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Abstract— Standard bundle adjustment techniques for Eu-
clidean reconstruction consider camera intrinsic parameters
as unknowns in the optimization process. Obviously, the speed
of an optimization process is directly related to the number
of unknowns and to the form of the cost function. The
scheme proposed in this paper differs from previous standard
techniques since unknown camera intrinsic parameters are
not considered in the optimization process. Considering less
unknowns in the optimization process produces a faster algo-
rithm which is more adapted to time-dependent applications
as in robotics. Computationally expensive metric reconstruc-
tion, using for example several zooming cameras, considerably
benefits from an intrinsics-free bundle adjustment.

I. INTRODUCTION

Bundle adjustment is the final refinement step of a recon-
struction process. Standard metric reconstruction methods
starts with a projective reconstruction of the scene obtained
from several images [3] [5] [1]. The projective reconstruc-
tion is then updated to an Euclidean reconstruction after
camera self-calibration [11] [7] [12]. Finally, the visual
reconstruction is refined using bundle adjustment in the
Euclidean space [10]. Standard bundle adjustment [13] [6]
is based on the joint estimation of the 3D structure, of the
camera extrinsic parameters (i.e. the rotation and the trans-
lation of the cameras with respect to the absolute frame)
and of the camera intrinsic parameters (i.e. the focal length,
the principal point, the skew and the aspect ratio). There-
fore, bundle adjustment is a high dimensional optimization
problem which involves a large number of unknowns. The
objective is achieved by minimizing a cost function which
contains the error between the features measured from the
images and the features predicted from a model. The cost
function is generally non-linear and it can eventually be
subject to non-linear constraints. Obviously, the speed of
an optimization process is directly related to the number
of unknowns and to the form of the cost function. Many
applications of metric reconstruction, and in particular
robotic vision applications, need a computational speed
close to real-time. Thus, it is extremely important to have
a fast algorithm despite the large number of images used
for the reconstruction. The primary objective of this paper
is to investigate a new fast bundle adjustment method to
be used in real-time robotic applications. As an example of
robotic application needing a huge amount of computation,
consider the measurement and the tracking over time of
the 3D model of a moving non-rigid object using several
zooming cameras. In order to accomplish such difficult

applications, the bundle adjustment that we propose is
based on parameterizing the reconstruction problem by
using the 3D structure and the camera extrinsic parameters
but without considering the camera intrinsic parameters
despite the fact that they are unknowns. The key idea is
to partially work in a projective space which is invariant
to camera intrinsic parameters [9]. Thus, the number of
unknowns in the bundle adjustment optimization problem
can be considerably reduced. Even if the computational
cost in terms of CPU time is the key issue of this paper, a
second objective of our work is to have a fast convergence
of the optimization process without loosing the accuracy of
the solution. Obviously, the accuracy of 3D measurements
increases with the number of cameras and/or the number
of images. If the number of cameras increases, so does
the number of unknown camera parameters in a standard
bundle adjustment. On the contrary, the bundle adjustment
proposed in this paper does not add any supplementary
unknown camera parameter in that case. Consequently, we
eliminate the possibility to find, in the non-linear optimiza-
tion, local minima which may be due to the correlation
between intrinsic and extrinsic parameters of the camera.
Experimental results, obtained using simulated data and
real images, show that our algorithm not only considerably
reduces the computational cost but also improves the
accuracy of the reconstruction.

II. THEORETICAL BACKGROUND

A. Perspective projection

Let F0 be the absolute frame attached to a rigid object.
Let the 3D point C be the origin of frame F and the center
of projection. Let the plane of projection π be parallel
to the plane (−→x ,−→y ). A 3D point with homogeneous
coordinates X i = (Xi, Yi, Zi, 1) (with respect to frame
F0) is projected to the point mi = (xi, yi, 1) on π:

ζimi =
[

R t
]
X i , (1)

where ζi is a scalar factor, R and t are respectively the
rotation and the translation between frame F0 and F . Let
r = θu be the (3×1) vector containing the axis of rotation
u and the angle of rotation θ (0 ≤ θ < 2π). If [r]

×
is the

skew symmetric matrix associated to vector r, then R =
exp([r]

×
). Let ξ = (t, r) be the (6×1) vector containing

global coordinates of an open subset S ⊂ R
3×SO(3). The

vector mi(ξ,X i) depends on the position ξ of the camera
and on the 3D coordinates X i of the point.



B. Camera model

The information given by a pinhole camera is an image
point pi. The point pi = (ui, vi, 1) depends on the camera
internal parameters and on mi:

pi = Kmi (2)

where:

K =




fp s u0

0 rfp v0

0 0 1


 (3)

u0 and v0 are the coordinates of the principal point (pixels),
fp is the focal length measured in pixel, s is the skew and
r is the aspect ratio.

C. Invariance by projective transformation

Suppose that n not collinear points are available in the
image. Let Sp be the following symmetric (3×3) matrix:

Sp =
1

n

n∑

i=1

pip
>

i

This matrix, computed using all observed points, depends
on camera intrinsic parameters. Similarly, let Sm be the
following positive symmetric (3×3) matrix:

Sm =
1

n

n∑

i=1

mim
>

i

This matrix only depends on the structure of the object
and on its position with respect to the current frame. Since
pi = Kmi, Sp can be written as a function of Sm and of
the camera intrinsic parameters K:

Sp = KSm K> . (4)

It is possible to decompose Sp and Sm using a Cholesky
decomposition as:

Sm = Tm T>

m and Sp = Tp T>

p (5)

where Tm and Tp are upper triangular matrices. Thus,
from equations (4) and (5) we obtain:

Tp = KTm (6)

Note that Tm does not depend on K. Using Tp we
define a projective space independent on camera intrinsic
parameters:

q = T−1
p p = T−1

m K−1p = T−1
m K−1Km = T−1

m m

The computation of Tp from image points is stable, as
shown in [8] since it is based on averaging measurements.

D. Estimating camera parameters “a posteriori”

From equation (6), the camera parameters can be com-
puted “a posteriori’ as a function of the known matrix Tp

and of the estimated matrix Tm:

K = TpT
−1
m (7)

Since the matrix Tp is measured from image points
corrupted by noise, only a measure T̃p can be used to
compute an estimated matrix K̂ = T̃pT̂

−1
m , where T̂m is

an estimation of the unknown matrix Tm obtained from
the bundle adjustment.

III. METRIC RECONSTRUCTION FROM IMAGES

Suppose to have m images (obtained from several zoom-
ing cameras) of the same n points. Bundle adjustment is
achieved by minimizing the following cost function:

C =
n∑

i=1

m∑

j=1

‖p̂ij − p̃ij‖
2 ,

where p̃ij is the known vector containing the pixel co-
ordinates of point i measured in the image j and p̂ij is
the model estimated from unknown parameters. Standard
bundle adjustment uses the following model:

p̂ij(Kj , ξj ,X i) = Kjm̂ij(ξj ,X i)

thus, for each image the unknowns are the camera parame-
ters Kj (i.e. 5m unknowns for all images) and the camera
pose ξj (i.e. 6m unknowns for all images), and for each
point the unknowns are the 3D coordinates X i (i.e. 3n
unknowns for all points). The total number of unknowns
for a standard bundle adjustment is thus s = 3n + 11m.
In this paper we propose to use a different model of pij

in the bundle adjustment. Suppose that we have a good
estimation of the matrix T̂m (i.e. T̂m ≈ Tm). In this
case, we have shown in [8] that the error K̂ − K can be
neglected. As a consequence, using K̂j instead of Kj in
the bundle adjustment has a little effect on the optimization
process preserving the optimality of the solution. Note that
the estimated matrix T̂m is continuously updated since it
is computed from the estimated 3D points. Thus, errors
on the estimation of the matrix Tm will produce errors in
the reprojection of image points. Since the goal of bundle
adjustment is to minimize the error between the reprojected
and measured image points, the result of the minimization
will be T̂m ≈ Tm even starting with a bad estimation of
Tm. Using K̂j = T̃pjT̂

−1
mj instead of K we have:

p̂ij(ξj ,X ) = T̃pjT̂
−1
mj(ξj ,X )m̂ij(ξj ,X i) = T̃pj q̂ij(ξj ,X )

where T̃pj is measured from image features and
q̂ij(ξj ,X ) depends on the camera pose ξj , on the 3D
coordinates of all the points X = (X 1,X 2, ...,X n)
but not on the camera intrinsic parameters. Consequently,
the bundle adjustment we propose is intrinsics-free. The
total number of unknowns of the intrinsics-free bundle
adjustment is p = 3n+6m. When compared to the standard
bundle adjustment, the relative difference of unknowns is
(s − p)/s = 5m/(3n + 11m)). When m >> n (for
example when tracking a given object in a long sequence
of images taken with several zooming cameras) we can
obtain a reduction up to (s−p)/s ≈ 0.45 (i.e. 45%) of the
number of unknowns. Therefore, as it will be proven by the
experimental results presented in Section IV, the computa-
tional cost of the optimization process can be considerably
reduced. Let x = (ξ1, ξ2, ..., ξm,X 1,X 2, ...,X n) be the
(p×1) vector containing all the unknowns. The intrinsics-
free bundle adjustment consists in solving the following
problem:

min
x

C(x) = min
x

n∑

i=1

m∑

j=1

‖T̃pj q̂ij(ξj ,X ) − p̃ij‖
2 . (8)



The cost function is thus defined as the sum of the residual
errors of the reprojections in each image. If the error on
the measured features p̃ij has a Gaussian distribution and
T̃pj ≈ Tpj (see the experiments in [8]) then our bundle
adjustment is close to be a maximum likelihood estimator.
By setting q̃ij = T̃−1

pj p̃ij , the intrinsics-free bundle
adjustment could also be defined as the minimization of
a cost function completely defined in the invariant space
Q minx

∑n
i=1

∑m
j=1 ‖q̂ij(ξj ,X ) − q̃ij‖

2. However, in the
paper we will use the cost function defined in (8) in order
to compare the results with respect to the standard bundle
adjustment which cost function is defined in the image
space. Finally, note that, without loss of generality, we can
set the absolute frame F0 to one of camera frame Fk. Thus,
the number of unknowns is reduced to s = 3n + 11m− 6
for the standard bundle adjustment and to p = 3n+6m−6
for the intrinsics-free bundle adjustment.

A. Computational cost of the non-linear optimization

The optimization problem (8) is efficiently solved using
iterative second-order methods. They are generally fast
since they provide quadratic convergence to the solution
if the starting point of the minimization x0 is in a neigh-
borhood of the solution. Second-order methods are based
on the Taylor series of the cost function at each iteration
k of the optimization. Setting ∆x = xk+1 − xk we have:

C(xk+1) = C(xk)+∆x>
∂C(xk)

∂x
+

1

2
∆x>

∂2C(xk)

∂x2
∆x+O3

where ∂C(xk)
∂x

is the (p×1) gradient vector, ∂2
C(xk)
∂x

2 is the
(p×p) Hessian matrix and O3(∆x) is the residual error.
Starting from this expansion, several methods have been
proposed to find and update xk+1 of the unknowns. For
example, for a standard Newton minimization method,
one needs to compute or approximate the gradient vector
and the Hessian matrix at each iteration. It is clear that
the computational cost of the non-linear minimization is
directly related to the number of unknowns p. The lower
is p the faster is the computation. In this paper, we
use the Levenberg-Marquardt method [2] with numerical
differentiation. Note that, even if they are not currently
used in our experimental results, the speed of any bundle
adjustment algorithm can be increased by using optimiza-
tion techniques which optimally exploit sparseness [13].

B. Initialization of the non-linear optimization

Non-linear optimization requires an initial value x0 of
the unknowns. In our experiments, we first obtain a pro-
jective reconstruction and then use a rough self-calibration
to upgrade the reconstruction to metric. The projective
reconstruction is obtained by computing the fundamental
matrix using [3] between the two farthest images and
triangulating point features in projective space using [4].
We then register each other image in turn by using 3D to
2D point correspondences. Finally, we refine the estimated
structure and motion with a bundle adjustment in projective
space. The self-calibration is obtained from the projective
reconstruction by using the linear method proposed in [7]

and inspired by [12]. We assume that each camera has zero
skew, unity aspect ratio and its principal point lying at the
image center. These assumptions allow to obtain a linear
solution for the (eventually varying) focal length.

C. Imposing geometric constraints

For most of pinhole cameras it is a reasonable approx-
imation to suppose a zero skew (i.e. s = 0) and unit
aspect ratio (i.e. r = 1). Thus, there are some geometric
constraints on camera internal parameters that can be
imposed during the optimization. Let τ p

ij and τm
ij be the ij

entries of matrices Tp and Tm(x) respectively. It is easy
to obtain from equation (7) the equivalence between the
following constraints. Zero skew: s = 0 ⇔ τ p

12τ
m
11(x) =

τp
11τ

m
12(x). Unit aspect ratio: r = 1 ⇔ τp

11τ
m
22(x) =

τp
22τ

m
11(x). Imposing constraints on intrinsic parameters is

thus equivalent to impose constraints on the unknowns x

of the intrinsics-free bundle adjustment. Constraints on the
intrinsics are modeled by using either Lagrange multipliers
or heavily weighted artificial measurements added to the
cost function. In the former case, each constraint is mod-
eled by one additional parameter and in the latter case, not
any parameter are necessary.

D. Expected improvements over standard methods

As mentioned before, the exact count of the unknowns
depends on the considered setup (number of cameras,
structure of the object,...). We present different setups
used for metric reconstruction, supposing that singular
configurations have been avoided and that a minimal
number of data is available to achieve the reconstruction.
For each case, we compare the expected performances of
the intrinsics-free bundle adjustment with respect to the
standard one. These considerations are confirmed by the
experimental results presented in Section IV.

1) Fixed intrinsic parameters: In the first setup, we
consider that all intrinsic parameters are fixed and unknown
(all images are provided by the same camera). A minimum
number of 3 images are necessary. There are s = 3n +
6m+5 unknowns for the standard method while there are
p = 3n + 6m unknowns for the intrinsics-free method.
Since p ≈ s, the improvements of the new method on
the computational cost are expected not to be impressive.
However, it is an interesting setup since it is very common
and it can be used to prove that the accuracy of the solution
found by the intrinsics-free bundle adjustment is as good
as for standard bundle adjustment.

2) Varying focal length and principal point.: The sec-
ond setup assumes that cameras have zero skew and unity
aspect ratio. This case is often encountered in practice since
these hypotheses are satisfied by most modern cameras. It
corresponds to either a unique zooming camera in motion
observing a static scene (note that not only the focal
length but also the principal point position may change
when zooming and/or focusing) or a set of cameras taking
synchronized pictures of the same, eventually dynamic,
scene. A minimum of 4 images are needed. There are
s = 3n + 6m + 3m unknowns for the standard method



while there are p = 3n + 6m unknowns for the intrinsics-
free method. In this case, when m >> n we can obtain a
reduction up to (s− p)/s ≈ 0.33 (i.e. 33%) of the number
of unknowns. As a consequence, the computational cost is
expected to be considerably reduced.

3) Time-varying structure and motion tracked by several
zooming cameras.: The third setup is the most general one.
The structure, the camera intrinsic and extrinsic parameters
are continuously changing. It is an interesting setup for
modern robotic vision since it allows the achievement of
new applications in visual servoing, object tracking or
computer-aided surgery. The speed of the reconstruction
algorithm is extremely important in order to perform the
tracking. With this setup, the number of unknowns is the
same as for the previous setup at each iteration. Thus, the
intrinsics-free bundle adjustment is expected to work faster
than the standard bundle adjustment, especially when the
number of cameras involved in the reconstruction is large.

IV. EXPERIMENTAL RESULTS

A. Simulated Data

We consider the metric reconstruction of n = 25 points
lying inside a cube of 1 meter side. The 3D coordinates
of the points are reconstructed using m images (m ≥
3), taken with one or more cameras depending on the
setup. Images are taken around the cube from different
positions between 5 and 9 meters away from its center.
The image coordinates of the points are corrupted by a
centered Gaussian noise with varying standard deviation.
The algorithms are repeated in order to compute the mean
and the standard deviation over 1000 trials. Both standard
and intrinsics-free bundle adjustment are ran on the same
computer. We measure the CPU time and the number N of
iterations needed to the convergence of each algorithm to
assess the corresponding computational cost. The accuracy
of the solution is measured by evaluating the error on
the metric reconstruction. Since the reconstruction is made
up to a scalar factor, we use the ground truth just to fix
the scale. In order to have an error independent on the
frame in which the reconstruction is done, we consider
differences between the estimated distance ‖X̂ i − X̂ j‖
and the true distance ‖X i − X j‖ between two points
in the 3D space. Thus, the error εX on the structure is

obtained as εX =
∑n

i,j

(
‖X̂ i − X̂ j‖ − ‖X i − X j‖

)2

. In
order to verify that the camera parameters obtained “a
posteriori” by our algorithm are a good approximation of
the true parameters, we measure the relative error εf on

the recovered focal length as εf =
f̂p−fp

fp
.

1) Fixed intrinsic parameters: In the first set of exper-
iments, we consider a single moving camera with fixed
intrinsics parameters. The focal length is fp = 1000, the
principal point is at the image center, the skew is zero and
the aspect ratio is one. Figure 1 presents the comparison
between the properties of convergence and computational
cost of the algorithms. As expected, the CPU time is
slightly higher for the standard bundle adjustment algo-
rithm especially when the noise standard deviation σ in-

creases (see Figure 1(a)). This result is confirmed by figure
1(b) which shows that the convergence to the minimum of
the cost function requires less iterations for the intrinsics-
free method. Note that the algorithms converge almost to
the same minimum of the cost function. This has been the
case in most of our experiments. Figure 2 plots the error on
the recovered structure. Even if the difference between the
two algorithm is not impressive, the intrinsics-free method
performs better when the noise σ is high (Figure 2(a)) and
when only few m images are used (Figure 2(b)).
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Fig. 1. Comparison of the computational cost between the standard
(green) and the intrinsics-free (red) bundle adjustment.
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Fig. 2. Comparison of the accuracy of the 3D reconstruction between
the standard (green) and of the intrinsics-free (red) bundle adjustment.

The intrinsic parameters are not directly considered
as unknown in our algorithm but they are estimated “a
posteriori”. Since the 3D structure estimated with the
intrinsics-free bundle adjustment is more accurate, it is not
surprising, as shown in Figure 3, that the relative error εf

on the focal length is also smaller. Figure 3(a) shows the
results obtained when the standard deviation of the noise
σ varies from 0 to 3 pixels. When the level of added noise
is lower than 1 pixel, the results are undistinguishable.
Beyond a certain level of added noise the intrinsics-free
method performs better. Figure 3(b) shows the results
obtained when varying the number of images used in the
reconstruction from 3 to 10. For a small number of images,
in this case less than 5, the intrinsics-free method performs
better than the standard one.
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Fig. 3. Comparison of the relative error on the recovered focal length
between the standard (green) and of the intrinsics-free (red) methods.



2) Varying focal length and principal point.: In this set
of experiments we consider a moving and zooming camera.
The focal length fp changes between 800 and 1300 pixels
while moving the camera around the 3D structure. We
suppose that s = 0, r = 1 and that the principal point is
at the image center. In this setup, the intrinsics-free bundle
adjustment has less unknowns than the standard method.
Thus, the CPU time and the number of iterations needed
to converge are smaller, as it is shown in Figure 4. Again,
the estimation processes is more stable.
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Fig. 4. Comparison of the computational cost between the standard
(green) and the intrinsics-free (red) bundle adjustment.

Thus, the reconstruction provided by the intrinsics-free
bundle adjustment is more accurate. Figure 5 confirms the
results obtained in the previous simulation. With a small
number m of images and for higher noise σ the intrinsics-
free bundle adjustment performs better. Otherwise, the
results are undistinguishable. Concerning the errors on the
estimation of the different focal lengths, we have observed,
as in the previous case, that the two methods perform
equally well up to a certain level of noise (σ = 1 pixel),
above which the intrinsics-free method begins to perform
better than the standard one (complete results are in [8]).
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Fig. 5. Comparison of the accuracy of the 3D reconstruction between
the standard (green) and of the intrinsics-free (red) bundle adjustment.

3) Time-varying structure and motion tracked by several
zooming cameras.: This experiment consists in tracking
time-varying structure and motion. At each iteration, struc-
ture and motion are estimated using bundle adjustment.
The estimate of iteration k is the starting point of iteration
k + 1. We simulate a moving object (eventually non-rigid)
observed by a set of zooming cameras. At each iteration
the object is roughly maintained at the center of the im-
ages using zooming and by changing camera orientations.
Zooming affects camera focal length and principal point.
Therefore, both camera intrinsic and extrinsic parameters
change. The deformation of the structure through time
consists in offsetting each point from its position by a
random value drawn from a normal distribution and with a

variance of 10% of the object size. Figure 6 shows the
needed CPU time when the object considered is either
rigid (a) or non rigid (b). Object motion is a weighted
combination between a circular motion which induces
great changes in camera orientation and small changes in
their intrinsic parameters, and a translation away from the
cameras inducing the opposite effect. Figure 6(a) shows
that when the change in camera orientation is dominant the
behavior of the two bundle adjustments are very close, the
intrinsics-free being slightly better. On the other hand, the
more the object moves away from the cameras, the more
their intrinsics vary which increases the difference between
the two algorithms. The intrinsics-free method needs less
CPU time to convergence than the standard bundle adjust-
ment. Figure 6(b) shows that when the previous scenario is
combined to an object deformation, the difference between
the algorithms is slightly reduced but remains significant
when the change in the intrinsics is dominant.
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Fig. 6. CPU time to convergence versus relative variation k on camera
parameters. When k = 0 % only camera extrinsic parameters change,
while when k = 100 % only camera intrinsic parameters change.

The reduction of the number of the unknowns has a
beneficial effect on the accuracy of the reconstruction, as
it is shown by the results plotted in Figure 7. We observe
in Figure 7(a) that when the structure is rigid and camera
intrinsic parameters change, the intrinsic-free approach
performs much better than the standard bundle adjustment.
When the structure is non-rigid (see Figure 7(b)), the
difference between the two algorithm is reduced but still
the intrinsics-free bundle adjustment is more accurate.
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Fig. 7. Error on recovered structure as a function of the relative variation
k on camera parameters. When k = 0 % only camera extrinsic parameters
change, while when k = 100 % only camera intrinsic parameters change.

B. Real Images

In this section, we validate our algorithm using real
images of a calibration grid in order to have a ground truth.



1) Fixed intrinsic parameters: In the first experiment,
we use 3 images of the calibration grid shown in Figure 8
observed by the same camera.

Fig. 8. Three images of a calibration grid used in the experiment.

We run the bundle adjustments from an initial solution
obtained by the linear method while enforcing the con-
straint that the intrinsics are identical for all the three
images. The performance of the algorithms are close since
the number of unknowns is almost the same (only 5
unknown less for the intrinsics-free method). However, the
intrinsics-free bundle adjustment is slightly faster (7 %)
than the standard bundle adjustment and the error on the
recovered structure is almost the same. The results obtained
with simulated data are confirmed by this experiment. Table
I shows the results obtained for the focal length and the
principal point position for the ground truth, the linear
algorithm, the standard and the intrinsics-free bundle ad-
justment. We observe that the standard bundle adjustment
performs globally worse than the intrinsics-free. However,
the gap is negligible compared to the difference with the
ground truth. The reprojection error of both algorithms is
a hundred times lower than a pixel, which is normal since
the accuracy of image point position is very high.

linear standard intrinsics-free ground truth

fp 750 753 754 758
u0 256 253 255 260
v0 320 322 320 327

TABLE I

COMPARISON OF THE CALIBRATION RESULTS BETWEEN THE GROUND

TRUTH, THE LINEAR SOLUTION AND THE DIFFERENT METHODS.

2) Varying focal length and principal point.: In this
experiments, we use 7 images of a calibration grid taken
with a single zooming camera (see Figure 9). The model
of the grid is used again as ground truth.

Fig. 9. Three images of a calibration grid used in the experiment.

With respect to the previous experiment, the intrinsics-
free bundle adjustment need much less unknowns than
the standard method since the camera is zooming. As a
consequence, the intrinsics-free method is 25 % faster and
requires less iterations to converge (9 instead of 13). Again,
the error on the recovered structure is almost the same. The
results given in Table II prove that, for all the seven images,

the intrinsics-free method is able to recover “a posteriori”
the unknown intrinsic parameters of the camera better than
the standard bundle adjustment.

f1 f2 f3 f4 f5 f6 f7

ground truth 752 754 757 766 1162 1993 1944
intrinsic-free 772 777 773 778 1202 2176 2100
standard 808 800 790 796 1240 2186 2229

u1 u2 u3 u4 u5 u6 u7

ground truth 324 303 295 341 316 321 237
intrinsic-free 335 318 298 350 328 319 317
standard 312 283 267 335 265 113 187

v1 v2 v3 v4 v5 v6 v7

ground truth 271 255 251 250 273 294 287
intrinsic-free 260 249 247 243 256 269 261
standard 270 246 238 249 237 110 348

TABLE II

COMPARISON OF THE CALIBRATION RESULTS BETWEEN THE GROUND

TRUTH AND THE DIFFERENT BUNDLE ADJUSTMENT TECHNIQUES.

V. CONCLUSION

This paper has presented a new refinement technique
for metric reconstruction which is particularly adapted
to computer vision applications close to real-time as in
robotics. Indeed, the proposed bundle adjustment uses
much less unknowns in the optimization process allowing
for a faster reconstruction algorithm. At the same time, the
accuracy of the solution is slightly better than the accu-
racy obtained with standard bundle adjustment techniques.
Future work will concern the test of our algorithm with
several uncalibrated zooming cameras.
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