Influence of Zoom Selection on a Kalman filter
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Abstract—The use of a single camera with a zoom lens et al. [11], zoom selection is driven by keeping the ratio
for tracking involves a continuous arbitration of accuracy of focal length and distance of the target constant, hereby
vs. reliability. We address this problem with an information- assuming a fronto—parallel object.

theoretic approach, where we extend zoom selection based on . : .
conditional entropy by incorporating the fixation errors into The important difference is that Tordoff, Murray and

the observation likelihood. We present a thorough analysis of Fayman use the constraint of keeping the object within
previous approaches, revealing zoom and speed limits, especially certain limits to the image boundary, whereas Denzler et al.
how the ratio of process to measurement noise effectively limits make use of the predicted behaviour and expected visibility
the maximally usable zoom for any system tracking with &t the target. The zoom control is different, since an object
Kalman filter. This work finally presents means to circumvent he i bord likel | h
aforementioned limitations. next to _t e image border most likely to move closer to t_e
centre is unlikely to get lost, and hence does not require
I. INTRODUCTION zooming out.
licati h In this paper, we present novel approaches to control
In-many application areas — such as sport event§y,., which build upon an information—theoretic measure
surveillance, anq patient monitoring — zoom contrpl C8And is made more stable by using a second estimate of
_be Seen as a S|mple_ example_ for arbltratlon of dlfferen[he innovation. We show in detail how this increases the
interests. One interest is to obtain the maximum resolufon usable zoom range while still maintaining track, and how
a target to facilitate classifi.cation.. Examples are ideratfon the underlying parts and the previous approaches limit the
of people, closeups to disambiguate specific gestures, QLo o hotentially available zoom range. Furthermore, the
properties such as view direction. The second interest is I%ormation—theoretic concept of entropy to measure the
minimise the risk of losing a target once it has been detectegncertaimy makes the zoom selection amenable to data

Her_e zoom Is an important fa_ctor. When a target remaingqiq, from several sensors, can be extended to address any
static, the zoom can be safely increased. Once a targed stay;

) . ) ) ) ) ihd of observation parameters and is not specific to the
moving, small mistakes in following the object can result i mplementation with a Kalman filter
a loss of sight. For example, following an object with a fixe In the next two sections, we recapitulate the approaches
zoom telescope is extremely hard once this object beginsﬁj

The aim of thi Ki id hod [8] and [9]. An analysis in section IV on a simple
move. The aim of this work is to provide a method to controg, e points out their strengths and weaknesses, whereas th

the zoom f_or a came_ra_d_irected atasingle targ_et. The Optimﬁ)rmer are combined into our model described in section V.
zoom setting is minimising the chance of losing the targety,, paper finishes with an in—depth discussion of the zoom

and at the same time maximising the resolution of the targef. imposed by the noise characteristics, followed by a
Related work can be separated into two sections. Primarily . -jsion and future work section

zoom has been controlled with a single, static camera

acting as a supervisor — this camera makes wide area I[I. ENTROPY-BASED ZOOM SELECTION
observations and coordinates PTZ (pan, tilt, zoom) sedtting The zoom selection method by Denzler et al.
of a set of active cameras [1], [2], [3], [4], [5], [6]. In
these systems, active camera parameters assumed to be
perfectly controllable and set by geometric reasoningh wit

takes an

information—theoretic approach. The idea is to choose an

atfon, such as the zoom setting, which maximally reduces

. i ", .uncertainty in the state space. A measure for uncertainty of

the exception of Greiffenhagen et. al. [7], who use staBti o giate igentropy, and sirime the decision for an actiomh;/s

m°de”'”9 tq control the pan and filt paramet(_ers. be made before observing the target, the appropriate value i
There is little work on zoom control of a single cameray,q eypected conditional entropy. This quantifies the aera

The focal length dilemmas a term coined by Denzler et al. yocrease of uncertainty in statewhen an observation is

[8]. It addresses the specific issue of balancing the pnefere made, and is independent of any actual observation:

for a greater zoom (or larger focal length) with the risk of

losing track of the target. This tradeoff between resolutio  z (x]o) = — //OO Pa(x,0) log(pa(x|0)) dxdo (1)
and tracking error has also been addressed by Tordoff and =~ ° oo T *
Murray, depending on kinematical uncertainty in [9], andThe distributions)

) i ; (x,0) andp,(x|o) depend on the chosen
under the requirement of size preservation [10]. In Faymali-tiona. The optimal action — for example the zoom value
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This zoom selection process is now put into a Kalmais influenced only by the current likelihood of the
filter context. The derivation and resulting equations @& thobservation, which is a Gaussian distribution
Kalman filter can be found in textbooks, e.g. [12], we confine o N
ourselves to the notation required hére pa(or) ~ N(HaX; , R+ H.P; H,) (7

We denoted; for a state WP ich has been. updated with ¢ the projected mean of the state prediction.
the latest observation;,, andx, the state which has been
predicted by the Kalman filter, but not updated because I11. I NNOVATION BASED ZOOM SELECTION
no observation was made. The analogous notation is used
for the covariance matrice®; and P, respectively. The In the approach of Tordoff and Murray — who also use
innovation v, = o, — H(a)x; updates the prediction a Kalm_an f|lter to track an object - the covariance of the
according to the Kalman gaifkK — P;H(a)T(R N |_nno_vat|on is u.sed to specify a confidence intergadn the

A TN_1. fixation errorv:
H(a)P, H(a)" )™ "
p(lvel <v) = ¢ ®)
) ) The fixation error is required to remain below the observatio

The observation matri¥I(a) reflects the depgndency on theboundaries/). For a confidence of — 1 — 10, this results
current zoom or other parameter the covariance matrices ;. 1o z0om rule
R and Q; describe the Gaussian noise of the measurement
and the process, respectively.

Since all random variables are assumed to be Gaussian
distributed, and the entropy of such a variakle R™ with
x ~ N (p, P) reduces to

)A(Z_ = )A{IZ + Kivy

w2

24]| covar[v]g||2

f13+1 ~ ()]
The matrix 2—norm vyields the largest uncertainty in any
direction. The covariance of the innovation is estimated by

H(x) = g + %10g((27r)”|P\), 3) keeping a running average:

1 T -
showing that the uncertainty ok depends only on its covar([], = yvvy, + (1 =) covar [Pl 1. (10)

coviriancedmgtrixl. , , < obtained b A change in zoom affects the fixation error and the Kalman
The conditional entropy in equation 1 is obtained bYyor gynamics, if the measurement error is dominated

averaging over the domain of all observations. This domatu zoom-independent noise. To keep balance between
can be split into the area inside)(and outside tv) the o 5 rement and process noise in a tuned filter, the change in
®e observation model has to be taken into account explicitl

is made and tt‘f state can be updatedkfq resulting in . requires that the innovation, state covariance andepsoc
the entropyH (x;7). If the target is outside of the image, | ise be scaled inversely to the zoom:
the entropy H(x, ) is obtained from the predicted state

only. Both these entropies are independent of the actual P, = (flf/fgﬂ)falz Qi1 = (fE/f21)Qr  (11)

observation (see equation 3), only on the assumption whethe A (12)
the target will be observed or not. When rewriting the integra ’
in1as IV. ANALYSIS ON SYNTHETIC DATA
(o ]
Hq(xi|og) = _/ pal(ok) A vital factor to the success of the entropy-based zoom
—o0 control approach described in section Il is that the Kalman
oo . .
(x4 |0k ) 10g(pa(xk|0k)) dxx do filter correctly models the movement of the object and
_ PalXkIOR) 08 PalXkIOR)) @XE GOk the nojse characteristics of the motion model. While it is

(4) comparatively simple to model the behaviour of inanimate
objects, this is much harder or can be impossible in the

and applying previous observations, this simplifies to o . 3 i
case of living beings, or objects operated by humans. While

Ha(xgloy) = w(a)H(x) it certainly is possible to find some upper bounds on the
+ (1—w(a)H (%), (5) maximum velocity of pedestrians, this might be performance

. - . limiting if the object under scrutiny is a speeding car. We
where the entropies are averaged by the likelihood of mak'r{Herefore should expect a failure of the model, or at least

an observatiomw(a), i.e. the chance of the target being Withininvestigate what happens if the model is wrong.

the observation region. It is worthwhile to emphasise that To compare the performance of zoom control by the two
P(ine oft;[he pzi_rts of the crtlaen:)n in equation 2 depends O£bproaches, we run several variants of the filter on symtheti
uture observations, since the term data. For clarity we restrict ourselves to a simple model
w(a) = /pa(ok)dok (6) which has been introduced by Tordoff and Murray [9]: A

v ’ ’ line-camera is tracking an object at a constant distance,

. ) ) ) with a supposedly constant angular velocity. The camera
The results of this paper are easily augmented to apply tadi@gended is rotatable and the predicted positi . d to k th

Kalman filters; For the sake of clarity we use the notation & kinear - : p ' p ' Ion 1S used 1o keep the

version. tracked object in the centre of the image.



0§ ‘ once the target passes the image boundary (shown in (b)),
which happens a few frames after the velocity changed.

O'ZM M Figure 1(c) and (d) show how the entropy is minimised in

each frame in both versions, and the zoom is increased up

* unmatched|
- |—matched

position/®
fixation error
=)

> 04 Nkt to the maximum value due to the decreased uncertainty. The
e entropy and zoom of the unmatched filter sink respectively
50 100 150 200 250 0 50 100 150 200 250 . . . .
Frame number Frame number rise faster, due to the increased trust in the motion model.
(a) Position (b) Fixation Error The loss of track can be explained by investigating the
mean conditional entropy term in equation 5. SiltGg stays
- - unmatched| 30, — 1 . C e .
Junmatehed s —unmatched consftant during the minimisation, the relevant part can be
N rewritten as
Ha(Xk|0k)
= w(@)(H (X)) - H(xy)) + H(x;)
al + AN,
0 5 o 1520 2% =% 5 10 15 20 25 = ¢+ w(a) log )Pk (ak) — log ’Pk (a))
Frame number frames
(c) Zoom levels (d) Entropy = &+ w(a) log ‘I o KHal (15)
. . N = c+uw(a)
Fig. 1. Behaviour of Kalman filters with entropy based zoomtminThe . R
biased Kalman filter results in fixation error shown in (b) aoseks track. log|I-P,H(R+H,P,H) 'H,| (16)

The state of the object is described ms= ( ¢ ¢ )T c1,co are constants irrelevant to the minimisation, akd
with a linear motion modeky,,; = Fxy, + uy, + qi. The in €quation 15 is the Kalman filter gain, which expands to

update matrix for a given discrete time stap is [12] equation 16. Our model has a one dimensional observation
space, i.eR and the observations are scalar. This simplifies
F= < (1) Alt ) (13) the equation even further:
The known inputu,, is the direction the camera is looking Ha(xi|o) = w(a) log % +c 17)
at uy = (-0 0)", and the camera directiofi is 1+hP; h? /o7

set to the predicted position of the object. The process Since in this model the predicted observation is always
noise q; is a zero mean Gaussian noise sequence withe visibility factorw(a) reduces to

covarianceE[qrql] = Qy, which approximates the size - 1
of the unmodelled acceleration. The observation model w(a) = erf (1/) \/2(03 +hP, hT) ) ) (18)
assumes a small angular error, hence a linear model

. Both factors of the minimisation criterion depend apriori
o = h'x; +r, (14)  values only, hence the inability to change the behaviour of
withh = ( f 0 )T suffices. In this observation model the zoom control if the target is about to leave the obseevabl

the value f is the zoom value, or action, as described "€9ion- This points out that entropy-based control reguae
in the section on entropy based control. A zero meafitting process model and process noise characteristics.

Gaussian noise sequencenodels the observation noise with F19uré 2 shows the behaviour of the covariance based
a covariance ofZ[rr’] = R. zoom control, both with and without the zoom adaption of

The object motion starts at an angle-ef0° with constant the filter dynamics as stated in equations 11-12. The fixation

velocity of 30°/s. Once the target reach@e®, the object error in figure 2(b) shows the loss of track of the unmatched,
accelerates with-20° /s until it attains its final velocity of non-adapted filter. The matched versions of the filter keep

30°/s. The initial velocity for the state estimate is set to zero]té_raCk' as well as the adapted version of the unmatched
whereas the position is initialised to the actual grounthtru fIt€- The zoom rises steadily, yet slowly in the adapted

value. The image border is arbitrarily set t@).25...0.25. and maiched filter case. This behaviour is emphasised in
In all experiments we assume an observation noise of folff® Z00m-dependent and matched filter case. Whereas the
percent of the image widthR( — o2 — 0.022) filter keeps track, the covariance criterion is too restrct

2 = (.022).

To demonstrate the behaviour of the zoom contrdiS can be seen in figure 2(c), the zoom rises much slower
algorithms, we let the filter run once with a process nois@n in the case of entropy based control, and never reaches
with standard deviation af0°/s2, and a second time with a (e maximum. The speed and maximum of the zoom are
hundredth of this, making it a biased estimator, or unmatchéctually bounded by the running average imposed on the
filter. innovation covariance: When assuming a stationary white

The results of the entropy based zoom control are show}Pis€ sequence faw, i.e. covar[v]y = v§, the difference
in figure 1. The first plot, (a), details that both filters®auations 9 and 10 resultin
have approximately the same performance, i.e. the position 2 A A~ wj (19)
follows the ground truth, but the unmatched filter loseskrac R (A 21— )k + 12 DY




which is limited by f2 =~ %. Figure 2(d) details this  Basically, there are :
behaviour for a non-adapted, matching filter. The covagandwo ways to influence the o R oer
is kept constant and set to the average value of the inneovatisgoom selection process : :
covariance. This problem is less apparent in the matched the entropy method.
and adapted case, because here the innovation covarianc®fe is to rectify the
inversely scaled with the current focal length before ujpdat false estimation of the
the last estimate. Still, the increase of zoom depends on th&ean value, and the other
damping~. one is to increase the
The second restriction of this approach is due to the ug#certainty according °
of observations for control. The observations do not refle¢p the actual innovation Fig. 3. Shifting the mean (green,
the expected dynamics of the object. Since the zoom rugquence. Both  these gtippled) or increasing the covariance
specifies a confidence interval on the innovation, the zooapproaches are sketched(cyan, dashed) decreases the visibility
is simply reduced to keep the object in the centre of théor a constant observation part an(éfingtthoezoggics't"e function,
observation region. This is not necessarily the best thing parameter in figure 3. In
do. Consider the setting given by Tordoff and Murray, wherghe case of a matching
a cameraman observes a gnu on a veld. If the cameranfdter, the predicted observatioo™ = H,x; coincides
knows with confidence that the gnu will move to the rightwith the actual process. Now presume a unmatched filter,
because the gnu is running already, she will certainly novhich gets measurements arouad The first method we

p(o)

zoom far out if the gnu is at the left image boundary. propose follows the innovation sequence with an innovation
estimater—. The second approach adjusts the covariance of
V. IMPROVEMENTS the observationR, according to the measured innovation

covariance. Both approaches reduce the likelihood of

The problems of the two approaches are loss of tragiaking an observation, which is given by the total area of
in the entropy-based control, and both a slow increase afie distribution function within the observation regioro T
limit of zoom in the innovation covariance based method. Ancrease this likelihood (and to decrease the area outside o
nave solution would be to choose the minimum of eithethe image borders) a smaller zoom value must be chosen.
approaches, but since the entropy based approach is
bound by actual fixation errors, the zoom setting woul
simply be imposed by the innovation covariance approach. In the first approach, we incorporate the fixation error
Also, the control rule addresses one observation parameteflirectly into the visibility termw(a) in equation 6 by adding
zoom — only, and restricts the selection to a radial obsienvat &n innovation term to the observation likelihood:
area. The entropy based control rule instead can address Pa(0k) ~ N (HaX;, +u,R+HaP;H§) (20)

multiple observation parameters and nonuniform obsemati o .
domains. We therefore discuss two improvements to th&/hen there are fixation errors, the chance of making an

entropy based approach which make it more robust to Wror%pservation will decrease, and the zoom is decreased. This

ot . . . .
. Estimation of the innovation sequence

filter dynamics. !eaves the zoom controllmtact as long as the filter is matcheq
i.e. results in a faster increase of zoom demand. For this
w o approach,Athe. innovation of the ngxt time step{rl =
o 04 “TunmaEed ek, o,+1 — Hx, is added to the predicted observation. This
TN N i - Image boundary . . H .
L 4 NN g 02 innovation is not yet available and needs to be from the
7 % / N\, I Rkt e S same parameter setting as the one being currently evaluated
& o / N v B2 i . . I )
o ~unmatched N\ & ¥ By making use of the pseudo-inverd&, at time k& we
— matched \i 0.4 i
w0/ [peeirem [N o approximate: .
% jF:(rjifx)me nlusgber 200 =0 0 % éroa?me nlusrgber200 20 0k+1 ~ Hk-"_lHk? Ok (21)
(a) Position (b) Fixation Error In the case of the observation model used in the experiments
. , above, this give®;, 1 = f’}zlok, which is the same result
e atched 1 dep- as obtained for'the smg!e parameter case of zooming.
ol et -, R P Note that the introduction of the innovation in the visityili

term makes the entropy highly dependent on the last
observation. Similar to the covariance based approach, we

5 1.5
/ used a running average. Contrary to the limit of zoom speed
0 e i imposed by the running average, this only addresses the
0 100 200 300 0 100 200 300 . . . . . .
Frame number Frame number observability termw(a), which is close tol if the filter is
(c) Zoom levels (d) Bounded zoom matched. Since the observability term is influenced, small

Fig. 2. Behaviour of Kalman filters with covariance based zammtrol. changes have a huge influence and the control reacts with

The biased Kalman filter results in fixation error shown in () keeps ZOOMing out once the target is nearing the border of the
track. The filters without focal length adaption are lakelées 'f-dep.’ observation region.



60 08 B. Integration of innovation covariance
. :Z Z: Unfortunately, the previous method is only usable under
- 0 5 o f AL st the condition thatHkHH; is invertible and suffers from
=20 — »Zj the need of appropriate initialisation. The second method
40 —trobs.-cen 08 we propose avoids these pitfalls and incorporates the
% 100 200 300 0 50 100 150 200 250 covariance of the fixation error into the entropy term

Frame number Frame number

in equation 5, arguing similarly to Mehra [13], that the
innovation sequence contains the missed information usefu
S R for innovation adaptive estimation.

) T We keep track of the innovation covariance independent of
the varying observation parameters, which thus needs to be
normalised by the pseudo-inverse of the observation model.

(a) Position (b) Fixation error

25 ] 10

S 0.5
i: } o B The resulting matrix is finally used to update a running
5 T | S . average
=
K L S Cr = 7H[ oo Hi' + (1-7)Cry (22)
(c) Zoom levels (d) Entropy H and visibility similar to equation 10.
termw (blue: f-dep.) Instead of directly working with this matrix for zoom

Fig. 4.  Position, fixation error, zoom levels and entropy otrepy- Selection, we instead replade in the entropy calculation
based zoom control, incorporating the predicted obsemainly (red), and with
combined with the focal length adaption (green) R’ = 05R + aO.5Hk+1Cka+1. (23)

When a target is observed for the first time, the zoorf fise of C effectively penalises an increasing zoom for a
is bound by the initial value of the state covariancd!On-matching filter by back-projecting the running average

matrix. Additionally, the predicted observation value d¢gn the covariance with the hypothetical observation pararaete
initialised with a maximum of the observation domain, i.eH«+1. This penalty is controlled by the factor.

with the left border if the target enters the scene from the le  NOte that the ternR is not only changed in the visibility
This initialisation is of course more difficult in obsenai (€M, but also in the calculation of the entropy of the Kalman
spaces of higher dimensions. filter. This is necessary since an increase in uncertainty

Figure 4(a) shows the performance of the filter modifiedf@ttens the Gaussian in equation 6, reducing the impactof th
accordingly, once in a focal length dependent (red), anYJSIblllty term.m the ovgrall co.n_d|t|<.)nall entropy c_alc_man.
independent version (green). For both versions of the filter 1€ behaviour of this modification is shown in figure 5,
the zoom level rises as long as the filter is matched, arfipain with and without Kalman filter adaption to focal length

reaches the maximum, as seen in inset 4(c). This behavioﬂ?ange' Apparent is the loss of track in the unadapted case.

can be explained by the fourth plot (d) of that same figuré=V€" though the zoom is set to the minimum, the fixed

The entropy continually sinks, and the visibility term gse dynamics of the filter are too slow and the visibility term
The visibility attains its maximum as soon as the initidtia sinks. The factoro is chose.n. in such a way that. at the
phase of the running average has passed. Once the motﬁma”eSt zoom level the modified observation covariaRte
pattern of the target changes, the visibility drops, and trRtains the original yalueR, but can also be u;ed as a
zoom is set to minimum. safeguard value. In figures 6 the influence of this value on

The zoom change affects the state estimate shown Qbservation error and zoom selection is shown for varying
figure 4(a), but with a considerable delay in the case of tHg: " this setting, the smallest zoom level i3, i.e. the

focal length dependent version (red). This is also pornlayeappmp”ate)‘ '8.9' A_pparent Is the influence on the_maxmum
by slow increase of the entropy in (d). This behaviouf°°m level, which is not reached on average for higher values
stems from the loss of importance of the measurement er@r ¢ before the motion of the target changes, but keeps track

when compared to the state covariance matrix. The latter e all cases. Figure 7 shows a comparison of the approaches

amplified by the observation model, and data observed atpéesented in this paper. Most notable is the effect of the

lower zoom has a higher influence onto the state estima ethod of section V-A. This has a far higher influence on

When f is rising, the constant measurement noise losd e visibility than the approach using innovation covacan

importance. When/ is decreasing, the gained trust in thewhich is only addressing the spread of the Gaussian, but not

process model is slowly decreased the mean value. Since the application of the former method

This change in filter dynamics results in a state estimate (lﬁ limited, we reSt_”Ct our_selves tq the use of the approach
figure 4(a)) with a smaller error than in the original Versionmcorporatmg the innovation covariance. It track_s as sl
Once the target accelerates, the entropy based zoomq:miterfhe method proposed by Tordoff, but uses a wider range of
yields a smaller setting, keeping the target within the imag?2°™ 1€Vels. VI. DiscussioN
boundary. As soon as the filter has recovered, the zoom isSince all of the filters performed well with a higher process
increased again. noise, one might ask why a small value is beneficial. Figure 8
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(a) Position (b) Fixation error (a) Position (b) Zoom levels
0
20 al "’""""‘-;wl i Fig. 7. Comparison of the zoom control methods based on entraiby
- atd 0 the improved observation (‘H+obs’), innovation covariar{té+cov’), the
; original covariance method (‘cov’). ‘gt’ refers to grounditn.
20
€15 o5t A 20 target is not high enough to risk zooming in. In the case of
19 S . the cameraman observing a speeding object, zooming makes
5 \ H sense as long as she is sure the object will continue to move
% T — SR ™0 in a direction that can be guessed reliably.
Frame number Frame number . H
o Lastly, we applied the presented zoom control to tracking
(c) Zoom levels (d) Entropy H and visibility

of humans in video sequences. Since the focus of this

work is the comparison of zoom control methods, we use

Eig- 3- Positiorh| fixation error, ﬁoqm levels and e_ntrolpy( u:jr)epy-d the same observations for all methods, which are extracted

ased zoom control, incorporating the innovation covagaonly (red), an .

combined with the focal length adaption (green), éoe= 9 beforehand from a Vlde_O sequence by a met_hOd based
fn background subtraction [15]. Every frame is then a

shows the zoom of the e’?”"py based zoom control Wltsubsampled part of this high-definition input, imitatingB2P
over-estimated process noi€Q. All other settings of the . .
camera. We assume a constant velocity motion model, and

model are kept the same, also the maximum zoom Sett"t]ﬁe observation is the bounding box of the detected object.

of 30. The further the process noise is increased, the more . o
P The development of the entropi{ and the probability

limited is the zoom control. Figure 9 shows the minima of K b , h i fi h
equation 17 for varying ratios of process to measuremeflf Making an observationy, are shown in figure 10, here

noise covariances. They define the maxima of the zoof’ the non-adapted entropy based zoom control with a

obtainable by the entropy based zoom control approacmax'r_num zoom of4. The f|rst_ frame @ Sh_O\_N_S :[hha )
For example, in order to be a useful zoom criterion for govariance ellipse of the location right after initialiset on

; ’ ~ 101.6 i P a newly detected target. Due to the high initial uncertaint
maximum zoom of40 ~ 109, the ratio £ must not be y 9 9 y

greater thani0~2, otherwise the minimum would limit the of the location, the probability of making an observation is
zoom range ’ highest when not zooming in. The fifth frame (b) shows the
As an ex::imple we plotted the behaviour of the ﬁltergecreased covariance ellipse, and that the confidence in the
presented in the previous sections. We used the measuremrcli]rz?tk'ng,an ob.ser.va_tlon in the next frame rses. Th.e camera
noise as given in section IV, and the steady-state soluti oms in, but is limited by the visibility of the bounding box

of the Riccati equation for the state’s covariance matrif the target. If the camera zoomed in too far, the bounding

([14], p306f). This is finally approximated by? =— box WOl.,Ild be cropped. In the 16t'h frame (c), the camera

Ur\ﬂHQHz)- zooms in f_urther and star_ts panning to follow the object.
In this setting and a maximum zoom level o, we run

a final experiment with a matched and an unmatched filter,

here the process noise is underestimated. Here, we compare

e entropy based zoom control in the original form with

termw (blue: f-dep.)

This shows how the zoom effectively is limited by the
conditional entropy — even with perfect visibility the zoom
would never be set beyond the respective minimum. Th
interpretation of these findings are explained quite easily t
if the process noise is too high, trust in the movement of the
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Oalmaamwaaw B\ o Fig. 8. Zoom resulting Fig. 9. Minima of mean conditional

"0 50 100 150 200 250 % 50 100 150 200 250 from entropy based control entropyforva_rying measurement noise
Frame number Frame number with varying process hoise tO state covariance, over various levels

(a) Errors (b) Zoom levels covariance. The less trust exists Of zoom. Entropies for unmatched
in the process model, the (red, stippled), matched (blue, dashed)
Fig. 6. Mean performance (and standard deviation) of the filiedification ~ smaller the maximum zoom and a filter with Q* = 100Q

based on the innovation covariance for varyimg= {1, 9, 100}, for 100  setting. (green) are emphasised. Note the

runs of the filter. double logarithmic axes.



predicted fixation error into the visibility term, and ints
the innovation covariance into the mean conditional entrop
Lastly, we have discussed the Kalman filter’s sensitivity to
zoom changes if is not matching the noise characteristics.
We currently look into the advantage of entropy as
a objective function for multi-step planning, mixture of
objectives, and data fusion from several sensors. Anoither |
T of future work is the use of innovation covariance for enyrop
based zoom control in the context of model switching.
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