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Abstract— Pipe inspection is a critical activity in gas pro-
duction facilities and many other industries. In this paper, we
contribute a stereo visual odometry system for creating high
resolution, sub-millimeter maps of pipe surfaces. Such maps
provide both 3D structure and appearance information that can
be used for visualization, cross registration with other sensor
data, inspection and corrosion detection tasks. We present a
range of optical configuration and visual odometry techniques
that we use to achieve high accuracy while minimizing specular
reflections. We show empirical results from a range of datasets
to demonstrate the performance of our approach.

[. INTRODUCTION

Stereo vision has proven to be a useful tool for mobile
robot localization and mapping in indoor, and outdoor ex-
traterrestrial and underwater environments [1], [2], [3], [4],
[5]. If a calibrated stereo rig is used, then metric pose
estimates and sparse world structure (maps) can be obtained
which can then be upgraded using dense stereo reconstruc-
tion methods. In this paper, we present a stereo visual
odometry system for building high resolution appearance and
3D structure maps for pipes such as those used in Liquified
Natural Gas (LNG) production facilities.

Pipe inspection is a critical task in many industries,
particularly those involved in natural gas production where
corrosion can be a critical safety hazard. Regular inspection
of such pipes is therefore necessary to avoid potentially
catastrophic failures. Current practice, though, relies on
manual visual inspection (e.g. [6]), which can be difficult
for operators due to fatigue, lack of scale, or suitable visual-
ization tools. Non-vision alternatives such as magnetic flux
leakage (MFL) have other limiting factors such as accuracy,
false positives, and poor visualization tools. In either case,
precise localization of the vehicle in the pipe and localization
of a feature on the pipe surface may be challenging. We aim
to address these issues through an automated visual mapping
system that can produce high resolution, sub-millimeter 3D
appearance maps of the pipe surface. Such maps can be used
for direct metric measurements, for visualization in a 3D
rendering engine, or as input to automatic corrosion detection
algorithms.

In prior work [7], we presented an automated vision
approach to this problem where we developed an accurate
monocular visual odometry (VO) algorithm to map the
inside surface of the pipe. Our results showed high accuracy
was achievable, but that restrictive assumptions about pipe
geometry were required to resolve the monocular scale
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ambiguity. We introduced a novel incorporation of these
supplied constraints into the Bundle Adjustment optimization
process that produced the final polished result.

In this work, we develop a new stereo visual odometry
algorithm applicable for operations in pipe environments.
Stereo visual odometry is a well studied problem, with work
on feature detection and tracking (e.g. [8]), pose estimation
(e.g. [9]), and non-linear, least squares bundle adjustment for
polishing solutions [10], [11]. Despite a number of successful
applications to several specific domains [2], [3], [4] (albeit
not in pipes to our knowledge), it remains non-trivial to
develop a stereo visual odometry solution for domains where
visual structure and appearance is very different from the
above scenarios. As such, we present two contributions in
this paper. First, we show how stereo visual odometry can
be extended to operate with pipe environments and what is
required in terms of features, tracking, stereo configuration,
calibration, and bundle adjustment to achieve reliable results.
In particular, the restricted confines of pipes mean that most
lensing configurations are not able to achieve full focus over
the pipe surface. This creates challenges for feature local-
ization and therefore visual odometry accuracy. Our second
contribution is a physical implementation that addresses the
challenges of stereo, minimizing specular reflections, and
minimizing blur. The result is a compact verged stereo vision
system that no longer requires restrictive assumptions on
pipe geometry and through empirical tests, we show that
it is able to produce high accuracy, sub-millimeter maps.
We evaluate the performance of our system on a number of
datasets collected specifically for the task.

In the next section, we describe our stereo test rig and
the lighting and filtering approach required to minimize
the impact of specular reflections inside metal pipes. In
section III, we describe the method we use to establish
stereo correspondences. In section IV we describe the core
details of our algorithm including mechanisms to increase
the number and quality of stereo correspondences, robust
tracking and pose estimation. In section V, we show the
accuracy of our system on several datasets before concluding
the paper in section VI.

II. STEREO CAMERA SYSTEM

The stereo camera is required to image a scene (interior
pipe surface) at a distance of approximately 200mm from the
camera. The overlapping field of view of many commercially
available fronto-parallel stereo cameras is very limited, or
non-existent, at this working distance. Furthermore, their
lenses Minimum Operating Distance (MOD) often exceeds
200mm, which would limit their ability to produce focused
images. For these reasons we have designed and assembled a
custom stereo camera. We detail the hardware and calibration
procedure in this section.



A. Hardware

Referring to figure 1, the stereo camera consists of two
1024 x 768 RBG color Firewire cameras mounted on a
rigid aluminum frame. Each camera has a 1/3” format CCD,
and is fitted with a 6.0mm focal length S-mount lens with
a 150mm MOD. The baseline separation between camera
centers is approximately 140mm, and each camera is verged
(rotated) inwards by approximately 15 degrees. This verging
of the cameras is critical for ensuring sufficient stereo image
overlap, as illustrated in figure 2. Nine 3.5 Watt Light Emit-
ting Diodes (LEDs) are mounted on the aluminum frame,
and provide the only light source during dataset collection.
To minimize specularities, we positioned polarizing material
above the LEDs, and the same polarizing material in the
orthogonal direction within the camera mounts (i.e. polarized
lenses). During datasets collection, we log synchronous,
time-stamped RGB images from the stereo camera at 7.5
frames per second (fps). The exposure time and gain of the
individual cameras were configured manually.

Fig. 1: The prototype verged stereo camera, and its position
inside the 16” pipe used in the experiments in section V. This
is a typical pipe diameter used in LNG processing facilities.

(a) Original
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(b) Stereo rectified image pair.

Fig. 2: The dashed lines enclose the approximate overlapping
regions of the left and right cameras in the (a) original stereo
image pair, and (b) stereo rectified image pair. These images
were taken from the first pipe dataset in section V.

B. Calibration

For each camera (left and right), the intrinsic image
formation model and parameters were obtained using the
Matlab Calibration Toolbox!.

ttp://www.vision.caltech.edu/bougueti/calib_
doc/index.html.

Extrinsic calibration is accomplished by optimizing repro-
jection errors of calibration targets as follows. The left and
right camera poses, P, and P, respectively, are the 3 x 4
matrices

PRy, t) =[Ri|t;] P (Rrt,)=[R:]t:], (@D

where R;, R, are 3 x 3 rotation matrices, and t;,t, are 3 x 1
translation vectors. These camera poses describe the mapping
of the coordinate X, = (X, Yy, Z,)T of a scene point in
the global coordinate frame, to the coordinate X; in the left
camera frame, and X, in the right frame:

X =R X,+t 2
X, = R, X, + t,. A3)

The pose S of the right camera with respect to the left,
referred to as the stereo extrinsic pose, is

S(R,t) = [R|t] 4)
= [R. R} | — R, R t; + t,], (5)

and defines the mapping X, = RX; + t.

Before collecting each of the datasets presented in sec-
tion V, we estimate S using a set of 50 stereo images of
a checkerboard pattern with known geometry in a global
coordinate frame. For a given estimate of P, and S, the
position of the checkerboard corners in the left and right
images of a stereo image pair can be obtained using the
camera intrinsic parameters. The error between these repro-
jected positions and their observed (detected) position is the
reprojection error. We optimize P, for each stereo pair, as
well as the single extrinsic pose S which applies to all stereo
image pairs, by minimizing the sum of squared reprojection
errors in all stereo image pairs. This non-linear optimization
is implemented using Levenberg-Marquardt and a quaternion
parameterization of all rotation matrices.

III. STEREO CORRESPONDENCES
A. Stereo Rectified Images

Grayscale stereo rectified images are used to find stereo
scene point correspondences. Using the intrinsic calibration
parameters for the left and right cameras, the normalized pin-
hole (ray-based) coordinates x;(z;,y;,1) and x,.(x,y,, 1)
of any pixel in the left and right image, respectively, can be
derived. The stereo rectified image coordinates u; and u, are
produced by rotating the rays about the camera centers, and
then applying a pinhole projection using the left and right
camera matrices K; and K,.:

u — K 1 Rl X1 (6)
u, = K, R, x,. (7)
The rotations used in the rectification, Rl and RT, rotate the
cameras principal axes so that they are orthogonal to the
vector joining the camera centers (i.e. the baseline), and the

epipoles in the rectified images are horizontally aligned?.
The camera matrices have the form

f 0 ’I,L()l f 0 ’U,()r
Ki=|0 f K.=|0 f w, |, ©®
0 0 1 0 0 1

2See [12] for a more detailed description of stereo rectification.



where f is the focal length, ug, and vy, is the coordinate of
the principal point in the left image, and ug, and vg, = vy,
is the coordinate of the principal point in the right image.
An example pair of color stereo rectified images was shown
in figure 2b. They are 1199 x 768 pixels in size, and have a
focal length of f = 1200 pixels.

B. Initial Stereo Correspondences

Correspondences between the left and right rectified stereo
images are found using a combination of sparse feature
detection/matching and Zero-mean Normalized Cross Cor-
relation (ZNCC).

A sparse set of Harris corners [13] are detected in the
left and right images. To enforce a uniform distribution of
features in the image, a region-based scheme is used [7]; the
image is divided into 6 x 8 regions, and the 30 features in each
region with the largest Harris ‘cornerness’ score after non-
maxima suppression (3 x 3 region) are retained. A quadratic
interpolation of the cornerness score is used to achieve sub-
pixel accuracy. The initial set of feature correspondences
is obtained by thresholding the cosine similarity between
the SIFT descriptors [14] assigned to each feature. Since
the stereo extrinsic pose S has been estimated, a guided
matching along epipolar lines is used, whereby a feature in
the left image can only be matched to a feature in the right if
the v pixel coordinates satisfy |v; —v,.| < 5 pixels. To refine
the accuracy of the right image feature coordinates, ZNCC
is used within a small 11 x 11 region surrounding the Harris
feature position in the right image. If there is a local minima
in the ZNCC score, the feature is retained, and the sub-pixel
position is calculated using a quadratic interpolation of the
ZNCC score.

Many of the features detected in the left image are not
matched during the first step described. For all the unmatched
features, their estimated position u, in the right image is
obtained by finding the difference du = wu; — u, of the
nearest 5 matched features in the left image, and setting
u, = (u;—du,v;)”T. ZNCC is then used to refine this position
within an 11 x 11 window surrounding the estimated position.
Again, a correspondence is only found if there is a local
minima in the ZNCC score, and a quadratic interpolation of
this score is used to achieve sub-pixel accuracy. This step
significantly improves the percentage of feature correspon-
dences and exploits the smooth structure of the pipe surface.

The final step is outlier rejection. We make no assumptions
regarding the scene structure, and reject outliers using a ro-
bust cost function. This cost function is the Median Absolute
Deviation (MAD) of the errors e, = v; — v,

MAD = median (|e,, — median(e,)]) . )

A correspondence u;, <+ u,, is retained only if e,, <
~vMAD. A value of v = 4.0 is used.

C. Stereo Triangulation
Given the set of the stereo correspondences u; <> u,., the

triangulated scene point coordinates X; in the left rectified

frame are

L up — Up,

s+ —2vg,) |,

f

X, = (10)

Ul o

where b = || — RT t|| is the stereo baseline, and

(1)

d = (u — uo,) — (ur — uo,)
is the disparity.
IV. VISUAL ODOMETRY

A. Temporal Correspondences

Given two pairs of stereo rectified images captured at
different times, the temporal correspondences between the
pairs are found as follows:

1) Find the stereo correspondences u; <+ u, and the
scene point coordinates X; in the first stereo pair.

2) Find the stereo correspondences u; <> u). and scene
point coordinates X/ in the second stereo pair.

3) Find corresponding features in the left images by
thresholding the ambiguity of their SIFT descrip-
tors [14].

4) Use RANSAC and the Efficient Perspective-n-Points
(EPnP) algorithm [15] to remove outliers and obtain
an initial estimate of the change in pose Q(JR,dt)
between the left rectified cameras (see section IV-B).

5) For all features in the left image that were not matched,
use their scene coordinates X;, and the estimated
change in pose Q = [0R|dt], to find their estimated
coordinate u; in the second left rectified image:

) = K, (6R5{l+5t). (12)

6) Use ZNCC to find refine the position uj within a 5 x5
window surrounding the estimate position®.

7) Estimate the coordinate u!. in the second right rectified
image, and use ZNCC to refine the position®. Using
(10) and (11), the estimated coordinate is

— _bf
o = [ U — g, +/uor Z, } (13)
v
l
8) If a new feature observation in the second pair was
found using steps 5-7, assign this feature the same
SIFT descriptor (i.e. do not recompute the SIFT de-
scriptor using the second left image).

Rather than keep correspondences between every adjacent
pair of stereo images in our datasets, we select only key-
frames based on the method in [16]. The key-frames selected
are the stereo image pairs separated by the largest median
sparse optical flow magnitude below 50 pixels. This median
is evaluated at step 4 to avoid unnecessary computations.

Step 2 attempts to find a fixed number of stereo pair corre-
spondences using the region-based Harris detector. However,
steps 5-8 can add additional features tracked from the
previous frame. Of this final set of all features, some are
discarded to try and maintain a near constant number — this
constant number is (6 x 8) regions x 30 = 1440. All of the
features tracked from previous frames are retained since we
want to maximize the number of key-frames we observe a
given scene point. A subset of the stereo correspondences
found in step 2 are removed. A strategic selection is used,

3The position is only found if there is a local minima in the ZNCC
score. If the position is found, a quadratic interpolation of the score is used
to further improve accuracy.



whereby the pose estimate () is used to identify and remove
those that we expect to leave the camera field of view first.
These are the features nearest to the focus of contraction.

The algorithm described enables features to be tracked
across many key-frames — a global index is assigned to
each scene point. To illustrate, figure 2 shows the rectified
stereo images in one of our datasets taken inside a pipe. The
images move from left to right as the robot moves forward
through the pipe. Figure 3 shows the probability distribution
of the number of pixels each feature was tracked (rectified
images are 1199 x 768 pixels in size). The results shown are
for approximately 500 key-frames over a distance traveled
of nearly 4 meters.
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Fig. 3: Probability density function of the absolute distance
each feature is tracked in the right stereo rectified camera.
The width of the bins is 50 pixels.

By tracking points across many frames, an observation
of its coordinate in each of the images is obtained. This is
useful for sparse bundle adjustment [12] — see section IV-
C. After each 25 key-frames, a sparse bundle adjustment of
the previous 50 frames is implemented, which optimizes all
left camera poses and scene point coordinates. Finally, for
the pipe datasets described in section V, the final processing
step is a sparse bundle adjustment of all camera poses and
scene point coordinates.

B. Initial change in pose estimate between frames

The change in pose () between the left rectified key-frames
is obtained using the Efficient Perspective-n-Points (EPnP)
algorithm [15]. It solves the change in pose () using a set
of scene point coordinates, X; in the first left verged frame,
and their corresponding homogeneous coordinates u; in the
second left rectified frame, and are related by (12). EPnP
is implemented within a RANSAC framework [17], using
subsets of 25 randomly sampled correspondences.

Ideally, both the left and right observations u; and u,
should be used to estimate the change in pose ). Therefore,
a non-linear refinement of the change in pose () using both
the left and right observations in the second frame is used.
Using (12) and (13), the estimated coordinates @ and 1,
in the second stereo pair can be obtained for a given scene
point X; and estimate of (). We seek the non-linear estimate
of @ = [§R|0t] which minimizes the error

€@ = D@ —u)’+ D@ —u)?  (14)
where the summation is taken over all n correspondences,
and where D is the geometric distance between homoge-
neous coordinates.

C. Sparse Bundle Adjustment

As mentioned, Sparse Bundle Adjustment (SBA) [12] is
used in an attempt to find an optimal estimate of all the left
rectified camera poses and scene point coordinates X defined
in a global coordinate frame.

The reprojected coordinate of a scene point X in the left
and right rectified images of camera k can be found. Denote
these coordinates 1, 4, and 1, 4. Since we also have their
observed coordinates u;, 4 and u,, 4, the reprojection errors
can be measured. If the error uncertainty of the observed
positions is isotropic Gaussian, the maximum likelihood
estimate of the camera poses and scene coordinates are the
ones which minimize the sum of squared reprojection errors

Z ZD<ﬁlkg - ulk9)2 + D(ﬁrkg - uTkg)za (15)

kg

where the inner summation is taken over all scene points g
observed in camera k. SBA is the process of minimizing this
sum of squared reprojection errors. Since the process is non-
linear, we use Levenberg-Marquardt, and cannot guarantee a
globally optimal solution.

V. EXPERIMENTS, RESULTS & DISCUSSION
A. Carbon Steel Pipe

The stereo system has been developed for mapping carbon
steel pipes used in the LNG industry. We obtained two
datasets, run 1 and run 2, each including approximately
4000 stereo images pairs captured by the stereo camera as it
traversed through a 4 meter long, 16 inch diameter carbon
steel pipe. Figure 1 shows the positioning of the stereo
camera within the pipe. For both run 1 and run 2, the camera
first moved forwards down the length of the pipe, and then
backwards to the same starting position. There were 971 key-
frames for run 1, and 956 key-frames for run 2.

The results for both run 1 and run 2 are shown in figure 4.
The blue lines show the path of the camera when moving
forward, the red lines the path when moving in reverse, and
the green dots the reconstructed 3D scene points. The black
crosses are the reconstructed scene points associated with
manually augmented marks on the pipe. These marks are
located at the start and end of the pipe, on the uppermost
surface, and whose image coordinates in the images were
manually selected.

To make a quantitative assessment of accuracy, the recon-
structed coordinates of the manually augmented marks in
the pipe were used. At the start position, the reconstructed
coordinate of the first mark is X,. When the camera reaches
the end of the pipe, the reconstructed coordinate of the
second mark is X;. After moving backwards to the start of
the pipe, the second estimate of the first mark is X.. Note
that all marks are defined in the global coordinate frame (the
first left camera is at the origin of this frame). The distances
between these points are

dpwd = |[Xa — Xo|| (16)
drev = HXb - X(‘H (17)
dend: HXa_XcH (18)

The ground truth distance df,q = dre, is the precisely
measured distance between the marks, and the ground truth
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Fig. 4: Visual odometry results for the pipe datasets. The
blue and red lines are, respectively, the camera path moving
forward and in reverse. The green dots are the reconstructed
scene points, and the black marks are the reconstructed
coordinates of manually augmented marks on the pipe which
are used as ground truth. All results have been rotated into
a coordinate system similar to that used in [7].

distance d.,q is zero. Table I compares the ground truth
distance to those obtained using the visual odometry esti-
mates. The absolute percentage errors reported for d.,q are
calculated as the error d.,q divided by the total absolute
distance traveled, dywq + drev. The results show that the
absolute percentage errors are all below 0.1%, and are
relatively repeatable for both runs.

TABLE I: Results for the two pipe datasets. All distances
have units of millimeters.

’ Dataset | Distance G,l{;);rﬁd O(;:;;lll:t]ry Abs. Error
dfwd 3689.83 | 3690.035 | 0.205 (0.0056%)
Run 1 drev 3689.83 | 3690.096 | 0.266 (0.0072%)
dend 0.000 6.566 6.566 (0.0890%)
dfwd 3689.83 | 3686.319 | 3.511 (0.0952%)
Run 2 drev 3689.83 | 3686.341 | 3.489 (0.0946%)
dend 0.00 1.717 1.717 (0.0233%)

As outlined in the introduction, our goal is to produce
appearance maps of the internal surface of LNG pipes.
However, we only achieve a very sparse scene reconstruction
using the visual odometry algorithm — there are approx-
imately 50,000 reconstructed scene points for each pipe
dataset. The number of points could be increased by de-
tecting and tracking more image features. This significantly
increases computational cost, especially when implementing
sparse bundle adjustment. As an alternative, we use our initial
camera pose estimates, and a dense stereo reconstruction of
all key-frame pairs, to produce a dense reconstruction of the
internal pipe surface.

Figure 5 illustrates the appearance map generated for a
small segment of the forward run of the first pipe dataset.

The appearance map contains a dense 3D point cloud, and
a color associated with each of these points. At present we
use a block matching dense stereo algorithm which searches
for dense stereo correspondences, strictly along epipolar
lines, using sum of absolute differences. We have found this
method to provide results comparable to more sophisticated
algorithms such as graph cuts, but is much faster.

(a) Colorized point cloud.

(b) A closeup view of the dense 3D structure.

Fig. 5: A small segment of the appearance map produced
for the forward trajectory of the first pipe dataset. The
appearance map includes the 3D structure of the internal
pipe surface, and a color associated with each scene point.
The camera poses were found using the visual odometry
algorithm described in sections III and IV.

B. Road

The target application of our system is the appearance
mapping of the large pipe networks found in LNG processing
facilities. As we currently only have access to a 4 meter
length of pipe, we have collected a supplementary dataset to
test the long-range accuracy of our system.

Referring to figure 6, the stereo camera was mounted
downward facing on the side of a mobile robot. Over 10,000
stereo image pairs were logged as the robot moved in excess
of 30 meters in a near straight line. Some example rectified
stereo image pairs are shown in figure 7. The rectified pair in
the bottom row of this figure show the brick pavers viewed
when the robot traveled over a large speed bump towards the
end of the dataset. The visual odometry results for a small
segment of dataset are illustrated in figure 8. The change
in elevation (z axis) occurred when the robot moved over
the large speed bump. A full sparse bundle adjustment of all
camera poses and scene points was not implemented due to
the size of the dataset.

Ground truth measurements of differential distance trav-
eled were measured using a laser distance sensor mounted on
a tripod — the reported sensor accuracy is £1.5 millimeters.
These measurements are compared to the visual odometry
estimates in table II. The visual odometry estimates are the
Euclidean distance between camera centers associated with
the key-frames when the sensor readings were taken.



Fig. 6: The stereo camera mounted on a mobile robot (left),
and the length of road used for dataset collection (right).

A

Fig. 7: Two sample stereo rectified images from the road
dataset. The top row shows the road surface, and the bottom
row shows the brick pavers on the speed bump.
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Fig. 8: The visual odometry results for a small section of
the road dataset. The red line is the path of the left camera
center, and the green dots are the sparse reconstructed scene
points. The change in elevation (z axis) occurred when the
robot moved over a large speed bump.

TABLE II: Results for the road dataset using the optimized
calibration. All distances have units of millimeters.

Ground Visual
Measurement Truth Odometry Abs. Error
dy 10588.682 | 10551.729 | 36.953 (0.349%)
da 18317.680 | 18226.751 | 90.929 (0.496%)
ds 30483.033 | 30226.617 | 256.416 (0.841%)

Although the percentage errors for distance traveled are
larger than those for the pipe datasets, they are still less
than 1%. The road dataset presented additional challenges
which were not encountered in the pipe datasets, and this
may explain the increased percentage errors. They include

greater lighting variations and specularites resulting from a
non-polarized natural light source, and greater depth discon-
tinuities in the scene resulting in occlusions in the images.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we presented a stereo-based visual odometry
algorithm for pipe inspection. The algorithm was evaluated
and tested on real datasets inside a pipe, and further validated
on a long outdoor run under a very closed range. Our results
show that stereo vision can be a very suitable sensor for
the task of pipe inspection. The ability to acquire detailed
3D maps of the interior surface of the pipe is of high
value in such inspection tasks. In the future, we plan to
further validate the algorithm in complex pipe networks, with
varying pipe diameters and sharp turns. Furthermore, we
would like to investigate more accurate and efficient methods
to represent the internal surface of the pipe, with possibly
making use of some known “rough” topology of the surface.
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