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Constraints Compliant Control:
constraints compatibility and the displaced configuration approach

Sébastien Rubrecht, Vincent Padois, Philippe Bidaud and Michel de Broissia

Abstract— Most of the literature reactive control laws have
much difficulties to handle properly constraints such as joint
limits, obstacles and saturations, including them as equalities
in the Inverse Velocity Kinematics (IVK) problem. Actually,
it seems relevant to handle them through inequalities, as the
constraints are more numerous than the number of DOFs.
However, the intuitive constraints expression can lead to in-
compatibilities between constraints, which necessarily induces
constraints violations. This paper brings two distinct contribu-
tions. First, the usual constraints inequalities are modified to
make them compatible permanently. Second, an intuitive and
efficient constraint compliant control law is proposed.

I. INTRODUCTION

Practical applications in Robotics require a strict com-
pliance to constraints while achieving the operational task.
This is especially true in cases where constraints violation is
highly critical (nuclear plants decommissioning, surgery,...).
For example, this work is motivated by a project involving
teleoperated maintenance in a tunnel boring machine. To
ensure this strict compliance and a minimum level of opera-
tional performance, constraints and tasks can be handled off-
line through planning. However this approach is not viable
when operational tasks or constraints are not known a priori.
This is typically the case in applications involving tele-
operation, co-manipulation or autonomous behaviors, i.e. a
reactive behavior. To the best of our knowledge, there is no
control approach in the literature allowing to ensure this strict
compliance to constraints in general cases and the work in
this paper is a contribution in that direction.

The constraints considered in this paper are as follows:
• No collision with the environment (static);
• No collision with joint (position) limits;
• No saturation of joints velocities and accelerations.

These constraints can be incompatible, i.e. the respect of
one of them may induce the violation of another one. For
example, the proximity of an obstacle or of a joint limit
may require a too high deceleration value for one of the
joints. Thus, it is necessary to formalize set of constraints
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equations accounting for this dependence. This constraints
compatibility problem is not very often tackled in the litera-
ture. Once constraints compatibility is achieved, any control
law ensuring the compliance to constraints while leading
to the best possible achievement of the operational tasks
can be chosen.

In the case of redundant manipulators, the control problem
is classically formulated at the velocity kinematics level as
the inversion of the following relation

Ẋ =
∂X
∂q

q̇ = J(q)q̇ (1)

where J(q), Ẋ and q̇ are respectively the operational task
Jacobian matrix, the operational velocity vector of size m
and the joint velocity vector of size n. This problem has
received a lot of attention (see for example [1], [2] and [3]
for an overview). However the retained approaches are rarely
constraints compliant since either operational tasks are given
the highest priority while redundancy is used to deal with the
constraints or constraints are given the highest priority but
expressed as equalities. Since the n DOFs of a robot can
only instantaneously comply with n equality conditions, the
latter approach is doomed to fail given, for example, the 2n
constraints associated to joint limits.

To deal with this strong limitation, the most general
approaches consist in formulating the control problem as
a convex optimization one where constraints are naturally
expressed both through equalities and inequalities ([4], [5]
and [6]). This type of approach induces, in the case of com-
plex systems with multiple hierarchical levels, computation
times which may not be suitable for a real-time implementa-
tion (even though some very recent work described in [7]
exhibits a rather low computational complexity). Iterative
approaches have also been proposed among which the one
from Baerlocher et al. in [8] that introduces the idea of joint
clamping and passive avoidance for joint limits constraints
only. Passive avoidance is a principle according to which
avoiding a constraint should not need a motion but rather
an absence of motion in the concerned direction. Based on
the coupling between active and passive avoidance, the work
in [9] extends Baerlocher’s approach to obstacle avoidance
constraints. In this work, joints velocities constraints are
treated using a scaling approach.

Joint acceleration constraints are more problematic since
they are the one which induce possible incompatibilities
between constraints. In [6], a framework is introduced to
include any type of inequality and equality constraints.
The presented results involve an incompatibility between



acceleration and position constraints which is locally treated.
However, the problem remains an open one.

Our first contribution is to formalize constraints so that
compatibility is implicitly preserved (section II). While this
formalization is general enough to be used by any constraint
compliant control law such as the one proposed in [6], our
second contribution is to propose an intuitive and more direct
constraint compliant control law including joint accelerations
limits (section III). The obtained performances are exposed
and discussed in section IV. Section V is dedicated to
conclusions and future works.

II. CONSTRAINTS COMPATIBILITY

This section aims at establishing constraints expressions
that are compatible, i.e. inequalities that, beyond describing
the constraints, also satisfy

∀k,∃q̇(k),q(k)+ q̇(k)δ t ∈ EC(k) (2)

where q(k) is the robot configuration at iteration k, q̇(k) is
the joint velocities at iteration k (solution of the control law
problem) and EC(k) is the interval of admissibility. EC(k) can
be seen as the interval in which lies the potentially feasible
configurations q(k+1) at the next iteration.

As one can one notice, a discrete formulation is retained to
describe the instantaneous behavior of the robot at the joint
level, i.e. q(k+1) is approximated as q(k)+ q̇(k)δ t. This is
a widely acknowledged assumption in the literature.

EC(k) is the intersection of the admissibility interval of
each constraint

EC(k) =
⋂
p
(EC,p(k)) (3)

where EC,p(k) is the admissibility interval of constraint p. If
(2) is not satisfied, then there is no possible motion comply-
ing with the constraints, and thus at least one constraint will
be violated.

As there is no assumption on q̇(k), (2) is equivalent to

∀k,EC(k) 6=∅. (4)

The following part gives intuitive constraints expressions
that are not compatible. Then, these expressions are modified
to integrate their compatibility.

A. Intuitive constraints expression

The considered constraints are usually expressed by in-
equalities obtained based on (1) (e.g. in [5]):
• Collision with the environment

JAq̇(k)<
dA,B(k)

δ t
(5)

for all pairs of point (A,B), where A belongs to the robot
and B to the environment; dA,B is the distance between A
and B; JA is the jacobian (single line) of point A in direction
A→B. For a practical aspect, this infinite set of constraints is
reduced to one constraint per segment of the robot (shortest
distance).

• Joint position limit (for the ith joint)

Jc+i
q̇(k)<

qM,i−qi(k)
δ t

and Jc−i
q̇(k)<

qi(k)−qm,i

δ t

(6)

where Jc+i
= [0, . . . ,0,1,0, . . . ,0] (the ith term being 1) and

Jc−i
= [0, . . . ,0,−1,0, . . . ,0]. qm,i and qM,i are respectively

the minimum and the maximum joint position limits. The
admissibility interval w.r.t. position limits is represented on
Fig. 1.

Fig. 1. Joint position limits admissibility interval in the joint space.

• Joint velocity limit (for the ith joint)

Jc+i
q̇(k)< q̇M,i

and Jc−i
q̇(k)<−q̇m,i

(7)

where q̇m,i and q̇M,i are respectively the minimum and the
maximum velocities of joint i. The admissibility interval
w.r.t. velocity limits is represented on Fig. 2.

Fig. 2. Joint velocity limits admissibility interval in the joint space. The
values written beside the interval limits are the expression of the boundaries
w.r.t. the neutral constraint configuration.

• Joint acceleration limit (for the ith joint): it is obtained
from the discrete time derivative of the joint velocity
expression

Jc+i
q̇(k)< q̈M,iδ t + q̇i(k−1)

and Jc−i
q̇(k)<−q̈m,iδ t− q̇i(k−1)

(8)

where q̈m,i and q̈M,i are respectively the minimum and the
maximum accelerations of joint i. The admissibility interval
of acceleration limits is represented in Fig. 3.

Fig. 3. Joint acceleration limits admissibility interval in the joint space.
q(k) does not necessarily belongs to it. The values written beside the interval
limits are the expression of the boundaries w.r.t. the neutral constraint
position.

These constraints, when satisfied, ensure the admissibility
of the robot motion at the current iteration. However, if the
admissibility intervals associated to these constraints become
disjoint (incompatibility), at least one constraint will be
violated at the next iteration. As an example, it is the case
when a joint gets close to one of its position limits with



a high velocity: the acceleration limits does not enable a
sudden stop and the constraints become incompatible (cf.
Fig. 4).

Fig. 4. A constraint incompatibility. The admissibility intervals of the joint
position (right) and the joint acceleration (left) limits are disjoint: q(k+1)
will necessarily violate a constraint. The values written beside the intervals
are the expression of the boundaries w.r.t. the neutral constraint position.

To avoid these cases, the compatibility between constraints
is considered as a constraint in itself. However, there is no
simple way to express the compatibility conservation; we
propose to study the mutual impacts of the constraints to
modify adequately their expressions in order to make them
always compatible.

B. Methodology to study the constraints compatibility

When not considering the accelerations limits, each con-
straint is an interval (or a semi-interval for obstacles) that
contains the current configuration q(k). Thus, the space
EC(k) is a convex space at least reduced to a point; so,
these constraints are always compatible. The introduction of
the joint acceleration limits endangers the compatibility (cf.
Fig. 4). To proceed, we propose to study the addition of the
joint acceleration limits in the different cases of constraints
sets containing joint position limits, joint velocity limits and
obstacles. This decomposes the problem into 7 cases.

In this framework, a reliable estimation of the deceleration
capabilities on a time horizon is needed. The joint deceler-
ation limits can be known (at least minorated) permanently,
but it is in general not possible to ensure a minimal value
for an operational deceleration (cf. II-D.1). So, the study
is divided in two parts: first, the 3 cases involving only
joint related constraints (position, velocity and acceleration
limits) are treated. Then, the 4 cases involving obstacles are
discussed.

C. Compatibility of sets without obstacle constraints

1) Joint acceleration and velocity limits: As in (8), the
admissibility interval of the acceleration limits has its neutral
value on q(k) + q̇(k− 1)δ t (cf. Fig 5). These constraints
does not require any modification to be always compatible:
for a given joint i, the size of EC(k) is at least q̈M,i(k)δ t2

(joint at minimum velocity) or q̈m,i(k)δ t2 (joint at maximum
velocity).

Fig. 5. Compatibility between joint velocity and acceleration limits. Illus-
tration of the minimal intersection width at minimum (negative) velocity.

2) Joint acceleration and position limits: These con-
straints may become incompatible if a joint gets close to
one of its position limits too fast (cf. Fig. 4): the admissible
deceleration may not be sufficient to avoid the contact with
the joint position limit. The only way to preserve compati-
bility is to slow down when getting close to a position limit.
As shown in Annex A, ensuring

q̇(k)<
(qmax−q(k))− 1

2 (s
2
1− s1)q̈mδ t2

(s1 +1)δ t

and q̇(k)<
(qmin−q(k))− 1

2 (s
2
2− s2)q̈Mδ t2

(s2 +1)δ t

(9)

with

s1 =−
√
−2q̈m(qmax−q(k))

q̈mδ t

s2 =

√
−2q̈M(qmin−q(k))

q̈Mδ t

(10)

enables to decelerate the joint so that maximal deceleration
and joint position limits are satisfied. In particular, it is
ensured that the point of maximal deceleration qdecM(k)
always belongs to EC(k). Its expression is

qdecM(k) = q(k)+ q̇decM(k)δ t (11)

where the maximal deceleration velocity q̇decM(k) compo-
nents are:

if q̇i(k−1)> 0

q̇decM,i(k) = max(q̇i(k−1)+ q̈m,iδ t,0) (12)

else
q̇decM,i(k) = min(q̇i(k−1)+ q̈M,iδ t,0). (13)

3) Joint acceleration, velocity, and position limits: The
inclusion of joint velocity limits in the previous case does
not affect the existence of EC(k) as the modifications carried
out for acceleration and position limits maintain the exis-
tence of EC(k) in the deceleration part (velocity decreasing)
of the acceleration admissibility intervals. As the velocity
limits only have an impact on the acceleration part (velocity
increasing) of this interval, there is no particular modification
to bring.

D. Compatibility of sets involving obstacles

1) Joint acceleration limits and obstacles: As in part II-
C.2, these constraints become incompatible if the robots gets
close to an obstacle too fast. So, the equations of Annex
A may be applied. However, the acceleration term is not
constant (obtained from (5))

ẌA,B = JA(q)q̈+ J̇A(q)q̇ (14)

(ẌA,B being the acceleration of point A in the direction
A→B) as JA and J̇A are functions of q. The variations of ẌA,B
imply a possible decrease of the decelerations capabilities.
As the future operational inputs are not known (reactive
framework), any prediction based strategy may turn out
time consuming. Nonetheless, any decrease w.r.t. estimated
accelerations capabilities is not allowed, as the modifications



to ensure the compatibility (33) need these accelerations to
be maintained. So, another strategy is adopted.

Given a robot point A close to an obstacle, a stop distance
is computed

dstop,A(k) = GA(qstop(k))−GA(q(k)) (15)

where GA() is the forward kinematics model of the robot
point A projected in the direction of the closest obstacle
and qstop(k) is the configuration obtained when decelerating
from q̇(k) to 0 at full joint deceleration. dstop,A(k) is a rough
approximation of the distance that may be needed to decel-
erate if the joints are submitted to multiple constraints (other
obstacles for example). In such context, a cautious principle
is to suppose that each articulation may be submitted to a
maximal deceleration at any time. Unfortunately, dstop,A(k)
is not an upper bound of the maximum distance traveled in
the obstacle directions during the deceleration motion. Actu-
ally, antagonists velocities (joints having separately opposite
effects on the operational motion direction) may bring the
robot briefly further from q(k) than qstop(k). However, this
is complex to determine since it would require to compute the
volume described by the robot during the deceleration and
then to compute the minimum distances between the obtained
volume and the environment. The problem is simplified by
resorting to an envelope e on the environment to increase
safety.

To make the acceleration limits and the obstacles con-
straints compatible, the following test is carried out:
for each obstacle, if

dobstacle(k)−dstop,A(k)< e (16)

then the following inequality is imposed

Jobq̇≤ q̇decM(k) (17)

where Job is the diagonal matrix containing ±1 on the joints
number which associated element is not null in the jacobian
line of the obstacle constraint. The term is 1 if q̇i(k−1)> 0,
−1 otherwise.

This expression imposes a strict deceleration on all the
joints having a motion contribution in the obstacle direction.
(17) directly acts at the joint level (no limit is imposed on
the operational velocity in the constraint direction) as the
redundancy of the task associated to an operational limit
does not enable to ensure the desired deceleration, again
because of antagonist joints that may decelerate at any time.
We mention that the test described by (16) and (17) is not
exactly adequate as it deals with distances without taking
into account the effect (17) on velocities. So, oscillations
may be encountered.

2) Obstacles and joint acceleration and velocity limits:
For the same reason than for part II-C.3, there is no further
modification to bring to (17).

3) Acceleration limits, joint limits and obstacles: The
presence of joint position limits with obstacles and accel-
eration limits does not require any modification, as they
can be considered as obstacles of jacobians Jc+i

or Jc−i
. We

Fig. 6. 3R manipulator with, for each articulation, its admissibility intervals
of joint position, velocity and acceleration limits. The vertical line at the
center of each articulation is the current joint position. EC(k) is the grey
zone, and the maximum deceleration configuration qdecM(k) is represented
by dashes.

can mention that (9) and (17) ensure that EC(k) contains
the configuration of maximum deceleration qdecM(k). So,
these constraints are already compatible without any further
modification.

4) Obstacles and joint acceleration, velocities and po-
sition limits: As mentioned previously, the velocity limits
impact the acceleration part (velocity increasing) of the
acceleration limits, whereas the measures taken to respect
acceleration limits, joint limits and obstacles maintain an
admissible interval in the deceleration part of this constraint.

E. Summary

The constraints expression have been modified to preserve
their compatibility:
• For sets involving joint position, velocity and acceler-

ations limits, the compatibility impacts the expression
of the joint position limits. The adopted approach guar-
antees a permanent compatibility between constraints.
Any control method ensuring the compliance with these
constraints ((7), (8), (9)) yields a safe behavior.

• For sets involving obstacles, joint position, velocity
and accelerations limits, the difficulty to estimate the
decelerations capabilities leads to a cautious approach
that involves an action at the joint level (17) activated
by a test at the operational level (16).

When considering these modifications, the compatibility is
now preserved. In particular, EC(k) contains at least the point
of maximal deceleration qdecM(k).

An example of the first case is represented on Fig. 6. These
equations can now be included in any constraint compliant
control law process.

III. CONTROL LAW

In this section, a constraint compliant control law that fully
takes advantage of the constraints formulation is proposed.
It resorts to a virtual configuration called displaced configu-
ration to adapt the usual operational control scheme so that
it can satisfy all the constraints enunciated previously.



A. Constraints compliance

The scheme of a usual reactive control law algorithm is
described on algorithm 1. In general, the way to comply with

Algorithm 1 : General operational space control law scheme

1. Computation of Ẋdes from Xdes−X
2. Jacobian Inversion: q̇ = IV K(J, Ẋdes)
3. Operations to comply with constr. not included in 2.
4. Send q̇ to low level controller

the constraints in step 3 is to scale the solution obtained
at step 2 by the maximum velocity exceedance (as in
[10]). Actually, this method can be applied in the cases of
constraints set without acceleration. In these cases, as EC(k)
contains the current configuration q(k), whatever the solution
q̇(k) found in step 2

∃p ∈ [0,1],q(k)+ q̇(p)(k)δ t = q(k)+ pq̇(k)δ t ∈ EC(k) (18)

and the solution q̇(p) is thus admissible. It is important to
have a common p for all joints, so that the operational
directions are maintained (coherent scaling).

For joint acceleration limits, the fundamental difference is
that the current configuration q(k) does not always belong
to the admissibility interval. As a consequence, for any
solution q̇(k), (18) is not always satisfied. Thus, the simple
scaling method cannot be used when considering acceleration
limits. In order to use such a method, the use of a displaced
configuration is addressed.

B. Use of a displaced configuration

Scaling can be used when the current configuration lies
in the admissibility interval EC(k). As the expressions of
the boundaries of EC(k) = [qb,m,qb,M] are known at each
iteration (by calculating the intersection of the constraints
admissibility intervals), it is possible to work from a dis-
placed configuration qb(k). Adapted joint velocities can be
computed and then scaled to satisfy the constraints. Even in
the worst case of infinite scaling (p = 0 in (18)), the solution

q̇(k) =
qb(k)−q(k)

δ t
+ pq̇b(k) (19)

is admissible. The use of this configuration in the control
law modifies the usual algorithm according to algorithm 2.

Algorithm 2 : Control iteration using the displaced configuration

1. Choice of qb ∈ [qb,m;qb,M]; Xb← g(qb)
2. Computation of Ẋdes,b from Xdes−Xb
3. Jacobian Inversion: q̇b = IV K(J, Ẋdes,b)
4. Operations to comply with the constraints
5. Send q̇ to low level controller

C. Choice of the displaced configuration

There are different possibilities for the choice of qb(k) in
EC(k). Without any information on the operational inputs at
the next iteration, a good compromise is to take qb(k) at the
center of EC(k), that is for each articulation i

qb,i(k) =
q(b,m),i(k)+q(b,M),i(k)

2
. (20)

This choice leaves an equal space of admissible motion on
both side of qb,i(k). It is important to keep some admissible
space around qb(k) as the motion is scaled by the maximum
exceedance of motion beginning at qb(k) w.r.t. the constraints
limits (cf. (24)). This has been implemented in the first
simulation of part IV.

Another possibility is to place qb at the maximal deceler-
ation configuration as it belongs to EC(k) (cf. part II-C.2)

qb(k) = qdecM(k). (21)

On the one hand, it favors joint accelerations in the direction
of the previous velocity which constitutes an a priori on the
operational task. On the other hand, it is less efficient for
operational motions with sudden direction changes. However,
this effect can be minimized thanks to iterations, as explained
in part III-D.3. This has been implemented in the second
simulation of part IV.

D. Modified control algorithm

1) Step 1: Computation of qb(k) and Xb(k): The choice
of qb(k) is exposed in part III-C. The computation of Xb(k) is
obtained by directly applying the forward kinematics model
to qb(k).

2) Step 2: Computation of Ẋdes,b(k): Ẋdes,b(k) is com-
puted in the same way than Ẋdes(k) in the initial algorithm,
but taking Xb(k) instead of X(k). We propose

Ẋdes,b(k) = max(h, ||Xb→des(k)||)
Xb→des(k)

||Xb→des(k)||δ t
(22)

where Xb→des(k) = Xdes(k)−Xb(k) and h is an operational
scale factor to avoid large operational inputs so that the
assumption of small displacements implied by linearization
is valid.

3) Step 3: Inverse Kinematics: This step aims at com-
puting the joint velocities q̇b(k) that minimizes the error
||Ẋdes,b(k)−Jq̇b(k)||. The jacobian is assumed to be constant
between q(k) and qb(k), so no jacobian computation is done
at configuration qb(k).

In order to take into account the motion capabilities of
each articulation at the current iteration, the inverse velocity
kinematics is weighted in the joint space ([11]) by the width
of each articulation admissibility interval. This technique
enables to balance the joints contributions to the operational
motion w.r.t. their capabilities.

Two control laws are used in the simulations (part IV).
In the first simulation (case of 2 hierarchized sets of tasks
(J1, Ẋ1) and (J2, Ẋ2)), the velocity kinematics inversion is
done by

q̇b(k) = J#
1 Ẋ1,b(k)+(J2PJ1)

#(Ẋ2,b(k)− J#
1 Ẋ1,b(k)) (23)



where PJ1 is the projector on the kernel of J1 computed
thanks to a Singular Value Decomposition.

In the second simulation, the control law used is the one
introduced in [9]. Briefly, this control law uses an extra level
at the top of the hierarchy to include constraints to be avoided
passively (no motion in these constraints direction). Iterations
on the constraints combinations are carried out to find which
constraints need to be avoided passively to comply with all
constraints while minimizing the trajectory tracking error. In
our case, the constraints chosen to be avoided passively are
the one which exceedance is too high in the scaling.

E. Step 4: Compliance with the constraints

This step aims at making the solution calculated at step 3
q̇b(k) compliant with the constraints. This operation is done
by scaling, and as mentioned previously, it is important to
perform it on the basis of qb(k) as it belongs to EC(k) (cf.
part III-A). The general constraints expression is

JCq̇(k)≤ L (24)

where JC is the concatenation of all the jacobian constraints
and L the concatenation of all associated limits ((7), (8), (9),
(17)). The introduction of q̇b(k) yields

JCq̇b(k)≤ L− JC
qb(k)−q(k)

δ t
, Lb. (25)

Then, if (25) is not verified, the scaling is done by

q̇b(k)← q̇b(k) min
0≤i≤ j

(JC q̇(k))i>0

(
Li

(JCq̇(k))i

)
(26)

where j is the number of constraints.

IV. SIMULATIONS AND RESULTS

The simulations presented here illustrate the behavior of
control laws using the displaced configuration. The first
simulation is a simple example of a 3R planar manipulator
dealing with constraints of joint position, velocities and
acceleration limits. The second simulation involves a 7R
manipulator in 3D that handles the same constraints than
the first simulation and obstacles.

A. 3R planar manipulator

1) Simulation presentation: The objective of this simula-
tion is to check on a simple but redundant manipulator that
the considered constraints are always satisfied and that the
manipulator performs properly the tasks.

The considered manipulator is a 3R planar manipulator.
Its bodies lengths are (0.4m, 0.3m, 0.2m). Its joint limits are
±π

2 rad for all DOFs; its velocity limits are ±1 rad.s−1

for the first and second DOFs and ±1.5 rad.s−1 for the
third DOF; its acceleration limits are ±5 rad.s−2 for all
DOFs. The manipulator is represented on Fig. 7. The tracked
trajectory is a 2D point (no orientation) moving toward the
basis of the manipulator. The mean distance between two
points of the trajectory is around 3 mm. As the robot has 3
DOFs, it is redundant w.r.t to this trajectory tracking task.
However, a second objective is arbitrarily applied on the

Fig. 7. The 3R robot motion sequence.

third joint (blue arrow on Fig. 7) between t = 0.6 s and
t = 1 s to check that a sudden jacobian rank change does
not lead to a velocity discontinuity ([3]). Then, the robot
reaches its position limits, making the constraints and the
task incompatible. Finally, at t = 3s, the trajectory is left for
a new operational objective (green point on Fig. 7) to check
that the robot is able to move away from its constraints.

The displaced configuration is at the center of EC(k)
(cf. (20)). The operational scaling coefficient h (cf. (22)) is
10 m.s−1. The control law is (23) (the trajectory tracking
being first priority objective). When the second objective is
active (between t = 0.6 s and t = 1 s), J2 = [0 0 1] and
Ẋ2 = α(qdes− q3) where α = 30 and qdes = 0.5 rad. The
iteration increment is δ t = 0.01 s.

2) Results: The simulation sequence is represented on
Fig. 7. The graphs of positions, velocities and accelerations
for each joint are represented on Fig. 8. Every constraint is
always satisfied (grey horizontal lines). As expected, the joint
positions and velocities are smooth, and the velocity slopes
are bounded. Even if the manipulator reaches its limits, the
control problem is solved in a unique iteration.

The displaced configuration is fundamental to continue the
motion while some joints are at their position limit. Actually,
without it, as the velocity kinematics inversion involves every
joints, the motion exceedances on joints 1 and 2 would be
infinite and the motion would be scaled to 0. The use of
the displaced configuration at the center of EC(k) moves qb
away from the position limits, so the motion is not scaled to
0. However, it can happen that this method turns out to be
insufficient to carry out properly the task. In these cases, any
approach iterating on the passive avoidance of constraints (as
in [8] and [9]) can be used.

B. 7DOFs manipulator

1) Simulation presentation: This simulation is an exten-
sion of the previous one as it involves the 3D manipulator
with 7 DOFs represented on Fig. 9. The obstacles avoidance
is added to the set of constraints. The aim of this simulation
is to illustrate the behavior of the control law with a displaced
configuration at the maximum deceleration point (cf. (21))
in a complex case.

The joint positions of the robot are limited to ±π

2 rad , the
velocities ±1.5 rad.s−1 and the accelerations ±10 rad.s−2.

As in IV-A, the tracked trajectory is a 3D point (no
orientation) that by-passes the wall (Fig. 9). The mean
distance between two points of the trajectory is 8 mm. As in



Fig. 8. Joints position, velocity and acceleration w.r.t iterations. Colors:
DOF1: red; DOF2: green; DOF3: blue.

the previous simulation, the trajectory is not feasible, i.e. the
manipulator is geometrically not able to track it perfectly.

The displaced configuration is the maximal deceleration
configuration (cf. (21)) to better carry out smooth operational
tasks. The environment envelope e is 1 cm. The operational
scaling coefficient h (cf. (22)) is 10 m.s−1. The control law
used is the one introduced in [9] with the trajectory tracking
as unique objective. The maximum scaling exceedance above
which constraints are avoided passively is exmax = 103. The
iteration increment is δ t = 0.01 s.

Fig. 9. 7 DOFs manipulator in the last configuration of the simulation.
The representation of the joint axis are in red.

Fig. 10. Joints positions, velocities and accelerations w.r.t iterations.
Distances to obstacles. Colors: DOF1: red; DOF4: green; DOF7: blue.

2) Results: The graphs of joints positions, velocities and
accelerations of DOFs 1, 4 and 7 as well as the distances
to the nearest point of the environment are represented on
Fig. 10. As in the previous experiment the positions and
the velocities are smooth, and every constraint is always
satisfied. At iteration 95, the first DOF reaches its position
limits. At iteration 135, the robot begins its deceleration close
to the obstacle. Finally, all the DOFs but the last one are stuck
by the obstacle (iteration 175) but the last DOF continues to
minimize the tracking error until it reaches the envelope of
the environment. As expected (part II-D.1), the last DOF is
submitted to small velocity oscillations. Their impact can be
visualized on the graph of Fig. 10 representing the distance
to obstacles.

V. CONCLUSIONS AND FUTURE WORK

In this paper we address the problems of constraints
compatibilities and constraints compliant control.

Expressions of constraints that preserve the compatibility
are established. As a consequence, any constraint compliant
control law can integrate this formulation in order to ensure
a permanent satisfaction of the contraints.



Then, an original and efficient control approach is de-
velopped. It takes a displaced configuration as the working
configuration for inverting the velocity kinematics problem.
The displaced configuration is chosen in the interval admis-
sible w.r.t the constraints, so that the scaling method can
be applied. As a consequence, this controller can handle
constraints sets including joint acceleration limits.

The efficiency of the proposed approach is illustrated by
two simulation cases.

Future work will focus on the estimation of the operational
deceleration capabilities of the robot. This is needed to pro-
vide a more appropriate constraints compatibility expression
and could be achieved by prediction of the robot expected
motions during finite time horizon.
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APPENDIX

A. Discrete calculus

Let (q(k))k, (q̇(k))k, and (q̈(k))k be the sequences of joint
positions, velocities and accelerations. In discrete time, the
motion is modelized by

q(k+1) = q(k)+ q̇(k)δ t

q̇(k+1) = q̇(k)+ q̈(k)δ t.
(27)

As shown in [6], in case of constant acceleration q̈m, the
position evolution in s iteration is

q(k+ s) = q(k)+ sq̇(k)δ t +
1
2
(s2− s)q̈mδ t2. (28)

If we suppose q̇(k)> 0 and q̈m < 0 (deceleration example),
the condition q(k+ s)< qmax for all integer s leads to

q̇(k)<
qmax−q(k)

sδ t
− 1

2
(s−1)q̈mδ t. (29)

The minimization of the right member can be obtained
by relaxing the integer optimization problem (s→ sR) and
differentiation this expression w.r.t sR

sR ≥ 0
− qmax−q(k)

s2
Rδ t

− 1
2 q̈mδ t = 0

}
⇔ sR=−

√
−2q̈m(qmax−q(k))

q̈mδ t
(30)

which then can be solved by finding the integer value sN
that minimizes the maximum velocity in (29). However, if
sR < 1, the method retained in [6] (q̇(k)≤ 0) may violate the
acceleration limit constraint. Moreover, this method is tight
and may fail in case of any measure error.

The expression of the deceleration distance obtained from
the relaxed expression is

dR,dec(k) = sR,decq̇(k)δ t +
1
2
(s2

R,dec− sR,dec)q̈mδ t2 (31)

with sR,dec given by equation (30). It is obvious that
dR,dec(k) > dN,dec(k) where dN,dec(k) would be the exact

Fig. 11. Distances to boundary (thin) and accelerations (bold) for the
velocity limits proposed in [6] (dashed) and in this work (plain). Numerical
values: q̈m =−2 rad.s−2 and δ t = 0.05 s.

discrete deceleration distance at iteration k. To satisfy the
constraints, a cautious condition is

d(k+1)> dR,dec(k) (32)

where d(k+1) is the distance qmax−q(k+1). It leads to

q̇(k)<
(qmax−q(k))− 1

2 (s
2
R,dec− sR,dec)q̈mδ t2

(sR,dec +1)δ t
. (33)

The comparative deceleration of a joint with the 2 methods
can be observed on Fig. 11.
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