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Abstract—This article presents the current state of an
ongoing work on Human-Robot interaction in which two
partners collaborate during an object hand-over interaction.
The manipulator control is based on the Dynamic Movement
Primitives model, specialized for the object hand-over context.
The proposed modifications enable finer control of the dynamic
of the DMP to align it to human control strategies, where
the contributions of the feedforward and feedback parts of
the control are different to the original DMP formulation.
Furthermore, the proposed scheme handles moving goals. With
these two modifications, the model no longer requires an explicit
estimation of the exchange position and it can generate motion
purely reactively to the instantaneous position of the human
hand. The quality of the control system is evaluated through
an extensive comparison with ground truth data related to the
object interaction between two humans acquired in the context
of the European project CogLaboration which envisages an
application in an industrial setting.

I. INTRODUCTION

Passing an object between people is a commonly per-
formed action that increases productivity by efficiently shar-
ing the work load. Recently, the importance of a robotic
assistant which can support an object handover has been
advocated [1]. This Human-Robot collaboration is the core
of the European project CogLaboration in which we are de-
veloping a service robot that is optimized for natural Human-
Robot object hand-over interactions, based on observations
of Human-Human collaboration.

Whilst the majority of existing studies on object hand-over
define the passer or receiver as initiating and leading the task
(e.g. [5]; [10]; [13]), object hand-over is more accurately
described as a fluid interaction with both passer and receiver
taking progressively the lead.

In rare or specific cases, the passer might offer an object
at a specific location, with the receiver moving the arm to
this position to fetch the object. In other cases, the receiver
might request an object at a fixed location, forcing the passer
to place the object in the receivers hand. In real object
hand-over, pairs of participants usually avoid either extreme,
and instead fluidly negotiate the hand-over involving some
overlap in the movements of the two partners.

Thus, a mixture of feedforward and feedback control,
respectively guided by and leading the person, is required to
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coordinate the passer and receiver hands in time and space
for successful object hand-over.

The feedforward part of the control system needs some
prior information about the type of movement to perform,
and this can be effectively handled by using learning by
demonstration techniques. There is a broad range of such
methods for learning robot motions from human demon-
stration, either through motion capture data or by actually
driving the robot by hand. They often involve statistical
modeling to extract the essence of a given task from a series
of demonstrations, as is the case of [9] where Hidden Markov
Models are used to learn to recognize and reproduce full
body motions by observing a human through a monocular
camera. Similarly, [2] presents an approach which uses
Principal Component Analysis, Gaussian Mixture Models
and Gaussian Mixture Regression to extract the meaningful
characteristics of a task amongst several demonstrations, and
to be able to reproduce it in different contexts.

The use of dynamical system for synthesizing robot mo-
tions has been gaining popularity, with works such as the one
presented in [8], where an approach to guarantee obstacle
avoidance is presented for controllers based on dynamical
systems. The flexibility and robustness provided by the use
of dynamical systems to control the robot motions make
them a perfect candidate to use in learning motions by
demonstration, as exemplified by the widely known Dynamic
Movement Primitives (DMP) technique. This method, ini-
tially introduced in [7], proposes to base the robot movement
on a simple second order linear system and learn an arbitrary
non-linear forcing term which stimulates this system to fol-
low the demonstrated trajectory. Several lines of work have
spun from this technique, with some of the most interesting
ones working on using the DMP based learning to bootstrap
reinforcement learning methods, as shown in [15] and [3].

In this paper, a specialization of the DMP technique for
object hand-over, already presented in [12], is benchmarked
by using a collection of motion capture sequences of two
humans exchanging an object in different configurations
related to an industrial context. For each configuration, the
performance of the system is repeatedly evaluated by training
the desired motion with one movement sequence and testing
the system responses to the rest of the samples in the
same configuration, using the information of the human
motion as the ground truth. Given the high sensitivity of
the proposed method with respect to the specific trajectory
used for learning, further tests are performed with learning
not from a specific sequence but from the mean of all the
sequences, which greatly improves the system outcome.
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The paper starts by describing the base DMP formulation
and the modifications proposed by the authors. Section III
then describes the details of the proposed benchmark and the
results obtained when applying the modified DMP technique
to the available dataset. Finally conclusions and potential
future lines of work are described in Section IV.

II. DYNAMIC MOVEMENT PRIMITIVES
A. Generic Framework

The Dynamic Movement Primitives (DMP) framework can
be used to learn a trajectory from a single reference sample.
It can then be reproduced and optionally adapted to different
configurations. This is achieved by using a second order
linear dynamical system (i.e. a damped spring-like model)
which is stimulated with a non-linear forcing term.

Let x(¢) denote a one-dimensional trajectory starting at
x(to) = xo and ending at x(ty) = g. The DMP model to
reproduce such a trajectory can be expressed using the
following transformation system:

T\'/sK(f(sS)+xox>+(ls)K(gx)Dv (la)

TX="V (1b)

with the forcing term f representing an arbitrary non-linear
function as a sum of weighted exponential basis functions:

_ L vils)wi 2
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and:
vi(s) :exp(fh,-(sfc,-)z). 3)

The exponential evolution from 1 to 0 of the phase variable s
is determined by the following decoupled linear system,
called the canonical system:

TS = —as 4)

The phase variable is used to remove the direct time de-
pendency of the forcing term f(s), thus making the system
time-scalable by adjusting the parameter 7.

The system can be interpreted as two attractor fields with

a damping term:

e K(g—x) is an attractor towards the goal position (from
now on referred to as the goal-attractor). This term is
the one that ensures convergence towards the desired
position.

« K (f (s) —+Xo —x) represents an attractor towards the

s
moving point @ +xg (the shape-attractor). This term
encapsulates the learned trajectory and stimulates the

system to mimic this trajectory.

Each of these attractor fields is weighed according to the
evolution of the phase variable: the shape-attractor is pre-
dominant at the beginning of the movement, when s ~ 1;
while the goal-attractor becomes predominant towards the
end of the movement, as s — 0.

When considering multi-dimensional trajectories, either
the complete system above needs to be replicated, or, as

proposed in [6], a common canonical system can be used
for all dimensions, with specific transformation systems for
each dimension. In our experiments, we use the latter case.

B. Limitations of the state of the art model

Despite the fact that the generic framework provides great
learning and motion reproduction capabilities, we consider
that it presents some drawbacks in the specific application
we are considering.

The Human-Robot collaboration through object hand-over
requires producing a human-friendly and fluent robot motion.
A first step in this direction is to start the robot motion as
soon as the human partner has signaled, verbally or non-
verbally, the desire for a hand-over, without waiting for the
human to reach at the exchange location. In most cases, this
requires an estimation of the exchange location, as proposed
in [14]. Nevertheless, in spite of such estimation, performing
a successful exchange still requires a feedback mechanism to
update the motion and ensure that the two partners converge
towards the same exchange position.

The DMP model already has such a feedback mechanism,
the goal-attractor. Furthermore, this feedback should not
affect the system at the beginning of the trajectory, so we
can avoid the initial estimation step all-together and set the
DMP goal directly to the position of the moving hand of the
human partner.

However, as we have shown in [12], the use of the phase
variable as weight makes the goal-attractor active way be-
fore the human hand has reached the exchange location, thus
greatly disturbing the reproduction of the learned behavior.

In order to fit with human behavior [4], we proposed
to change the weights of the two components of the DMP
system, to obtain a predominantly feedforward control policy
at an earlier phase of the motion (not disturbed by the
goal-attractor) and a predominantly visual feedback control
towards the end of the motion, as the visual cues for the
exchange position become more precise.

C. Specialization for human robot object exchange

To permit a flexible control of the transition between
shape- and goal-attractor dominance, we propose to de-
couple the weights applied to each of the terms in the
transformation system from the phase variable. Instead of
weighting each component directly with the phase variable,
an arbitrary function of the phase variable can be used
to compute the desired weights. This function enables to
flexibly set when the transition occurs.

w=(1-we)(f +x0—x) +weK(g—x)=Dv  (5a)
X=v (5b)
TS = —as, (50)
where f,,(s) is now defined as:
L Wi(s)wi
wls) = "N+ (6)
= i)

A sigmoid function, similar to the Cumulative Distribution
Function (CDF) of the normal distribution, is chosen as the
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weighing function w,(¢). This function has the advantage of
relying on two parameters which intuitively determine when
the shift will occur (the mean p of the normal distribution)
and the duration of the transition (the standard deviation o
of the distribution). The expression of this function is,
substituting the dependency on s for dependency on time:

Wwe(t) = 0.5 [1 Yerf <t“>] , )
ov2
where erf stands for the Gauss error function.

Fig. 1 shows how the parameters of the weighing function
influence the transition between the two attractors. The black
curve is the reference trajectory learned by the DMP system.
This learned trajectory is then reproduced with an altered
goal using three different values of the mean parameter u
of the weighing function. As can be seen, a larger u delays
the response to an altered goal, which is clearly observable
by the time difference in the resulting trajectories diverging
from the reference trajectory.

By using the Decoupled DMP formulation proposed in (5),
the moment where the change of goal affects the output of
the DMP algorithm can be adjusted.

Compared to the regular use of the DMP in which the
goal is constant or varies rarely, our application involves a
constantly moving goal (the human partner hand). We thus
propose a second modification of the model by adding a
velocity feedback term to the transformation system:

v = (1 —wg)(fiw +x0—x) +we[K(g—x) + K, 8] —Dv (8)

The velocity term permits to take the target motion direction
into consideration in the feedback controller and thus it can
provide a smoother behavior and convergence. The model
described in (8) will be the one evaluated in Section III.

D. Trajectory learning

The learning procedure requires setting the parameters:

¢ K and D involve the inherent dynamics of the second-
order linear system, and determine its response to online
changes in the goal.

O K] [ [k i)
tfs]

Fig. 1: Decoupled DMP with different values of u and o =
0.05.

o t is the time constant and should be set to the duration
of the sample trajectory ¢ =t —t.

o o determines the decay rate of the phase variable. It
should be chosen so that s — 0 at t = 7 in order to
ensure convergence towards the goal.

Once these values are set (according to the application
needs), the next step is to compute the desired values for
the forcing term, by isolating it from (8):

1
I —w,

(tv—we[K(g—x)|+Dv)+x—x0. (9)

and then inserting the values of the sample trajectory x = x(¢),
v = 1i(t) and v = 7x(r). With these desired values for the
forcing term, the appropriate centers and widths of the basis
exponentials in (3) can be set, and the weights w; can be
computed by fitting the right hand terms in (6) and (9). We
are currently using a technique based on Sparse Bayesian
Models and the Relevance Vector Machine as described
in [16]. This method allows to perform a sparse regression,
where a function can be fitted using only a few basis
functions out of a large pool of basis function candidates.

IIT. COMPARISON WITH THE COGLABORATION
HUMAN MOTION CAPTURE DATA

A. Database description

The previously introduced approach has been compared to
the human behavior observed during Human-Human object
exchange. This section describes the data acquisition proce-
dure.

The experiment was conducted using pairs of participants
replicating the industrial setting presented in [11] with the
following three configurations (see Fig. 2):

« working in the engine bay,

« lying under a car,

« working under a hydraulic lift.

In the experiment, one person took the role of a me-
chanic (P1) while the other person took the role of an
assistant (P2). For our simulations the cognitive controller
replaces P2 and the simulated trajectory in response to the
motion of P1 will be evaluated with respect to the real motion
generated by P2 as the ground-truth.

A single trial consisted of the following actions:

o P2 picks up a tool from a table and hands it over to P1.

« P1 simulates performing a prescribed tool usage (tap-
ping a load cell) using the given object.

« PI returns the object to P2.

Each trial in the Human-Human experiment therefore
consisted of two object hand-overs exchanges and they were
separately analyzed; one for P1 receiving the object and the
other for P2 retrieving the object. The first exchange was
defined from the time when P2 lifted the object to when the
object was fully handed over to P1. The second exchange
began when P2 started moving to retrieve the object from
P1, following the prescribed tool usage action, and finished
when P2 touched the object in the hand of P1. The task
was repeated 5 times per configuration, giving a total of 15
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(a) (b) (©

(d)

Fig. 2: Postural configurations for the car mechanic scenario;
(a) in the engine bay, (b) lying under a car, and (c) under a
hydraulic lift. The person shown here illustrates the reference
positions in which P1, the mechanic is placed. P2, whose
position will be taken by the robot, is the assistant standing
next to the car for an interaction similar to the one in (d). An
illustration of motion tracking data of the object hand-overs
are presented in (e).

trials. A 12-camera Oqus motion-tracking system (Qualisys,
Sweden) tracked light-weight spherical markers, at 200Hz,
placed on the right arms of both participants to record the
position and orientation of the arms during the object hand-
over. For the purpose of the current study, only the wrist
positions of the two participants were analyzed.

B. Database preparation

The current evaluation is focused on the reaching motion
towards the exchange location. The human wrist motion is
used to define the reference trajectory for the robotic wrist in
Cartesian space. The orientation of the end effector as well as
the robot’s redundant DoF are to be handled independently
based on other constraints yet to be determined (e.g. specific
orientation constraints may apply for some types of container
objects). The end effector orientation constraints may affect
the feasibility of the Cartesian trajectory, but this will only
happen in the vicinity of the robot’s workspace boundaries
or at kinematic singularities, where some position/orientation
configurations are not reachable. As long as the trajectory
stays well within these limits it should be possible to set
the Cartesian position and orientation of the end effector
independently without the two sets of constraints interfering.

For each task configuration, five motion capture traces
similar to the ones presented on Fig. 3 have been considered.
Each trace provides two exchange interactions:

o Give: P2 gives the object to P1 (first exchange).
o Take: P2 takes the object back from Pl (second ex-
change).

As shown in Fig. 3, the three Cartesian dimensions are
considered separately. The orientation of the coordinate
system in this case was fixed to the workspace with the Z-
axis pointing opposite to gravity, the X- and Y-axis pointing
along the length and width of the imaginary car, roughly to
the front and towards the left of P1, respectively. The position
displayed is always related to the partners wrist 3D position.

As mentioned in section II-A, if each dimension has its
own transformation system, the canonical system is common
for all dimensions (the transition time between the feed
forward and feedback control is the same in the three
dimensions).

From Fig. 3, we can notice that in some cases the motion
of P1 (red lines) is really limited (in particular in the Give
exchange, first gray zone), as his hand was already at the
desired exchange location when P2 started moving. This is
due to the fact that in some cases, the passer P2 starts by
picking up the object from a remote site and thus the receiver
arrives at the exchange location earlier. This is not the case
in the Take exchange (Fig. 3, second gray zone), however.

The evaluation procedure is systematic: for the Give and
Take cases, each sequence of P2 (green curves) was consecu-
tively used as reference for the trajectory learning through the
mechanism presented in section II-D. The learned behavior
was then used to simulate a response behavior to each Pl
movement as defined by the five trials of P1 data traces
(red curves) of a single task configuration. The resulting
simulated movements were compared with the observed
motion capture trace that P2 performed in the corresponding
experiment trial (green curves). In this comparison, for each
configuration, five object hand-over trials were considered for
the performance evaluation (we also compared the behavior
of the cognitive controller against the same sequence used
for learning).

C. Selected Samples

Fig. 4, 5 and 6 illustrate the type of data obtained during
this analysis. These figures are related to the gray shaded
areas in Fig. 3, showing the X,Y and Z wrist traces as
a function of time. The red trajectory (labeled observed)
corresponds to the motion capture trace for P1. The motion
generated by our decoupled DMP algorithm, labeled DMP is
represented with the blue colored line. This trajectory is to
be compared with the observed motion capture trace for P2,
shown in green line and labeled compare.

In all these three figures, the left column of panels corre-
sponds to the replication of the training data trace that was
learned by the decoupled DMP. The right column presents
how this learned behavior responds to a P1 movement trace
from another trial in our data set.

On the left column, where the cognitive controller re-
sponded to the same stimulation that produced the reference
trajectory that has been learned, the two sequences (compare
and DMP) do not overlap precisely. On the initial part of
the motion, where the shape-attractor is predominant, the
difference is due to the number of Gaussian functions used
in (6) to learn the trajectory. The deviation observed in the
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Fig. 3: A sequence of the wrist trajectories in the three configurations across time: (a) Engine bay; (b) Lying under car; (c)
Hydraulic lift. The red and green lines refer to the movements of P1 and P2, respectively. The highlighted areas are periods

of the Give and Take exchanges.

later part of the motion may result from two reasons. On one
hand, during the learning procedure, the dynamics of the ob-
servation were not considered. Therefore, only the trajectory
of P2 was used, and the goal was set to the ending point of
this reference trajectory. During the online reproduction, the
goal was set to the current observed position of P1 (offset
according to the two reference end points to fill the gap).
Furthermore, as proposed in Section II-C, during the feed-
back phase the dynamics of the observation were explicitly
compensated by the velocity-dependent control term. This is
visibly demonstrated on the Z-axis in Fig. 4 around time 1.0.
The simulated DMP movement trace (blue line) follows the
shape of the P1 trace (red lines) since the goal-attractor is
predominant. This suggests that during the feedback phase,
the human adaptation to the perceived motion is not as strong
as expected, at least when the perception does not diverge
too far from the scheduled behavior.

Fig. 4, 5 and 6 clearly show that the simulated motion
(blue curves) presents a similar shape to the ground-truth
data presented in green. The DMP model nicely adapts to
motion variations of the observation (red curve), as it can be
seen in particular on the X and Z dimensions of Fig. 5 and 6.
The analysis of the Y dimension of Fig. 6 demonstrates the
great variability of the human behavior during hand-over
interactions: both P1 and P2 motions differ in a significant
manner in the two presented sequences. Despite of these
differences, the DMP model succeeds in converging towards
the exchange location, with a trajectory consistent with the
learned model.

D. Statistical analysis

To evaluate the proposed model, a statistical analysis
was carried out to compare similarities between the real
and simulated trajectories. In order to focus on the spatial
relationship between the paired trajectories, the data were
first normalized in time.

Each one of the five trials per configuration was separated
into the constituent Give and Take exchanges and used to
train a decoupled DMP controller which was then used to
respond to five recorded P1 trajectories, giving a total of 25
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Fig. 4: In engine bay configuration, P2 gives to P1. Sequence
#1 learned (left), compared with sequence #2 (right)

combinations per configuration.

For each configuration, we computed the average and
standard deviation (o) of the trajectories to test how the
simulated trajectories fell within the natural variability of
the recorded P2 trajectories.

Fig. 7 to 9 present the average and standard deviations of
the time-normalized trajectories in each configuration. The
left column shows trajectories during the Give exchange, and
the right column shows those during the Take exchange. The
blue lines represent the mean trajectory of the respective
configuration. The dark shaded regions show the 1o distance
to the mean at each data point, and the lighter shaded regions
indicate the 30 boundary. The green lines correspond to the
generated trajectories that remain inside the 30 boundary the
whole time, while the red curves are the generated motions
that go out of this 3¢ boundary for at least one iteration.

The simulation of the Give exchange in the Engine bay
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Fig. 6: Hydraulic lift configuration, P2 takes from P1. Se-  changes
quence #1 learned (left), compared with sequence #3 (right)

is difficult to judge how such a deviation affects the user’s
configuration (see Fig. 7) performed worst in this evaluation ~ perception of exchange fluency.
which is likely due to the small variability in the observed hu- The Take exchange of the Engine bay configuration
man movement sequences; around time 0.4, the 30 envelope  presents statistically much better results on all three di-
is narrower than 4 cm on the X axis. These “bottlenecks” in  mensions. Most of the rejected trajectories were obtained
the envelopes are assumed to be probabilistic artifacts due to  using sequence #5 as training sequence. A closer inspection
the small number of available test trajectories. Similarly, on  indicated that the Z-axis trajectory of sample #5, very similar
the Y dimension, the “authorized distance” to the mean is to a heavy-side transition observed in the other samples,
also quite narrow between t=0.4 and 0.7. At that time, even  presented a transition slope that was much higher than the
if the rejected curves are at most 20 cm away from the mean,  others, and it was not a representative trajectory.
one can see that the dynamic of the generated trajectory is On the lying under car Give exchange, almost all the
similar to the sample trajectories. These cases will need to  rejected curves (16 of 18) were seen in the X dimension. In
be evaluated based on qualitative feedback from users as it  this configuration, a narrow boundary around time 0.85 is the
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Fig. 9: Hydraulic lift configuration, Give & Take exchanges

reason behind the statistical rejection of those curves, despite
the fact that they were less deviated than 5 cm from the mean
trajectory. On the other hand, the simulated trajectories were
much more satisfactory for the other dimensions.

On the hydraulic lift Give exchange, the reference se-
quences #1 and #5 produced 14 of the 16 rejections, mainly
on the X and Z axes (in a quite narrow boundary, with a
30 of respectively less than 10 and 5 cm). The rest of the
trajectories were quite close to the observed mean trajectory.

As already stated, this systematic study considered the
behavior of the controller irrespective of the quality of
the training trajectory. As such, the result could indeed be
improved by selectively choosing the most representative
reference trajectory for the training. This is demonstrated
in the next section.

E. Learning a mean behavior

Since the result of the DMP controller is very dependent
on the trajectory that is used for learning, an additional set
of simulations was carried out using the mean trajectories of
each case as an input to the learning system. The information
provided on Fig. 10, 11 and 12 follows the same procedure
as in the previous section, considering that now only one
trajectory is learned per case.

As expected, these drawings show an improved perfor-
mance of the decoupled DMP controller when using a mean
trajectory as reference. Similarly to the previous observation,
trajectory rejection is mainly due to the narrow band-width of
the o envelope (see X dimension of Engine-Give on Fig. 10,
X dimensions on Fig. 11 and X dimension of Hydraulic-Take
on Fig. 12), as well as the too strong dependency on the
varying goal in the feedback mode that is produced in some
situations (like on the Y and Z dimension of Engine-Give
on Fig. 10, the X dimension of UnderCar-Give on Fig. 11
and the Z dimension of Hydraulic-Give on Fig. 12).

Fig. 10: Engine bay configuration, Give & Take exchanges,
mean behavior learned

Table I summarizes the performance of the decoupled
DMP controller for the three configurations and the two
exchange directions by listing the percentage of trajectories
respectively inside the 10, 20 and 3¢ envelopes. It can be
noted that some of the configurations in the Learn mean
case give slightly worse results than the ones obtained when
learning individual trajectories. However, the difference is
so small that it cannot be considered statistically significant,
given the scarcity of the available samples in the Learn mean
with respect to the Learn single set. Furthermore, the last row
demonstrates that with higher confidence the overall quality
is increased when the model used the mean trajectory as
reference.

IV. CONCLUSIONS

We have presented an analysis of a modified DMP model,
specialized for the Human-Robot collaboration through ob-
ject hand-over. Our model enables explicit control of the
transition between the feedforward and feedback parts of
the system, and takes moving goals into consideration. Its
quality has been studied by comparing its behavior with the
ground truth data of object hand-over between two humans.

The model studied in this paper is currently being im-
plemented on a robotic platform consisting of a Kuka
Lightweight Robot and a Kinect sensor. The DMP model
with the proposed variations is used to generate on-line
Cartesian motions for the robot’s wrist, based on the feed-
back provided by a fusion of different tracking algorithms
which provide the human hand position. Additional orienta-
tion constraints are added to the Cartesian position command
by using priority-based inverse kinematics, and the resulting
joint velocity command is then fed to the robot controller
through an on-line interpolation system. The current imple-
mentation is focused on the reaching motion, and preliminary
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trials with the project team show promising results. Extensive
testing with naive participants will be carried out in the
context of the CogLaboration project to perform a qualitative
and quantitative evaluation.
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Engine bay

1.3% 9.3%
10.7% | 41.3%
52.0% | 80.0%

0.0% 20.0%
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86.6% | 93.3%

Under car
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86.7% | 93.3%

Hydraulic lift

8.0% 24.0%
52.0% | 77.3%
78.7% | 92.0%
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86.7% | 93.3%
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TABLE I: Distances to the mean for the generated curves
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