain our investigation to a static, indoor en-
vironment with somewhat controlled illumination. We
have two observation agents A and B, and two manip-
ulatory agents C and D. Agent A has a suite of ultra-
sonic and infrared sensors, a patterned-light device and
a stereo camera pair. Observation agent B is equipped
with a stereo camera pair and a turntable with a cam-
era for tracking. Agents C and D each have a manip-
ulator (a PUMA 260 and a Zebra Zero). The human
agent is supplied with a three dimensional graphical
interface. A geometric workspace model, raw sensory
data and processed data from the robotic agents are
displayed, assisting with the human’s supervisory role.
Agent capabilities are described in more detail in sec-
tion 2. The system is embedded in a Discrete Event
Systems control theory framework where low level be-
haviors operate under DES supervisory control. The
task is for agents C and D to carry a large object from
one place to another through a narrow passage avoid-
ing obstacles. Agents A and B scout the path and
advise the manipulatory agents as to the free space
layout. The human agent’s task is to monitor, advise
and intervene when necessary.

2 Components

In this section we discuss the manipulatory agents’
hardware configuration and control architecture, the
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observation agents’ capabilities, as well as the the hu-
man agents’ human-machine interface.

2.1 Mobile Manipulatory Agents

Figure 1: The two manipulatory agents.

Agents C and D each have a 6 degree-of-freedom
(DOF) manipulator with a 6 DOF end-effector force
sensor. Figure 1 depicts agent C (left) with a Zebra-
ZERO manipulator and agent D with a Puma 260 ma-
nipulator. Control is decentralized.

The manipulatory agents’ major subtask is to coop-
eratively pick up the object prescribed by the human
supervisor and transport it to the desired destination.
Along the path stable grasping of the object is always
required. In order to maneuver in a cluttered envi-
ronment, the marching configuration may need to be
changed from serial to parallel or vice versa. This ele-
mentary behavior is described in Section 3.1.3.

2.2 Mobile Observation Agents

The two observation agents are equipped with vari-
ous sensor modalities. The subtasks of the observation
agents comprise:

1. Localization of each agent in global coordinates,

2. Iterative verification that proposed trajectories
are obstacle-free, and

3. Progress monitoring of the manipulatory agents
(agents C and D), allowing for possible interven-
tion by the human supervisor.

The observation agents employ five sensor modal-
ities. In this subsection we describe each modalities’
physical model and basic operation, as well as the type
of information we extract.

2.2.1 Ultrasound

Observation agent A, depicted in Figure 2, is
equipped with a ring of sixteen standard PoLAROID™
sensors. We employ a real-time, polynomial algo-
rithm for ultrasound feature detection (described in
[17]) which aggregates sonic data accumulated from
arbitrary transducer locations and performs sequen-
tial clustering. The algorithm is precise, computation-
ally tractable and efficient, robust in the face of mea-
surement noise, and converges in a statistical sense to
ground truth. The algorithm’s output comprises the
parameters of features in space such as extended planar
surfaces or corners. This algorithm may be employed

for exploration and map-building of an unknown en-
vironment, and for localization and hence navigation
within partially known surroundings.

(a) (b)

Figure 2: (a) Observation agent A with four sensor
modalities: ultrasound, stereo pair, patterned light
and dead reckoning, and (b) Observation agent B with
two sensor modalities: inverse perspective projection
and dead reckoning.

2.2.2 Patterned-light

Observation agent A, depicted in Figure 2a, is
equipped with a patterned-light device consisting of
a light source projecting three light planes in front of
the robot at an angle to the ground. A camera offset
vertically from the light source uses elementary projec-
tive geometry to detect an object which intersects any
of the light planes.

Gaps in the camera image’s stripes are interpreted
as object segments. Over time, these segments may
be grouped to form a shape corresponding to the
“shadow” of the object. Registration and integration
of several shadows extracted from multiple views yields
the object’s “footprint”. The approach and the active
exploration strategy used to plan the multiple views
are described in [17]. This modality is employed to
extract information regarding objects’ extents, orien-
tations and shapes. Such information is useful for ex-
ploration and map-building, for the disambiguation of
landmarks during navigation, and for localization.
2.2.3 Stereo

Observation agent A, depicted in Figure 2a, is
equipped with a stereo camera pair. The images from
the two cameras are compared, and the corresponding
features” azimuthal disparity is used to infer range.

We employ a string-comparison based stereo algo-
rithm (described in [17]) which produces clustered, seg-
mented data. Ideally, each segment corresponds to an
object in the scene. Information regarding objects’ ex-
tents and azimuthal locations i1s obtained. This in-
formation 1s useful for exploration and map-building,
as well as landmark disambiguation during navigation.
Data regarding azimuthal position of landmarks may
be used in conjunction with other modalities for agent
localization.



2.2.4 Inverse Perspective Projection (IPP)

Agents B, depicted in Figure 2, is equipped with a
stereo pair of cameras tilted with respect to the hori-
zontal plane. Obstacles are detected through the dif-
ference between a pair of stereo images after applying
the proper inverse perspective mapping proposed in
[16]. Differences in perspective between left and right
views are used to determine an obstacle’s presence and
approximate location. The computed free-space map
from the common field of view of both cameras is used
for obstacle avoidance maneuvers [13].

The IPP modality monitors the free space ahead of
the mobile base, providing the necessary parameters
for obstacle avoidance in cluttered environments using
artificial potential fields. The information can also be
used for map-building.

2.3 Human Supervisory Control

In order to take advantage of our system’s au-
tonomous aspect, and yet ensure successful completion
of all tasks possible with teleoperation, we have de-
veloped our human-machine interface based upon the
mediation hierarchy [2]. This hierarchy permits the hu-
man supervisor to interact at any level of our robotic
system. Robotic systems are not robust in handling
unmodeled events. Reactive behaviors may, or may
not, be able to guide the robot back into a modeled
state i. e., error recovery may not be achieved. Rea-
soning systems may fail. Once a system has failed,
it is difficult to restart the task from the failed state.
Rather, the rule base is revised, programs altered, and
the task retried from the beginning.
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Figure 3: The MASC system interface.

Our interface, MASC — Multiple Agent Super-
visory Control — permits the agents to work au-
tonomously until the human supervisor detects a prob-
lem or is requested to assist the robots. We combine
the advantages of autonomous systems with the hu-
man’s ability to control a system through a human-
machine interface. MASC provides the human super-
visor with interaction tools to all the robotic system’s
processing levels. These interactions can correct cor-
rupted data or process decisions which would typi-

cally cause an autonomous system to enter an incorrect
state. We desire to create a more comprehensive semi-
autonomous system based on this interaction which
will successfully complete the assigned task’s execu-
tion.

The individual robotic agents and processes may be
controlled by the human supervisor through MASC.
The human’s primary role is to “supervise” the agents’
actions during task execution [25]. Through MASC,
the human supervises the system, observes sensory
data and images. Each agent is composed of multiple
control and processing levels. For the successful semi-
autonomous execution of feasible tasks, MASC must
permit the human supervisor to interact with these
levels. We have organized the supervisor’s interactions
with the many system levels into the mediation hier-
archy.

We have provided display control buttons (see Fig-
ure 3) to allow the human supervisor to specify system
information. The human supervisor may request any
agent’s sensory data while in any system state. The
agents transmit dead-reckoning information, sensory
measurements, raw image data, and processed data.
This information is employed by MASC to create var-
lous system displays. Image data may be displayed
in windows to the right of the main interface win-
dow or may be overlaid onto the virtual environment
model (see Figure 3). Processed data, such as the free
space map originating from the visually guided obsta-
cle avoidance process, may be displayed in a window
or overlaid onto the virtual model.

MASC combines autonomous and telerobotic con-
trol. The human monitors the task execution and then
assists the agents when they enter unstable states from
which task execution would fail. While an agent pro-
ceeds autonomously it may petition the human’s assis-
tance. The human supervisor must acknowledge the
request and then furnish the requisite information.

3 Behaviors and Task Description Lan-
guage

The basic control strategies associated with the
available system components comprise a set of elemen-
tary processes associated with each sensor’s basic per-
ceptual capabilities and each actuator’s basic motion
modes. Each motion mode corresponds to a partic-
ular control law describing the manner in which the
commands are generated. Similarly, sensors have as-
sociated data acquisition and extraction procedures.
Each elementary process is modeled in terms of finite
state machine (FSM). Each state corresponds to the
application of a particular control or perceptual strat-
egy. FEach transition models an external event (de-
pending on the task) or the successful completion or
failure of the strategy. Behaviors and tasks are then
expressed as elementary-process networks formed us-
ing a set of composition operators. Processes R and
S can be composed either sequentially R ; S (when
process R terminates S is initiated), in conditional
fashion Reys @ S(v) (R must terminate successfully,
computing value v, before S can be initialized), con-
currently (R || S) (the two processes are initiated in
parallel and, in the case where they share an event, the



communication link between them is established), or in
disabling fashion R § S (similar to concurrent, but if
one of the processes fails then the other processes also
fails). Other composition operators for modeling itera-
tive processes are synchronous recurrent and asyn-
chronous recurrent. The intuition behind these op-
erators is identical to Lyons [15]; a more detailed se-
mantic description in FSM terms can be found in [13].
Given a sentence in the task description language, a
primary objective of this approach is the synthesis of a
FSM controller (DES supervisor) which would guaran-
tee the task execution. By imposing additional liveness
and safety constraints and formulating the problem in
terms of DES Supervisory Control theory [23], we can
synthesize the least restrictive supervisor which sat-
isfies the constraints while accomplishing the task '.
The DES supervisor then monitors the task execution,
invoking correct strategies and monitoring system re-
sponses. This DES supervisor operates in parallel with
the human supervisor which may override the DES su-
pervisor’s decisions. A more in-depth description of
this approach can be found in [13].

For more complicated tasks occurring in multi-
agent systems, task decomposition subtask assignment
phases are necessary. This stage is currently completed
by the human supervisor, although we are currently
incorporating a higher-level symbolic planner to assist
the human. We demonstrate the idea of representing
tasks as process networks in a few examples.

3.1 Elementary Processes
3.1.1 Local Maneuvering

The central question for the control of a mobile base
is how to move it from one location to another in a
structured or unstructured environment. This problem
involves issues of path planning, motion planning and
localization given available sensory information and/or
a priori knowledge. Within this work we explore both
path planning and control issues, while assuming that
the global goal/objective is determined beforehand.
We have implemented two strategies for local maneu-
vering. One utilizes artificial potential fields to steer
the mobile base in a closed loop fashion, while the other
constructs an R-geodesic path which the base follows
in an open loop manner. Both strategies take into ac-
count the mobile bases’ nonholonomic constraints.

Potential Fields This method provides us with an
incremental on-line-generated holonomic path, which
i1s modified using simple projection strategy for non-
holonomic robots [9]. We adopt an artificial potential
field method originally introduced by [12], where the
environment with a single goal is represented by an at-
tractive potential field with the minimum at the goal
location Uy, and obstacles are represented by a repul-
sive hyperbolic potential function U,. The desired ve-

locity X4 and desired turning rate 84 are computed in
the following manner:

Xa = = x (Ua(X) + Up(X)) (1)

0, = arctan(zq, yq) — 0

1The supervisor in this section is a FSM operating in a closed
loop within the system. This is to be distinguished from the
human supervisor mentioned in previous sections.

The resulting linear velocity setting is then computed

by the projection of the desired velocity X4 to the cur-
rent heading. By adopting this control strategy for
point to point motion, we associate the following mo-
tion modes with the mobile base.

The GoTo mode implements directly the above de-
rived control law (1). The GoToMarch control law
generates commands for two mobile bases while march-
ing in parallel formation (next to each other), while
keeping constant the distance from the midpoint. It
is again derived from the control law (1), while the
combined size of the bases is adjusted (i.e., boundaries
around obstacles are adjusted), proportionally to the
distance between the two platforms. GoToHeading
mode implements a pure rotation to the desired head-
ing 84. The mobile base “motion modes” use propor-
tional feedback laws, servoing on goals while avoiding
obstacles. The goal and obstacles can be supplied ei-
ther by perceptual processes, by the DES supervisor
process, or by the human supervisor.

R-geodesic Paths It is shown in [11] that a R-
geodesic path is the shortest maneuver that brings the
nonholonomic vehicle from one configuration to an-
other on a two dimensional plane. The basic elements
of such a path consist of an arc, followed by a straight
line and then an arc. The arcs are of radius R which
corresponds to the minimum turning radius of the ve-
hicle. We have developed an algorithm to determine
the dimensions of these three elements for given start-
ing and ending configurations (see [28]) and use it as a
planner for local vehicle maneuvering.
3.1.2 Simple active sensing strategies

Each subtask described in the introduction to sec-
tion 2.2 necessitates its own active sensing strategy.
For localization of agent A, we employ the localiza-
tion method described in [18]. For trajectory ver-
ification, agent A attempts a traversal of the pro-
posed path using the IPP modality for obstacle detec-
tion. Omnce an obstacle-free path has been identified,
progress monitoring of the sensor-impaired agents
is achieved by agent B following manipulatory agents
C and D; the human supervisor examines the image
stream emanating from one of the cameras.
3.1.3 Coordination of the mobile manipulators

When multiple mobile manipulators are com-
manded to transport a large object along a desired tra-
jectory, there are two different approaches to achieve
the coordinated task. Omne approach treats both the
mobile manipulators and the grasped object as a closed
kinematic chain. A controller for the whole system 1s
designed. In this approach all measurements and con-
trols are assumed to take place in the same bandwidth
and must address the different dynamic characteristics
of a manipulator and a mobile platform — the manip-
ulator is used to achieve a fine, fast positioning while
the mobile platform’s response 1s fairly slow and is only
suitable for gross motions. In addition, as the system
becomes complex, e.g., the more joints or more mobile
manipulators involved, the computational expense for
this scheme increases dramatically.

In order for the system to be flexible and compu-
tationally manageable, a more decentralized approach
is desirable. A decentralized approach implies that



the mobile manipulators should be able to execute the
tasks based on a limited amount of information ex-
change between the agents. This may be achieved in
a variety of ways. For instance, a reliable force sensor
at the end-point will be helpful to infer the partner
agent’s “intention”. Also the desired trajectory may
be carefully designed so that it makes the coordination
between the agents easier from various perspectives,
e.g., the nonholonomic constraints, the manipulator’s
workspace, or the controller complexity.

We performed a simulation to demonstrate one of
the subtask executions mentioned in section 2.1, z.e.,
changing the two agents’ configuration from a paral-
lel to a serial formation? where the two mobile agents
are more loosely coupled. A difficulty with this case
is that, due to the nonholonomic constraints, the con-
troller must be switched from one platform to the other
in order to align the two platforms in parallel; this
causes a small drift of the end-point towards the end
of the trajectory. However this small error at the end-
point can be compensated by a stiffness type of control
on one of the mobile agents [1].

4 Future Work

The previous sections have described the various
components of our cooperative multiple agent system.
Currently we are in the process of integrating these
components into a complete system. Upon completion
of system integration we will test the system’s perfor-
mance. The overall system goal is to transport a large
object from one location to another while avoiding ob-
stacles and passing through a doorway. This goal will
be broken up into the following subtasks manually:

e Observation agent A checks the prescribed path
for obstacles, and ensures the pathway is wide
enough to accommodate the two manipulatory
agents carrying the object.

e Observation agent B follows the two manipulatory
agents, allowing the human supervisor to monitor
their progress via camera images.

Within this context, the following parameters allow for
many variations on the basic scenario:

Initial Localization: In the simplest case, all
agents’ initial locations and orientations within the
global coordinate frame (CF) are known. Partial
sensor-based initial localization 1s necessary if the
agents’ relative positions are known in a local CF, but
the local CF needs to be aligned with the global CF.
If agents’ locations and orientations are unknown, the
observation agents must localize all agents before path-
planning and execution begins.

Continuing Localization: Dead-reckoning systems
suffer from error accumulation; for long-term task-
execution, they should be supplemented with some
other form of localization.  Beacon-based systems
involve modification of the environment, whereas
landmark-based systems require the detection of nat-
urally occurring features [5, 26].

2The details of the coordination scheme employed for agent
C can be found in [29]

Path generation: The human agent may specify the
path waypoints explicitly, or teleoperate an observa-
tion agent along a desired path. Alternatively, a path-
planner may be employed [4, 28].

Knowledge of the environment: There are no un-
foreseen obstacles in a completely-known environment.
In a partially-known environment, the landmark lo-
cations in the global CF are known. A completely-
unknown environment requires exploration and map-
building by the observation agents before any path
planning or traversal may begin.

Obstacles: In an obstacle-free environment, no de-
viation from the precomputed plan is necessary. If
obstacles occur relatively infrequently, deviation from
the path may be necessary, though no reconfiguration
of the manipulatory agents. In environments with a
high density of obstacles, the manipulatory agents may
have to change to leader-follower configuration (with-
out dropping the object).

Need for reconfiguration: FEven in an obstacle-free
environment, the doorway through which the manip-
ulatory agents must pass may be too narrow to per-
mit a side-by-side configuration , and a reconfiguration
during execution is necessary. In contrast to the case
involving unforeseen obstacles, such a reconfiguration
may be planned and scheduled.

The number of combinations afforded by the above
scenario parameters 1s prohibitively large. Initially we
will test the following three illustrative and increas-
ingly complex situations:

Initial Continuing
Localization | Localization Path
Necessary Method Generation
1 none dead reckoning human
2 partial dead reckoning human
3 partial dead reckoning human
Knowledge of | Obstacle Need to
Environment | Density | Reconfigure?
1 complete ZETo yes: planned
2 partial low yes: planned
3 partial high yes: unforeseen

5 Conclusions

Based on the experience gained in designing, test-
ing, and integrating the modules in the experimental
system described above, we cite the following conclu-
sions:

e The human agent is a necessary component in the
successful operation of a system for multiagent co-
operative material handling in an unstructured in-
door environment. Our approach makes funda-
mental use of human agents’ expertise for aspects
of task planning, task monitoring, and error re-
covery.

e The partitioning of the robotic agents into two
classes — mobile observers, and mobile manipula-
tors — provides very useful degrees of freedom in
the experimental design. This flexibility allows us



to build systems which have more extensive abili-
ties to observe manipulatory agents working either
in close quarters or near obstacles.

Our application of potential functions has shown
the value of this approach in controlling the mo-
tion of multiple vehicles in obstacle-laden environ-
ments. The motions exhibit good stability and
smoothness characteristics.

One of the salient aspects of our DES supervisory
control system is its ability to schedule and mon-
itor subtasks within a given task requirement.

At present there is no single sensing modality
which is versatile enough to provide sufficient data
about the environment for the execution of all
tasks within our scenario. Sensory integration be-
tween multiple modalities is therefore essential.

References

(1]

[10]

[11]

J. Adams, R. Bajcsy, J. Kosecka, V. Kumar, R. Man-
delbaum, M. Mintz, R. Paul, C.-C. Wang, Y. Ya-
mamoto, and X. Yun. Cooperative Material Han-
dling by Human and Robotic Agents: Module Devel-
opment and System Synthesis. Technical Report, Dept.
of Computer and Information Science, University of

Pennsylvania, MS-CIS-95-01, GRASP LAB 385.

Julie A. Adams. Human Management of a Hierarchi-
cal Control System for Multiple Mobile Robots. PhD

thesis, University of Pennsylvania, In Progress, 1995.

R. Arkin, T. Balch, and E. Nitz. Communication of be-
havioral state in multi-agent retrieval tasks. In IEEFE

Intl. Conference on Robotics and Automation, pages
588-593, 1993.

Craig Becker. Internet Path Planner Server Protocol.
Stanford University, January 1994.

M. Betke and K. Gurvits. Mobile robot localization
using landmarks. In Proceedings of the IEEFE Interna-

tional Conference on Robotics and Automation, vol-
ume 2, pages 135-142, May 1994.

R. A. Brooks, P. Maes, M. Mataric, and G. Moore.
Lunar base construction robots. In IR0OS-90, IFEFE

International Workshop on Intelligent obots and Sys-
tems, 1990.

P. Caloud, W. Choi, and J. Latombe. Indoor automa-
tion with many mobile robots. In TROS-90, pages 67—
72, 1990.

P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Sicil-
iano. Task space dynamic analysis of multiarm system
configurations. The International Journal of Robotics
Research, 10(6):708-715, December 1991.

A. De Luca and G. Oriolo. Local incremental plan-
ning for nonholonomic mobile robots. In Proceedings
of 1994 International Conference on Robotics and Au-
tomation, pages 104-110, San Diego, CA, May 1994.

K. S. Decker and V. R. Lesser. The analysis of quan-
titaive cooridination relationships. Coins 91-83, De-
partment of Computer Science, University of Mas-
sachusets, Amherst, 1992.

L. E. Dubins. On curves of minimal length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American
Journal of Mathematics, (79):497-516, 1957.

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

O. Khatib. Real-time obstacle avoidance for manip-
ulators and mobile robots. International Journal of
Robotics Research, 5(1):90-98, 1986.

J. Kosecka. Supervisory control of autonomous mobile
agents. Technical report, GRASP Laboratory, Depart-
ments of Computer Science, University of Pennsylva-
nia, 1995.

G. Lucarini, M. Varoli, R. Cerruti, and G. Sandini.
Cellular robotics: Simulation and hw implementation.
In IFEE Robotics and Automation, Intl. Conference,
1993.

D. M. Lyons. A formal model of computation for
sensory-based robotics. IEFE Transactions of Robotics
and Automation, 5(3):280 — 293, 1989.

H.A. Mallot, H.H. Bulthoff, J.J. Little, and S. Bohrer.
Inverse perspective mapping simplifies optical flow
computation and obstacle detection. Biological Cy-
bernetics, 64:177-185, 1991.

R. Mandelbaum. Sensor Processing for Mobile Robot
Localization, Exploration and Navigation. PhD thesis,
University of Pennsylvania. In preparation.

R. Mandelbaum and M. Mintz. Feature-based localiza-
tion using fixed ultrasonic transducers. In Proceedings
of the IFEE International Conference on Intelligent
Robots and Systems, August 1995.

M. Mataric. Minimizing complexity in controlling a
mobile robot population. In IEFE Intl. Conference on
Robotics and Automation, Nice, pages 830 — 835, 1992.

F. R. Noreils. An architecture for cooperative and au-
tonomous mobile robots. Proceedings of the IEFE In-
ternational Conference on Robotics and Automation,
3:2703 — 2710, May 1992.

L. E. Parker. Designing control laws for cooperative
agents. In TEFE Intl. Conference on Robotics and Au-
tomation, pages 582-587, 1993.

L. E. Parker. Learning in cooperative robot teams. In
Workshop on Dynamically interacting Robots, IJCAI
1993.

P. J. Ramadge and W. M. Wonham. The control
of discrete event systems. Proceedings of the IFEF,
77(1):81-97, January 1989.

C. W. Reynolds. Flocks, herds and schools: A dis-
tributed behavioral model. In SIGRAPH, pages 25 —
33, 1987.

Thomas Sheridan. Telerobotics, Automation, and Hu-
man Supervisory Control. MIT Press, Cambridge,
Mass., 1992.

W. B. Thompson, T. C. Henderson, T. L.. Colvin, L. B.
Dick, and C. M. Valiquette. Vision-based localiza-
tion. In Proceedings of the 1993 Image Understanding
Workshop, pages 491-498, April 1993.

T. Ueyama and T. Fukuda. Self-organization of cel-
lular robots using ramdom walk. In IEFE Intl. Con-
ference on Robotics and Automation, pages 595-600,
1993.

Chau-Chang Wang. Local path planner. University of
Pennsylvania. Personal Communication, Sept. 1993.

Y. Yamamoto. Control and Coordination of Locomo-
tion and Manipulation of a Wheeled Mobile Manipu-
lator. PhD thesis, University of Pennsylvania, Grasp
Laboratory, 1994.





