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Abstract— This paper introduces a variant of the Singu-
lar Value Decomposition with Phase Transform (SVD-PHAT),
named Difference SVD-PHAT (DSVD-PHAT), to achieve ro-
bust Sound Source Localization (SSL) in noisy conditions.
Experiments are performed on a Baxter robot with a four-
microphone planar array mounted on its head. Results show
that this method offers similar robustness to noise as the state-
of-the-art Multiple Signal Classification based on Generalized
Singular Value Decomposition (GSVD-MUSIC) method, and
considerably reduces the computational load by a factor of
250. This performance gain thus makes DSVD-PHAT appealing
for real-time application on robots with limited on-board
computing power.

I. INTRODUCTION

Robot audition aims to provide robots with hearing ca-
pabilities to interact efficiently with people in everyday
environments [1]. Sound source localization (SSL) is a
typical task that consists of localizing the direction of arrival
(DOA) of a target source using a microphone array. This task
is challenging as the robot usually generates a significant
amount of noise (fans, actuators, etc.) [2] and the target
sound source is corrupted by reverberation. SSL often relies
on Multiple Signal Classification (MUSIC) and Steered-
Response Power Phase Transform (SRP-PHAT) methods.

MUSIC is a localization method based on Standard Eigen-
value Decomposition (SEVD-MUSIC) that was initially used
for narrowband signals [3], and then adapted to broadband
signals like speech [4]. However, SEVD-MUSIC assumes the
speech signal is more powerful than noise at each frequency
bin in the spectrogram, which is usually not the case. To
cope with this limitation, Nakamura et al. introduced the
MUSIC based on Generalized Eigenvalue Decomposition
(GEVD-MUSIC) method [5], [6], [7]. This method solves
the limitation of SEVD-MUSIC, but also introduces some
localization errors because the transform provides a noise
subspace with correlated bases. To deal with this issue, a
variant of GEVD-MUSIC, named MUSIC based on Gen-
eralized Singular Value Decomposition (GSVD-MUSIC),
enforces orthogonality between the noise subspace bases and
thus improves the DOA estimation accuracy [8]. However, all
MUSIC-based methods rely on online eigenvalue or singular
value decompositions that are computationally expensive,
and make on-board real-time processing challenging [9].

SRP-PHAT is built on the Generalized Cross-Correlation
with Phase Transform (GCC-PHAT) between each pair of
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microphones [10]. GCC-PHAT is often computed with the
Inverse Fast Fourier Transform (IFFT) to speed up compu-
tation, at the cost of discretizing Time Difference of Arrival
(TDOA) values, which reduces localization accuracy. SRP-
PHAT usually scans a discretized 3-D space and returns
the most likely DOA [11], [12], [13], [14], [15], [16]. This
scanning process often involves a significant amount of
lookups in memory, which creates a bottleneck and increases
execution time. To reduce the number of lookups, a hierar-
chical search is proposed to speed up the space scan, but
this method still relies on discrete TDOA [17]. We therefore
recently proposed the Singular Value Decomposition with
Phase Transform (SVD-PHAT) method, which avoids TDOA
discretization, and significantly reduces computing time [18].
However, as for SRP-PHAT, SVD-PHAT remains sensitive to
additive noise. To cope with this limitation, time-frequency
(TF) masks can be generated to improve robustness to
stationary noise [19], [20]. Stationary noise is often estimated
with techniques like Minima Controlled Recursive Averaging
(MCRA) [21] and Histogram-based Recursive Level Esti-
mation (HRLE) [22], or recorded offline prior to test if the
robot’s environment is static. Pertilä et al. also propose a
method that generates TF masks using convolutional neural
networks for non-stationary noise sources [23]. However,
these TF masks ignore noise spatial coherence, which carries
useful insights for robust localization, and is in fact exploited
by GSVD-MUSIC.

In this paper, we propose a variant of the SVD-PHAT
method, called Difference SVD-PHAT (DSVD-PHAT), that
performs correlation matrix subtraction, which considers
noise spatial coherence, while preserving the low complexity
of the original SVD-PHAT. Section II reviews the state of
the art GSVD-MUSIC method, and section III introduces
the proposed DSVD-PHAT method. Section IV describes
the experimental setup on a Baxter robot, and then section
V compares results from GSVD-MUSIC and the proposed
DSVD-PHAT approach.

II. GSVD-MUSIC

GSVD-MUSIC relies on the Time Difference of Arrival
(TDOA) between each microphone and a reference in space.
The TDOA (in sec) stands for the propagation delay for
the signal emitted by the sound source DOA sq ∈ {R3 :
‖sq‖2 = 1} (where ‖. . .‖2 stands for the l2-norm) to reach
microphone rm ∈ R3 with respect to the origin. For discrete-
time signals, the TDOA is usually expressed in terms of
samples, as shown in (1), where c ∈ R+ stands for the speed
of sound in air (in m/sec), and fS ∈ R+ is the sample rate
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(in samples/sec). The operator · stands for the dot product.

τq,m =

(
fS
c

)
rm · sq (1)

The expression X l
m[k] ∈ C stands for the Short

Time Fourier Transform coefficient of microphone m ∈
{1, . . . ,M}, at frequency bin k ∈ {0, . . . , N/2} and frame
l ∈ N, where N ∈ N and ∆N ∈ N stand for the frame
and hop sizes in samples, respectively. The STFT values are
concatenated in the vector xl[k] ∈ CM×1, as shown in (2).

xl[k] =
[
X l

1[k] X l
2[k] · · · X l

M [k]
]T

(2)

GSVD-MUSIC uses a steering vector Aq[k] ∈ CM×1 for
each potential DOA sq:

Aq[k] =
[
Aq,1[k] · · · Aq,M [k]

]T
(3)

where Aq,m[k] = exp (−2π
√
−1kτq,m/N).

The CM×M correlation matrix of the vector xl[k] at each
frequency bin k can be estimated at each frame l using the
following recursive approximation, where the parameter α ∈
(0, 1) is the adaptive rate:

Rl
xx[k] = (1− α)Rl−1

xx [k] + αxl[k](xl[k])H (4)

where {. . . }H stands for the Hermitian operator.
The GSVD-MUSIC method performs a generalized singu-

lar value decomposition with respect to the noise correlation
matrix Rl

nn[k] (which can be estimated as in (4) during
silence periods or precomputed offline if the test environment
is known):

(Rl
nn[k])−1Rl

xx[k] = El[k]Λl[k](Fl[k])H (5)

where the diagonal matrix Λl[k] ∈ (R+)M×M holds the
singular values in descending order (λl1[k] > λl2[k] > · · · >
λlM [k]), and El[k] ∈ CM×M and Fl[k] ∈ CM×M are the
left and right singular vectors el

1[k], . . . , el
M [k] ∈ CM×1 and

f l1[k], . . . , f lM [k] ∈ CM×1, respectively:

Λl[k] =

 λl1[k] . . . 0
...

. . .
...

0 . . . λlM [k]

 (6)

El[k] =
[
el

1[k], . . . , el
M [k]

]
(7)

Fl[k] =
[
f l1[k], . . . , f lM [k]

]
(8)

This method projects the steering vector Aq[k] in the noise
subspace, spanned by the singular vectors el

m[k] ∀ m ∈
{2, 3, . . . ,M} (when there is only one target source). The
inverse of the projections for each frequency bin k is summed
over the full spectrum (which may also be restricted to a
more specific range of frequency bins [8]):

P l
q =

N/2∑
k=0

(
M∑

m=2

‖(Aq[k])Hel
m[k]‖2

)−1

(9)

The sound source DOA then corresponds to sq̄l , where:

q̄l = arg max
q

{P l
q} (10)

GSVD-MUSIC involves (N/2+1) singular value decom-
positions of M ×M matrices per frame, as shown in (5),
which is challenging from a computing point of view for
real-time applications. Moreover, it also involves computing
(9) for Q potential sources, which also implies a significant
amount of computations. The proposed DSVD-PHAT aims
to reduce the amount of computations, while preserving a
similar robustness to noise.

III. DSVD-PHAT

DSVD-PHAT relies on the TDOA between each pair of
microphones i and j (as opposed to (1), where the TDOA
is between a microphone and to the origin), which leads to
the following expression, for a total of P = M(M − 1)/2
pairs:

τq,i,j =
fS
c

(rj − ri) · sq (11)

Since noise and speech sources are independent, it is
reasonable to assume that the clean speech correlation matrix
Rl

ss can be estimated from the difference between the noisy
speech and the noise correlation matrices at each frame l, as
proposed in [24]:

Rl
ss[k] ≈ Rl

xx[k]−Rl
nn[k] (12)

The normalized cross-spectra in DSVD-PHAT at each
frequency bin k are thus obtained as follows, where (. . . )i,j
refers to the element in the ith row and jth column:

X l
i,j [k] =

(Rl
ss[k])i,j

‖(Rl
ss[k])i,j‖2

(13)

Note how DSVD-PHAT differs from the original SVD-
PHAT, as the latter uses directly the noisy correlation matrix
(e.g. Rl

xx[k] replaces Rl
ss[k] in (12)).

We then define the vector X ∈ CP (N/2+1)×1 to concate-
nate all normalized cross-spectra introduced in (13):

Xl =
[
X l

1,2[0] X l
1,2[1] · · · X l

M−1,M [N/2]
]T

(14)

The matrix W ∈ CQ×P (N/2+1) holds all the SRP-PHAT
coefficients Wq,i,j [k] = exp (2π

√
−1kτq,i,j/N) :

W =

 W1,1,2[0] W1,1,2[1] · · · W1,M−1,M [N/2]
...

...
. . .

...
WQ,1,2[0] WQ,1,2[1] · · · WQ,M−1,M [N/2]


(15)

The vector Yl ∈ RQ×1 stores the SRP-PHAT energy for
all Q potential DOAs, where <{. . . } extracts the real part
of the expression:

Yl =
[
Y l

1 . . . Y l
Q

]T
= <{WXl} (16)

The sound source DOA corresponds to sq̄l , where:

q̄l = arg max
q

{Y l
q } (17)

Computing Y l
q for all values of q is expensive, and there-

fore SVD-PHAT provides a more efficient way of finding
q̄l. The Singular Value Decomposition is first performed



on the W matrix, where U ∈ CQ×K , S ∈ CK×K and
V ∈ CP (N/2+1)×K :

W ≈ USVH (18)

The parameter K ∈ {1, 2, . . . ,Kmax} (where Kmax =
max{Q,P (N/2 + 1)}) satisfies the condition in (19), which
ensures accurate reconstruction of W, where δ ∈ (0, 1)
is a user-defined small value that stands for the tolerable
reconstruction error. The operator Tr{. . . } represents the
trace of the matrix.

Tr {SST } ≥ (1− δ) Tr {WWH} (19)

The vector Zl ∈ CK×1 results from the projection of the
observations Xl in the K-dimensions subspace:

Zl = VHXl (20)

Similarly, the matrix D ∈ CQ×K holds a set of Q vectors
Dq ∈ C1×K :

D = US =
[

DT
1 DT

2 . . . DT
Q

]T
(21)

The optimization in (17) can then be converted to a nearest
neighbor problem:

q̄l = arg min
q
{‖D̂q − (Ẑl)H‖22} (22)

where D̂q = Dq/‖D‖2 and Ẑq = Zq/‖Z‖2. A k-d tree then
solves efficiently this nearest neighbor search problem. The
corresponding amplitude for the optimal DOA at index q̄l
corresponds to:

Y l
q̄l

= Wq̄lX
l (23)

where Wq̄l stands for the q̄l-th row of W.
Both GSVD-MUSIC and DSVD-PHAT rely on SVD de-

compositions, but DSVD-PHAT computes them offline. The
online processing only involves the projection in (20) and the
k-d tree search, which is appealing for real-time processing.

IV. EXPERIMENTAL SETUP

The GSVD-MUSIC and DSVD-PHAT methods are evalu-
ated for a Baxter robot setup, equipped with a 4-microphone
ReSpeaker1 array mounted on its head, as shown in Fig. 1.

To compare both methods with a wide range of condi-
tions, we perform simulations to evaluate numerous room
configurations and signal-to-noise ratios (SNRs). Noise from
Baxter’s fans is therefore recorded and then mixed with male
and female speech utterances from the TIMIT dataset [25],
convolved with simulated Room Impulse Responses (RIRs)
and amplified with various gains. The room impulse response
(RIR) corresponds to the impulse response obtained with
the image method [26] between the microphone array and
the target sound sources, both positioned randomly in a
10m x 10m x 3m room. For each pair of SNR and room
reverberation time RT60, we generate 100 RIRs and use the
same number of speech sources picked randomly from the
TIMIT dataset.

1http://seeedstudio.io

Fig. 1. Baxter robot equipped with a 4-microphone ReSpeaker array
mounted on its head (microphones are circled in red)

TABLE I
GSVD-MUSIC AND GSVD-PHAT PARAMETERS

fS c M N ∆N Q α δ

16000 343.0 4 256 128 1282 0.05 10−5

The parameters for the experiments are summarized in
Table I. The sample rate fS captures all the frequency content
of speech, and the speed of sound c corresponds to typical
indoor conditions. The frame size N analyzes segments of 16
msecs, and the hop size ∆N provides a 50% overlap. The
potential DOAs are represented by equidistant points on a
unit halfsphere generated recursively from a tetrahedron, for
a total of 1282 points, as in [17]. The smoothing parameter
α provides a context of roughly 800 msecs to estimate
the correlation matrices, which captures multiple phonemes.
The parameter δ is set to the value found in [18], which
ensures a good accuracy. For this array configuration, the
dimensionality of the subspace corresponds to K = 23 with
δ = 10−5.

Table II lists the positions of the ReSpeaker array micro-
phones (in cm) w.r.t. to the center of the array.

TABLE II
POSITIONS (X,Y,Z) OF THE MICROPHONES IN CM

m x y z

1 +2.9 0.0 +2.9

2 +2.9 0.0 −2.9

3 −2.9 0.0 +2.9

4 −2.9 0.0 −2.9

In all experiments, the noise correlation matrix comes from
the offline recording of the robot’s fans. This ensures we
compare both methods independently of the performance of
the online background noise estimation method.



V. RESULTS
To get some intuition about the SSL with GSVD-MUSIC

and DSVD-PHAT, we first analyze an example of a speech
utterance with a SNR of 5 dB and a reverberation level
of RT60 = 400 msecs, shown in Fig. 2. The spectrogram
in Fig. 2a displays the speech signal, corrupted by some
stationary noise between 2500Hz and 5000Hz. Fig. 2b shows
the DOAs obtained from GSVD-MUSIC, with the true DOA
represented by straigh lines. This example demonstrates that,
in this specific case, GSVD-MUSIC estimates many DOAs
that differ from the theoretical DOA. Similarly, Fig. 2c
displays the DOAs obtained from DSVD-PHAT for the same
noisy signal. Here the estimated DOAs are closer to the
theoretical DOA.

(a) Spectrogram of the signal captured at microphone 1.

(b) Circles represent the sq̄l found with GSVD-MUSIC, and lines stand for
the theoretical DOA. The x-, y-, z-coordinates are represented by blue, red
and green colors, respectively.

(c) Circles represent the sq̄l found with DSVD-PHAT, and lines stand for
the theoretical DOA. The x-, y-, z-coordinates are represented by blue, red
and green colors, respectively.

Fig. 2. SSL with GSVD-MUSIC and DSVD-PHAT when RT60 = 400
msecs and SNR = 5 dB.

It is also convenient to define the expression θl ∈ [0, π/2]
to denote the angle difference between the estimated DOA
sql at frame l (obtained using GSVD-MUSIC or DSVD-
PHAT), and the theoretical DOA strue extracted from the
simulated room parameters:

θl = arccos {sql · strue} (24)

Let us define the margin ∆θ ∈ [0, π/2], that corresponds
to the DOA error tolerance for a localized source to be
considered as a valid DOA. In this section, we arbitrary
define the tolerance to ∆θ = 0.2 radians, which corresponds
to 11.5◦. Expression Θl takes a value of 1 when the localized
sound source is within the range, or 0 otherwise:

Θl =

{
1 θl ≤ ∆θ

0 θl > ∆θ
(25)

Similarly, the expression el corresponds to the observation
amplitude (el = P l

ql
for GSVD-MUSIC from (9), and el =

Y l
ql

from (23) for DSVD-PHAT). This metric is relevant as it
is often assumed that the confidence in the DOA sq̄l depends
on the associated amplitude of el [16], [17]. Therefore, a
DOA is considered as a positive when the amplitude el
equals or exceeds the fixed threshold Tmin, and as a negative
otherwise:

El =

{
1 el ≥ Tmin

0 el < Tmin

(26)

Fig. 3 illustrates the angle difference of the DOAs es-
timated previously with both methods, and also displays
the associated amplitudes. Note that for DSVD-PHAT in
particular, the amplitude goes down when the value of θ
gets outside the acceptable range, which suggests that a
well-tuned Tmin could discriminate between accurate and
inaccurate estimated DOAs.

To measure the performance of both methods, we vary the
value of Tmin and compute the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN). A TP occurs when the amplitude is greater or equal
to the threshold, and the measured DOA falls within the
acceptable range of the theoretical DOA:

TP =

L∑
l=0

Θlel (27)

Similarly, a TN happens when a DOA out of the acceptable
range is rejected as its associated amplitude is below the fixed
threshold:

TN =

L∑
l=0

(1−Θl)(1− el) (28)

Finally, FP and FN occur when an erroneous DOA is
picked and when a valid DOA is rejected, respectively:

FP =

L∑
l=0

(1−Θl)el (29)

FN =

L∑
l=0

Θl(1− el) (30)

The True Positive Rate (TPR) and False Positive Rate
(FPR) then correspond to (31) and (32), respectively, and
are used to build the ROC curve.

TPR =
TP

TP + FN
(31)



(a) Angle difference θl for GSVD-MUSIC (blue) and ∆θ threshold (red).

(b) Amplitude el = P l
q̄l

for GSVD-MUSIC.

(c) Angle difference θl for DSVD-PHAT (blue) and ∆θ threshold (red).

(d) Amplitude el = Y l
q̄l

for DSVD-PHAT.

Fig. 3. Comparisons between GSVD-MUSIC and DSVD-PHAT methods.

FPR =
FP

FP + TN
(32)

Fig. 4 shows both ROC curves with GSVD-MUSIC and
DSVD-PHAT for the previous example. In this case, the
DSVD-PHAT surpasses the GSVD-MUSIC results as the
Area Under the Curve (AUC) is clearly closer to 1.

Table III shows the AUC results for SNRs ∈
{−10,−5, . . . , 20} dB and RT60 ∈ {200, 400, 600, 800}
msecs. In general, GSVD-MUSIC generates higher AUC
values for cases when the SNR is below 0dB. However,
the DSVD-PHAT still provides AUC values close to GSVD-
MUSIC, which demonstrates that the proposed method also
allows accurate DOA estimation under reverberant and noisy
conditions. Moreover, the proposed DSVD-PHAT approach

Fig. 4. ROC curves for GSVD-MUSIC (blue) and DSVD-PHAT (red).

provides better results for all scenarios where the SNR is
greater or equal to 5 dB, at all reverberation levels.

TABLE III
AUC OF THE ROC CURVES

SNR (dB) RT60 (msec) GSVD-MUSIC DSVD-PHAT

−10

200 0.68 0.64

400 0.55 0.49

600 0.52 0.47

800 0.51 0.45

−5

200 0.77 0.75

400 0.66 0.62

600 0.59 0.55

800 0.52 0.53

0

200 0.84 0.84

400 0.70 0.71

600 0.66 0.65

800 0.63 0.64

5

200 0.87 0.91

400 0.73 0.76

600 0.71 0.74

800 0.64 0.64

10

200 0.93 0.95

400 0.76 0.84

600 0.71 0.77

800 0.64 0.69

15

200 0.93 0.98

400 0.80 0.86

600 0.73 0.80

800 0.66 0.69

20

200 0.95 0.99

400 0.76 0.84

600 0.70 0.71

800 0.64 0.65

Both methods are compared in terms of the execution
times per frame. These methods run in the MATLAB
environment, and their implementation relies mostly on
vectorization to speed up processing. The hardware used



consists of an Intel Xeon CPU E5-1620 clocked at 3.70GHz.
Table IV shows the average execution time per frame. This
demonstrates the significant efficiency gain with DSVD-
PHAT that avoids the expensive online SVD computations, as
it runs approximately 250 times faster than GSVD-MUSIC.
In this experiment, with ∆N/fS = 8 msecs between each
frame, GSVD-MUSIC requires roughly 300% of the actual
computing resources to achieve real-time, whereas DSVD-
PHAT easily meets real-time requirements by using only 1%
of the computing power.

TABLE IV
EXECUTION TIME PER FRAME

Method GSVD-MUSIC DSVD-PHAT

Time (msecs) 23.3 0.093

VI. CONCLUSION
This paper introduces a variant of the SVD-PHAT method

to improve noise robustness. Results demonstrate that the
proposed method performs similarly to the state of the art
GSVD-MUSIC technique, but runs approximately 250 times
faster. This makes DSVD-PHAT appealing for localization
on robots with limited on-board computing power.

In future work, we will investigate multiple sound source
localization with the proposed DSVD-PHAT method. More-
over, DSVD-PHAT could be incorporated to existing SSL
frameworks such as HARK2 [27] and ODAS3 [17].

REFERENCES

[1] H. G. Okuno, T. Ogata, K. Komatani, and K. Nakadai, “Computational
auditory scene analysis and its application to robot audition,” in
Proceedings of the International Conference on Informatics Research
for Development of Knowledge Society Infrastructure. IEEE, 2004,
pp. 73–80.

[2] G. Ince, K. Nakadai, T. Rodemann, H. Tsujino, and J.-I. Imura,
“Robust ego noise suppression of a robot,” in Proceedings of the
International Conference on Industrial, Engineering and Other Ap-
plications of Applied Intelligent Systems. Springer, 2010, pp. 62–71.

[3] R. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE transactions on antennas and propagation, vol. 34, no. 3,
pp. 276–280, 1986.

[4] C. Ishi, O. Chatot, H. Ishiguro, and N. Hagita, “Evaluation of a
MUSIC-based real-time sound localization of multiple sound sources
in real noisy environments,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2009, pp. 2027–
2032.

[5] K. Nakamura, K. Nakadai, F. Asano, Y. Hasegawa, and H. Tsujino,
“Intelligent sound source localization for dynamic environments,” in
Proceedings of the IEEE/RSJ international conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 664–669.

[6] K. Nakamura, K. Nakadai, F. Asano, and G. Ince, “Intelligent sound
source localization and its application to multimodal human tracking,”
in Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2011, pp. 143–148.

[7] K. Nakadai, G. Ince, K. Nakamura, and H. Nakajima, “Robot audition
for dynamic environments,” in Proceedings of the IEEE International
Conference on Signal Processing, Communication and Computing.
IEEE, 2012, pp. 125–130.

[8] K. Nakamura, K. Nakadai, and G. Ince, “Real-time super-resolution
sound source localization for robots,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012, pp.
694–699.

2http://hark.jp
3http://odas.io

[9] T. Ohata, K. Nakamura, T. Mizumoto, T. Taiki, and K. Nakadai,
“Improvement in outdoor sound source detection using a quadrotor-
embedded microphone array,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE, 2014,
pp. 1902–1907.

[10] M. Brandstein and H. Silverman, “A robust method for speech signal
time-delay estimation in reverberant rooms,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing,
vol. 1. IEEE, 1997, pp. 375–378.

[11] J.-M. Valin, F. Michaud, J. Rouat, and D. Létourneau, “Robust sound
source localization using a microphone array on a mobile robot,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 2. IEEE, 2003, pp. 1228–1233.

[12] J.-M. Valin, F. Michaud, B. Hadjou, and J. Rouat, “Localization
of simultaneous moving sound sources for mobile robot using a
frequency-domain steered beamformer approach,” in Proceedings of
the IEEE International Conference on Robotics and Automation,
vol. 1. IEEE, 2004, pp. 1033–1038.

[13] J.-M. Valin, F. Michaud, and J. Rouat, “Robust 3D localization and
tracking of sound sources using beamforming and particle filtering,”
in Proceedings of the IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings, vol. 4. IEEE, 2006, pp.
841–844.

[14] ——, “Robust localization and tracking of simultaneous moving
sound sources using beamforming and particle filtering,” Robotics and
Autonomous Systems, vol. 55, no. 3, pp. 216–228, 2007.

[15] A. Badali, J.-M. Valin, F. Michaud, and P. Aarabi, “Evaluating real-
time audio localization algorithms for artificial audition in robotics,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 2033–2038.

[16] F. Grondin, D. Létourneau, F. Ferland, V. Rousseau, and F. Michaud,
“The ManyEars open framework,” Autonomous Robots, vol. 34, no. 3,
pp. 217–232, 2013.

[17] F. Grondin and F. Michaud, “Lightweight and optimized sound source
localization and tracking methods for open and closed microphone
array configurations,” Robotics and Autonomous Systems, vol. 113,
pp. 63–80, 2019.

[18] F. Grondin and J. Glass, “SVD-PHAT: A fast sound source localization
method,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signals Processing, 2019.

[19] F. Grondin and F. Michaud, “Time difference of arrival estimation
based on binary frequency mask for sound source localization on mo-
bile robots,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2015, pp. 6149–6154.

[20] ——, “Noise mask for tdoa sound source localization of speech on
mobile robots in noisy environments,” in Proceedings of the IEEE
International Conference on Robotics and Automation. IEEE, 2016,
pp. 4530–4535.

[21] I. Cohen and B. Berdugo, “Noise estimation by minima controlled
recursive averaging for robust speech enhancement,” IEEE signal
processing letters, vol. 9, no. 1, pp. 12–15, 2002.

[22] H. Nakajima, G. Ince, K. Nakadai, and Y. Hasegawa, “An easily-
configurable robot audition system using histogram-based recursive
level estimation,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. IEEE, 2010, pp. 958–963.
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