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Abstract— For VSLAM (Visual Simultaneous Localization
and Mapping), localization is a challenging task, especially for
some challenging situations: textureless frames, motion blur,
etc.. To build a robust exploration and localization system in a
given space or environment, a submap-based VSLAM system
is proposed in this paper. Our system uses a submap back-end
and a visual front-end. The main advantage of our system is its
robustness with respect to tracking failure, a common problem
in current VSLAM algorithms. The robustness of our system is
compared with the state-of-the-art in terms of average tracking
percentage. The precision of our system is also evaluated in
terms of ATE (absolute trajectory error) RMSE (root mean
square error) comparing the state-of-the-art. The ability of our
system in solving the “kidnapped” problem is demonstrated.
Our system can improve the robustness of visual localization
in challenging situations.

Keywords: Monocular VSLAM, Keyframe-based,
Submap-based Back-end

I. INTRODUCTION

Many robot applications require a mobile robot to ex-
plore an unknown environment and construct its model.
Environment exploration with vision is popularly studied
in robotics via VSLAM. However, the explored space in
this study is given and limited. In many scenarios, we are
able to explore a certain space repeatedly, especially for
the indoor applications. We refer to such an exploration as
“dense exploration” in this paper.

For the keyframe-based VSLAM systems, reconstruction
of the environment model with known poses is not difficult,
and neither is the problem of localization in a known
map. However, resolving both the environment model and
localization of the robot at the same time is extremely
difficult, and has been a focus of robotics research for over 20
years. In the case of indoor VSLAM, there are a number of
challenges such as textureless walls, motion blurred frames
and illumination changes [1]. Even given enough time, the
existing VSLAM systems [2][3][4] do not work all the time,
since they rely on a back-end with a single graph and are
unable to maintain working continuously. In contrast, by
using multiple subgraphs, it is much easier for the robot
to maintain tracking in one of the local subgraphs than in a
global graph.

∗ The work in this paper is supported by the National Natural Science
Foundation of China (61603103, 61673125), the Natural Science Foundation
of Guangdong of China (2016A030310293), and the Major Scientific and
Technological Special Project of Guangdong of China (2016B090910003).

Instead of a single graph, a multiple submap graph is used
for robustness improvement in this study. Submap-based
graph is an approach that represents a complete environment
using multiple subgraphs, which has been studied for some
time [5][6][7]. Also, the merging of submaps is a key
problem in submap-based systems, and many related studies
have been proposed [8][9][10]. As a VSLAM system, we try
to merge the submaps using place recognition [11][12] in the
front-end and a robust optimization [13][14] in the back-end.

A submap-based VSLAM system is introduced in this
paper. A pose-graph containing multiple submaps is built and
maintained. To work with such a back-end, a multi-constraint
front-end is designed and introduced. As evaluated by the
experiments, our system can improve the robustness and has
a better precision than the state-of-the-art. In addition, the
ability of solving the “kidnapped” problem with the map
built by our system is demonstrated.

The paper is organized as follows. Section II presents the
overview of the whole system, including the framework and
the basic idea. Section III details the front-end, including the
tracking and place recognition. Section IV, a submap-based
back-end is proposed. Section V introduces other details
and the implementation of our system. Section VI provides
an evaluation and discussion of our system. Section VII
concludes and summaries the paper.

II. SYSTEM OVERVIEW

The framework of our system is shown in Fig. 1, where
the red boxes are the inputs/outputs and the green boxes are
the decisions (the same representations will be applied to all
the flow charts in this paper).

As a VSLAM system, it can be divided into two parts:
the front-end and the back-end. To get an optimized perfor-
mance of the dense exploration, a multi-constraint front-end
and a submap-based back-end is proposed to improve the
robustness and reliability.

The basic idea of the front-end is: for a new keyframe, we
try to build an edge set using place recognition and tracking,
and update the pose-graph for optimization. After receiving
a new frame, if the system has been initialized (the last
keyframe is not empty), we select the keyframe and store
it; if not, we take the frame as the first keyframe directly.

For a keyframe, we try to build two types of constraints:
“tracking edges” from the last keyframe and “loop-closure
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Fig. 1: Framework of our system

edges” from the place recognition module. With these con-
straints, an optimization can be found to calculate the pose
of the new keyframe. To calculate the constraint, a feature-
based method is applied to find the relative pose between
two frames, and a visual BoW (Bag-of-Word) approach is
used for place recognition. The details of the front-end will
be introduced in Section III.

As for the back-end, a pose-graph is built and maintained.
Once no edge can be established for a new keyframe, a
new submap is built and we try to maintain tracking in
that submap. Such a mechanism keeps the system “alive”
even after tracking lost happens. We merge the submaps by
using the loop-closure edges, and the switchable factors are
added to those loop-closure edges to improve the robustness
of submap merging. In Section IV, the back-end will be
detailed. The illustration of submap maintaining and opti-
mization is shown in Fig. 6.

In addition, an exploration end-condition is proposed
to prevent infinite exploration, which takes the density of
vertices into consideration. By the multi-constraint front-
end and submap-based back-end, the robustness of visual
exploration is improved, and the robust visual localization is
achieved by the map built with our proposed end-condition.

III. MULTI-CONSTRAINT FRONT-END

In the front-end, a graph is built with camera poses, track-
ing edges and loop-closure edges by VO (visual odometry).
To calculate the constraints between the frames, a straight
feature-based tracking method is designed, and a strict con-
dition is performed to reject the low quality edges. As for
place recognition, an image global descriptor is extracted
and applied for image matching. For submap merging, a lax
condition is executed to add more loop-closure edges to the
graph. An example is shown in Fig. 2. By considering more
keyframes for localization in Multi-constraint Front-end, the
robustness can be improved.

Fig. 2: An example of multi-constraint front-end, where the
blue arrow is the tracking edge from the last keyframe to the
current frame, and the red arrows are the loop-closure edges
connected to the place recognition results.

A. Keyframe selection

As a keyframe-based VSLAM system, we select the
keyframes from the image sequence. There are three con-
ditions for inserting keyframes:

(1) The normal of the relative transformation between the
current frame and the last keyframe should be larger than a
given threshold, which means the current image is different
from the last keyframe spatially.

(2) The distance between the global descriptor of the
current frame and the last keyframe should be larger than
a given value to reject the frames that are too similar to the
last keyframe in appearance.

(3) When neither tracking edge nor loop-closure edge can
be established for a frame, the frame is “lost”, this frame is
treated as the first keyframe of a new submap.

The role of the first condition is similar to that of the
second condition. However, considering the normalization
of the translation in the relative pose calculation, the image
similarity (represented by the distance of global descriptor)
is considered in the second condition.

To maintain the possibility of a dense reconstruction after
exploration, and meet the requirement of global descriptor
extraction, a complete image is saved in each keyframe.
Some common information of a keyframe (keypoints, index,
pose, etc.) and an edge set is built to store all the constraints.

B. Tracking

The tracking edge is the relative pose between the cur-
rent frame and the last keyframe. We calculate the relative
pose through a two-frames feature-based pipeline: feature
detection, feature matching, fundamental matrix finding and
essential matrix decomposing. In addition, a verification is
designed to reject a low quality result.

A feature detection method similar to [15] is used, a grid
is place on an image during feature detection, for an even
feature distribution. The FAST detector and ORB descriptor
are selected for their efficiency. Also, RANSAC [16] is



applied to fundamental matrix finding and essential matrix
decomposing, and the size of inlier features s is recorded.
The pipeline is illustrated in Fig. 3.

To improve the precision of tracking edges added to the
graph, that is solved by calculating a homography matrix
and a fundamental matrix simultaneously as in [15], we
set a strict condition with respect to s to accept the high
quality result only. If s is large enough, the constraint is
accepted; otherwise, the constraint is rejected and no tracking
edge is established. However, thanks to the design of multi-
constraint front-end and submap-based back-end, the system
still updates the graph even if no tracking constraint can be
built.

Fig. 3: Pipeline of the constraint building between two frames

C. Place Recognition

Loop-closure edges are established by place recognition,
which finds the places that have been visited before. A global
descriptor of each frame is extracted by the DBoW2 [12]
descriptor. To decrease the computation time and increase the
frame rate, the place recognition results are simply obtained
by ranking the distance of global descriptors between the
current frame and all the existing keyframes. Only the
keyframes that are “far enough from the current frame” are
considered, which means a distance between the index of
current frame and the place recognition results is required.

After global descriptor matching, we pick the first k
matching results as the potential loop closures, and all of
them are sent to loop closure verification before inserting
the constraints as a set of new edges for the new keyframe.
For the loop closure verification, we do the same thing as
is mentioned in the last subsection: matching the features
and calculating s to verify the loop closure candidates.
However, a lax condition with respect to s is executed for
adding more loop-closure edges to the graph to increase the
possibility of submap merging, instead of a strict condition
while establishing tracking edges.

As is known, the relative pose between two the monocular
visual observations has an unknown scale. Therefore, we
store more than one matching result of place recognition and
build multiple constraints for a new frame. By least-square
optimization, the estimation error caused by the different
unknown scales can be iteratively minimized. This idea will
be explained with a “spring model” in the Section IV.

IV. SUBMAP-BASED BACK-END

After keyframe insertion and constraint calculation, a
pose-graph is built. To overcome the tracking failure and
get a robust performance, a submap-based graph is built.

We optimize the vertex poses and merge the submaps
using the tracking edges and loop-closure edges with a

weighted information matrix, and the switchable factors close
the outlier loop-closure edges during optimization. The basic
idea of submap-based graph is illustrated in Fig. 4.

Fig. 4: The basic idea of submap-based graph. Three
submaps (red nodes, blue nodes and green nodes) are built
within a global graph, the solid arrows are the tracking
edges within a submap, the black dotted arrows are the loop-
closure edges for submap merging, and the switchable factors
(yellow nodes) are added to all the loop-closure edges.

A. Definition

The vertex representing a camera pose is defined as a
SE(3) matrix, and the switchable factor added to the loop-
closure edges is represented as a float value. As for the
constraints between the vertices, two types of constraints are
established and optimized: tracking edges and loop-closure
edges. The edge is also represented as a SE(3) matrix.

For optimization, a least-square optimization is performed
to minimize the error of all the edges, which means we
optimize the whole graph every time instead of a sliding
window optimization. Even though global optimization is
time-consuming, it is required for submap merging. For
decreasing the error of the edges with an unknown scale,
we build multiple non-scale edges for a vertex. The graph is
represented as a “spring model [17]”, as is illustrated in Fig.
5.

Even the edge has an unknown scale in terms of the trans-
lation, it gives a constraint in the heading of the translation,
which can be treated as a direction of the force of springs.
If the vertex has more than one edge, it can be considered to
be pulled by many springs from different directions, and the
pose of the vertex can be obtained when the spring forces are
balanced after optimization. Also, the scale of all the edges
will be aligned after optimization.

Fig. 5: Spring model [18]



B. Approach

In the front-end, when a frame is lost, which means its
edge set is empty, we take this frame as the first keyframe of
a new submap and try to maintain tracking in this submap.
The first vertex of a new submap is placed at the origin
and it is not fixed. This approach makes the system update
the graph all the time: maintaining tracking in the current
submap or building a new submap. With respect to the
back-end, a new submap is equal to an independent set of
vertices and edges, as is shown in Fig. 4. The back-end
containing multiple submaps is called submap-based back-
end, the pipeline of the approach is illustrated in Fig. 6.

Fig. 6: Back-end pipeline

Within a submap, an estimation is given to the vertex
using a motion model. The estimation is calculated from
the relative pose and the last keyframe pose tracked in the
same submap. We always try to track the frame in the
current submap, and the tracking calculation is a two views
geometry. With such a tracking strategy, despite lost frames,
our system is able to work without the information of the
existing graph.

The weighted information matrix of an edge is set accord-
ing to the number of inlier feature correspondences s and the
total number of detected features, the information matrix is
set by the formula 1,

Ξ=


1

1
1

Ω
Ω

Ω

 (1)

where Ω=s/n • 100, and n is the total number of detected
features. Such an information matrix makes the intensity of
the translation terms in a “spring model” weak.

For submap merging, we build loop-closure edges between
the vertices in the different submap. The loop-closure edges
align the submaps after optimization. However, submap
merging by place recognition only is fragile. Therefore, the
switchable factors are added to the loop-closure edges. By
a lax condition, many loop-closure edges are added, even
though the correctness is not guaranteed. However, with the
switchable factors, the loop-closure edges that cannot fit the
global consistency well are closed, such a strategy is similar
to the reference [15], which adds vertices laxly and executes
a “culling” to remove the outliers. The vertices that have no
edge or whose edges are all closed are discarded.

However, even after vertex discarding, a large number of
vertices and edges are inserted after a long time running,
which increases the optimization time consumption. Hence,
an exploration end-condition is designed to stop the explo-
ration and limit the growth of the graph, which will be
introduced in the next section.

V. IMPLEMENTATION

For a complete exploration system, beside the methods
mentioned above, other implementation details are intro-
duced in this section. Also, to prevent an infinite exploration
in a limited space, an end-condition is proposed to stop the
exploration, which depends on the density of vertices. As for
system building, to enhance the reliability of our system, we
applied some mature open sources to our implementation,
such as G2O [19], OpenCV [20] and Eigen [21], which are
reliable.

A. Exploration end-condition

With respect to the growth of the graph, the number of
edges and vertices increases during a dense exploration.
However, no marginalization is performed in our back-end,
to avoid the risk of breaking submap merging. In addition, a
complete environment representation is beneficial to robust
visual localization. Hence, an end-condition is needed to
evaluate the completeness of environment mapping and limit
the growth of graph.

Considering a dense exploration, the vertices in a limited
space become denser and denser. Therefore, the exploration
can be stopped if the vertices are dense enough. Since the
number of loop-closure edges is proportional to the overlap
between the keyframe observations, and the overlap also
increase with the increasing of vertex density. In other words,
when the number of edges (including tracking edges and
loop-closure edges) for a new vertex are big enough, and
such a situation continues for some time, the vertices in a
limited space can be thought to be dense enough. This end-
condition is illustrated in Fig. 7.

Fig. 7: Illustration of the end-condition, red arrow is the new
vertex, blue arrows are the existing vertices, and the black
dotted lines are edges. The left figure: when the existing
vertices are not dense, less edges can be established between
the vertices. Right figure: when the existing vertices become
dense, more edges can be established.

To implement such an end-condition, a threshold in terms
of the size of new edges is set, represented as Te. The edges
and vertices added to the graph after the last optimization



are called new edges and new vertices, the vertices left after
vertex discarding are called active vertices. When the size of
new edges is greater than Te, an optimization is performed
and the size of new active vertices Snv is recorded. If
Snv is not greater than Te/(k + 1) (which means all the
potential loop-closures are accepted and the tracking edge
is established), a counter c plus one. Only when c is large
enough, we stop the exploration and shutdown the system.

B. Relative pose calculation implementation

As is mentioned in Section III, a VO is applied to relative
pose calculation. During feature matching, the minimum
L1 distance md of the correspondences is recorded, and
only the correspondences with a distance in the range of
p ·md are considered, where p is given. For the fundamental
matrix finding, we refine the matrix with the RANSAC inlier
correspondences after the first matrix finding.

C. Optimization implementation

After building a graph, two types of optimization are
found in the system: “free-time optimization” and “regular
optimization”. Since not all the frames are regarded as
keyframes as mentioned in Section III, we optimize the graph
with a bigger iteration time when the front-end is free, and
such an optimization is called “free-time optimization”.

Also, to meet the end-condition mentioned in Section IV,
an optimization triggered by Te is performed and called
“regular optimization”, which has a smaller iteration time.
Such an optimization is required since some vertices may
become inactive when switchable factors closing during
optimization, and the size of active vertices is required by
the end-condition.

VI. EXPERIMENTS

For evaluating the precision and robustness of our system,
two challenging datasets are collected, which contain the
image sequence of dense exploration in our lab captured by
a cheap monocular camera. Also, the GT (Ground Truth) tra-
jectory collected from the Opti-Track motion capture system
is recorded for the precision analysis with ATE RMSE [23].
In addition, it is hard to find the existing datasets meeting our
requirements, which should be a dense exploration process
and the duration should be long enough to meet the end-
condition.

As a popular VSLAM system, ORB-SLAM 2.0 (ab-
breviated as ORB-SLAM in this section) is selected for
comparison, which is also an ORB feature-based VSLAM
system.

Also, another experiment is designed for relocalization
evaluation. We run a part of the dataset for graph building
and keep the graph fixed after meeting the end-condition.
Then we run another part of the dataset for relocalization
evaluation with that fixed graph. Compared with the first
experiment, the input of the relocalization evaluation is a set
of independent images instead of an image sequence. The
experiment is designed to demonstrate the ability of solving

the “kidnapped” problem after dense exploration with our
system.

In the end of this section, we analyse the experimental
results and discuss the system.

A. Evaluation and Comparison

Two dense exploration datasets are collected, the GT
trajectories are shown in Fig. 8 and Fig. 9. We explore a
limited space repeatedly and observe the scene in different
perspectives during datasets collection. The durations of the
datasets are long enough to meet the end-condition.

Fig. 8: Ground truth trajectory of dataset 1

Fig. 9: Ground truth trajectory of dataset 2

Some challenging situations in our collected datasets are
shown in Fig. 10, Fig. 11 and Fig. 12, including the dynamic
objects, textureless walls and floors, and motion blurred
frames, which are typically challenging situations for VS-
LAM.

Since the RMSE performances of those challenging
datasets are unstable, we run 6 times for one dataset to
compare our system with ORB-SLAM. In addition, we find
that the maximum number of detected features in ORB-
SLAM influences its performance, therefore, two parameters
are set and experimented: 1000 and 1500. However, the
maximum number of detected features in our system is
always 500. For a fair evaluation, the duration for meeting



Fig. 10: Dynamic objects

Fig. 11: Motion blurred frames

Fig. 12: Textureless walls and floors

the end-condition is recorded, and ORB-SLAM is run for
the same duration.

Beside the RMSE, the tracking percentage (TP) of ORB-
SLAM is indicated, which equals the tracked frames of ORB-
SLAM divided by the frames of the whole dataset. The
precision comparison and the TP are shown in Tab. I and Tab.
II, where the second and the third columns are the RMSE of
our system and ORB-SLAM, the “Feature Number” is the
feature detection parameter in ORB-SLAM. The results of
our system and ORB-SLAM in the same row are run for the
same duration.

Our system ORB-SLAM Feature Number TP
Test 1 0.615 0.884 1500 31.0%
Test 2 0.602 0.668 1500 21.7%
Test 3 0.696 0.922 1500 78.4%
Test 4 0.737 0.921 1500 71.5%
Test 5 0.593 0.412 1000 10.0%
Test 6 0.697 0.558 1000 18.6%

TABLE I: Precision comparison for dataset 1

Since our system updates the graph all the time, the TP in
our system is always 100%, it is not indicated in the tables.
Instead, the number of submaps, which is proportional to the
number of tracking lost, is recorded. The scatter plots with
respect to the number of submaps and the RMSE are shown

Our system ORB-SLAM Feature Number TP
Test 1 0.457 1.000 1500 63.2%
Test 2 0.468 1.012 1500 48.0%
Test 3 0.432 0.925 1500 46.3%
Test 4 0.341 0.728 1500 26.5%
Test 5 0.408 0.676 1000 19.0%
Test 6 0.503 0.863 1000 18.6%

TABLE II: Precision comparison for dataset 2

in Fig. 13 and Fig. 14. The correlation coefficients of the
samples drawn in Fig. 13 and Fig. 14 are -0.369 and 0.240,
which mean the correlation between the size of submaps and
the RMSE is not significant.

In addition, we pick the tests with the same number of
submaps to evaluate the stability of our system. The average
of the RMSE among the samples is 0.513, and the standard
deviation is 0.046.

To compare the robustness of ORB-SLAM and our system,
beside the TP, we record the number of new keyframes in
ORB-SLAM (with 1500 features) before each lost tracking,
and calculate the average (A-KFs) and the standard devia-
tion (SD-KFs) of that number. Also, the same metrics are
recorded for our system. Beside the A-KFs and SD-KFs, the
average RMSE (A-RMSE) of the tests (6 pairs of tests are run
for each dataset) is shown in the Tab. III and Tab. IV. Even



Fig. 13: Scatter plot of the number of submaps and RMSE
for the first dataset

Fig. 14: Scatter plot of the number of submaps and RMSE
for the second dataset

though our system updates the graph all the time, because of
the keyframe selection conditions and the difference between
the frame rate of our system and the datasets, not all the
frames are considered.

A-RMSE A-KFs SD-KFs
ORB-SLAM 0.708 13.88 2.37
Our system 0.692 1069.20 23.60

TABLE III: Robustness comparison for dataset 1

A-RMSE A-KFs SD-KFs
ORB-SLAM 0.893 33.54 3.04
Our system 0.421 836.80 20.80

TABLE IV: Robustness comparison for dataset 2

B. Relocalization

We divide our collected dataset into two parts for graph
building and relocalization evaluation. 80% of the images
are used for graph building and 20% for “kidnapped” relo-
calization evaluation. These two processes are run in order.

In the relocalization evaluation, the parameter k for place
recognition is set higher than the first experiment for adding

more edges, and other parameters are kept the same. All
the vertices after graph building are set to be fixed, and the
vertices that have been optimized are also set to be fixed. In
addition, no tracking edge is established in this experiment,
since we try to solve a “kidnapped” relocalization problem
whose observation is an independent image instead of an
image sequence.

Two performance metrics are computed: relocalization
precision and tracking percentage. To avoid missing frames
during the evaluation, we play the relocalization dataset in a
low frame rate and remove the keyframe selection conditions,
in order to be able to consider more frames.

The precision is also calculated in terms of ATE RMSE,
and the tracking percentage equals the tracked frames divided
by the considered frames. The experimental results are shown
in Fig. 15, whose tracking percentage is 65.8% and the
RMSE is 0.312 based on a fixed graph with a 0.308 RMSE.

For ORB-SLAM, since no complete trajectory can be
built in our collected dataset, no relocalization evaluation
is performed.

Fig. 15: Result of relocalization and the GT. The red lines
are the difference between the estimated poses and the
correspondent GT poses. The shorter the line, the smaller
the error.

C. Discussion

As shown in Tab. I and Tab. II, in most cases, our system
has a smaller RMSE in both datasets, which is achieved by
the design of our system. Having more edges leads to better
precision after optimization, although the original intention
of the multi-constraint front-end is improving the robustness.
Also, with a high optimization efficiency resulting from the
pose-graph, more optimization iterations can be run. ORB-
SLAM has a smaller RMSE than our system in Test 5 and
Test 6 in the first dataset, which could be due to the low TP
(10% and 18.6%) with a small number of samples in RMSE
calculation.

Since the number of submaps is proportional to the number
of tracking failure, as shown in Fig. 13 and Fig. 14, due to the
submap-based back-end, our system keeps working even if



no edge can be established for that vertex. As the correlation
coefficients and Figs. 13 and 14 shows, the RMSE does not
increase with the increasing of the size of submaps, verifying
the ability to overcome tracking failure and the robustness
of our system.

As is shown in Tab. III and Tab. IV, the A-KFs of ORB-
SLAM is much smaller than our system, since our system
keeps building submaps and updates the global graph all the
time. Also, in terms of precision (A-RMSE), our system is
also better.

For some challenging situations, instead of trying to
maintain tracking with those frames, we just stop building
the current submap and initialize a new submap (even some
submaps are discarded since no frame can be tracked). In our
opinion, lost tracking is a sequential perspective problem,
and the submaps can be tracked in other perspective in
another sequence.

Regarding relocalization, our system obtains a 0.312 ATE
RMSE, as well as a 65.8% tracking. Thanks to the pro-
posed end-condition, we are able to create a topologically
dense map (dense keyframes and complete images in each
keyframe) after exploration. With such a map, even an
observation in a different perspective can be relocalized.
We believe that such a dense map is practical for visual
navigation, and that the dense exploration is possible in most
visual exploration applications.

As for the time consumption, the average frame rate of
our system in the experiment is 3.0 frames per second (the
frame rate while collecting our datasets is 30), which is
lower than the frame rate of ORB-SLAM. Such a low frame
rate is caused by loop-closure detection and verification for
each frame, both taking much time. However, thanks to
our feature-based front-end, whose baseline is allowed to
be wide, tracking is able to continue to operate. Even if a
frame cannot be tracked from the last keyframe, because of
the multiple constraints strategy, the system can still calculate
the frame poses.

With the experimental results and the analysis above,
we have provided evidence for our contributions: a robust
VSLAM system with a submap-based back-end, whose pre-
cision is also improved by a multi-constraint front-end. The
map whose completeness is evaluated by the proposed end-
condition has the ability to localize the frames in different
perspectives.

VII. CONCLUSION

A VSLAM system is proposed in this paper. It is designed
for robust exploration and localization in a limited space. A
submap-based back-end is introduced to improve the robust-
ness. Also, a front-end is designed with place recognition,
building multiple constraints for a frame and adding more
edges to the graph to improve the robustness as well as the
precision. Some challenging datasets are collected to evaluate
our system, and our system has a smaller ATE RMSE and a
more robust performance than the state-of-the-art. Also, the
ability to solve “kidnapped” problem is demonstrated.

In the future, we will design a complete autonomous
exploration system based on this study. The place recognition
module and the relative pose calculation module can be
improved by other alternative approaches, such as CNN
based image matching and deep-feature based tracking, to
further improve the performance of the VSLAM system.
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