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Abstract— We envision a system that concisely describes the
rules of air traffic control, assists human operators and supports
dense autonomous air traffic around commercial airports. We
develop a method to learn the rules of air traffic control from
real data as a cost function via maximum entropy inverse
reinforcement learning. This cost function is used as a penalty
for a search-based motion planning method that discretizes both
the control and the state space. We illustrate the methodology
by showing that our approach can learn to imitate the airport
arrival routes and separation rules of dense commercial air
traffic. The resulting trajectories are shown to be safe, feasible,
and efficient.

I. INTRODUCTION

Air traffic controllers (ATC) must follow a complex set
of regulations, including requirements on spacing between
airplanes, weather restrictions, and airport-specific departure
and arrival protocols. Additionally, experienced ATCs often
formulate strategies that balance various demands that arise
from the complex interplay between these factors. The de-
mand for ATC services, which are already stretched thin,
will further increase due to the rapid progress in the field of
aerial robotics.

We tackle the problem of building an Autonomous ATC
that could significantly reduce the load on the human op-
erators. In particular, we envision a system that concisely
describes the rules of air traffic control and supports dense
autonomous air traffic around commercial airports. There
are several key challenges in building such an autonomous
system. First, there are various deterministic and stochastic
variables, such as traffic density, weather, regulatory re-
quirements, and local geography. Often, there are multiple
compliant ways, that can be qualitatively very different, to
route air traffic. While a human operator can seamlessly opti-
mize across these factors, it is not clear how an algorithmic
system should weigh and jointly optimize across all these
different criteria to mimic the choices of the human ATC.
Secondly, most of the existing ATC services are developed
for standard fixed-wing aircraft and helicopters. It is not clear
how the current ATC system should be extended to novel
aerial vehicles, such as micro UAVs and VTOL vehicles,
which might have completely different dynamic behavior.
Finally, from the algorithmic point of view, such a planning
task requires optimization across multiple dynamic agents,
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which quickly becomes intractable as the number of vehicles
increases.

Our novel approach combines search-based motion plan-
ning and inverse reinforcement leaning to address these
challenges. The key technical insight is that, given a planner,
we can learn a reward function that an ATC might be
optimizing by leveraging aircraft traces available via the U.S.
Federal Aviation Administration’s Aircraft Situation Display
to Industry feed. In particular, we learn the parameters of the
reward function that correspond to how different factors are
considered for trajectory selection.

The resulting trajectories attempt to imitate real air-traffic
and are shown to be safe and feasible. The learned cost
functions are interpretable and can be compared to existing
standard procedures. Additionally, the decoupling between
the planner and the reward functions means that we can
change the dynamics to those of a new aircraft or aerial robot
and the system can adjust without retraining. Further, lever-
aging robotic path-planners also helps with computational
challenges and eliminates the need for directly learning a
control policy.

A. Autonomous Air Traffic Control

There are significant efforts to redesign the air traffic
control system to enable autonomous decision making. One
popular research direction is focused on conflict resolution
to prevent vehicles from entering unsafe states. For example,
[1] aims to quantify the complexity of the current air traffic
situation and provides a scheme for distributed control that
ensures safety and eliminates the possibility of collisions.
[2] develops a Markov Decision Process-based system for
resolving conflicts in flight plans. There has been a signif-
icant thrust in the development of air traffic simulators and
interactive systems for experiments with control algorithms
and human factors. [3] describes a simulator developed by
NASA and an example of a reinforcement learning approach
for an airplane’s greedy optimization of arrival times. Rather
than manually designing a reactive system that eliminates
conflicts, we seek to learn how to generate feasible trajecto-
ries for open-loop control in dense air traffic.

B. Control using Artificial Potential Fields

In mobile robot navigation, the penalty on unsafe states
can be formalized as a spatial potential field. The artificial
potential field is a popular method for efficient obstacle
avoidance behaviors [4]. First, a potential field is generated
based on known obstacles, and then the gradient of this
potential field determines the direction of motion. One major
drawback is the lack of guarantees for arrival at the origin
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or obstacle avoidance. Getting stuck in local minima of the
potential functions is a risk [4]. The evolutionary artificial
potential function method has also been used for real-time
robot path planning in the presence of dynamic obstacles [5].

Potential functions have been used extensively to model
air traffic. [6] proposes a potential-field based system that
can encode the effects of factors such as weather and air
traffic density to manage en-route traffic. [7] focuses on
the problem of re-routing of air traffic due to weather by
generating potential functions and addresses the problems of
local minima.

These works use heuristics to avoid local minima in
the potential field. They also neglect the problem of path
planning in dense airspace around airports immediately prior
to landing. We follow the approach of [8], which uses an
artificial potential function as a penalty so that an optimal
planner avoids potentially unsafe states. We extend this ap-
proach to the Dubins Airplane model and learn the potential
function.

C. Learning from Demonstrations

Inverse reinforcement learning is the problem of using
expert demonstrations to learn the reward function that an
expert is maximizing. This reward function can then be
used to determine a controller that imitates the trajectories
of the expert. Approaches such as behavior cloning [9]
seek to directly find a mapping from states to experts’
actions, but this may generalize poorly to new situations.
Other approaches include maximum margin planning [10]
and feature expectation matching [11], but these suffer from
an ambiguity because one policy can be optimal for many
different reward functions. We apply the maximum entropy
inverse reinforcement learning algorithm described by [12].
This approach has been extended to deep reward functions
and policies [13] and has been used in conjunction with
planning for manipulation tasks [14].

II. PLANNING USING THE DUBINS AIRPLANE MODEL

We model the state of a single airplane using the Dubins
airplane model, a four-dimensional system with a configu-
ration space, S = R3× [−π,π], with s = (x,y,z,φ), where
x, y and z describe the coordinates of the airplane in three-
dimensional Euclidean space, and φ ∈ [−π,π) is the bearing
of the airplane relative to the +x axis [15]. This airplane
model assumes a fixed speed of v in the xy-plane.

The system is controlled through the first derivatives of
altitude and bearing, φ̇ and ż, with control inputs denoted as
uz and uφ , respectively. The system can be described as:

ṡ =


ẋ
ẏ
ż
φ̇

=


vcosφ

vsinφ

uz
uφ

 (1)

This model can be used to plan a trajectory from an initial
state s0 = (x0,y0,z0,φ0) to a given a goal configuration
sg = (xg,yg,zg,φg). This information is given to each airplane
by air traffic control when the airplane approaches an airport.

For example, sg may be the location and orientation of
an assigned runway. We assume that these assignments are
provided prior to planning. The problem of planning a safe,
minimum-length trajectory from the current state of the
airplane to the goal can be formalized as follows:

argmin
s(t)

∫ T

t0
‖ṡ(t)‖dt (2)

s.t. ṡ(t) =
(

cosφ ,sinφ ,uz(t),uφ (t)
)

s(t0) = s0,s(T ) = sg

s(t) ∈ Ssa f e,u(t) ∈ U

where Ssa f e is the set of safe states and U is the set of
allowed control inputs. To enable learning the set of safe
states Ssa f e, we can reformulate (2) to use a soft penalty on
possibly unsafe states, following the approach of [8], which
uses hard constraints in addition to a potential function that
guides the planned trajectory farther away from obstacles.
The penalty term, J

(
s(t)
)
, will be learned from data. For

now, we express the new minimum path length planning
problem as:

argmin
s(t)

∫ T

t0

(
1+ J

(
s(t)
))
‖ṡ(t)‖dt (3)

s.t. ṡ(t) =
(

cosφ ,sinφ ,uz(t),uφ (t)
)

s(t0) = s0,s(T ) = sg

u(t) ∈ U

The motion cost of a trajectory, τ : [0,τ]→S, is the sum of
the path length and the line integral of the penalty:

C(τ) =
∫ T

t0

(
1+ J

(
s(t)
))
‖ṡ(t)‖dt. (4)

Solving the motion planning problem (3) requires search-
ing the space of all feasible trajectories. The continuous state
and time problem is intractable, so we follow the approach
of [16] by discretizing the system in time with an interval
of ∆t = 30 seconds. We also discretize the controls to obtain
a set of fixed-time motion primitives. The bearing is chosen
from the set uφ ∈ {−∆φ ,0,∆φ} and the altitude change is
chosen from the set uz ∈ {−∆z,0,∆z}. The motion primitives
induce a discretization of states and enable the use of search-
based motion methods for planning feasible and resolution-
complete solutions [16]. While continuous states are denoted
s ∈ S, we denote the discretized states as s̄ ∈ G, where G is
a 4-dimensional grid, G ⊂ S. The induced discretization has
a resolution of ρ = [ρx,ρy,ρz,ρφ ], so the conversion from s
to s̄ can be expressed using the floor function b c :

s̄ =

[⌊
sx

ρx

⌋
,

⌊
sy

ρy

⌋
,

⌊
sz

ρz

⌋
,

⌊
sφ

ρφ

⌋]
(5)

To solve the discretized problem, we apply the Anytime
Repairing A* (ARA*) algorithm for finite-time path planning
[17]. Please note the ε-suboptimality guarantee for the ARA*
algorithm, which is expressed as:

C(τ∗)≤C(τ)≤ εC(τ∗) (6)



Algorithm 1 Dubins Airplane Heuristic
Input: Start s0, goal sg, forward speed v, max rate of climb
∆z, turning rate ∆φ

Output: Minimum path length from start to goal, dmin

1: Compute Dubins car distance dxy using the LSL, RSR,
LSR, RSL, RLR, LRL paths with curvature κ = ∆φ/v

2: Compute the minimum time from start to goal in the xy
plane

tmin = dxy/v

3: Compute the minimum time for ascent/descent

tz = |zg− z0|/∆z

4: while tz > tmin do
5: Add a helical ascent/descent to the trajectory

tmin = tmin +
2π

∆φ

6: end while
7: Compute the minimum path length from start to goal:

dmin =
√
(v · tmin)2 +(zg− z0)2

where ε ≥ 1 and τ∗ is the optimal path and C(τ∗) is its
cost. The ability to sample suboptimal trajectories allows
us to visit and learn about a larger variety of states dur-
ing inverse reinforcement learning. Given the continuous
trajectory defined by a series control inputs, we then use
trajectory refinement to produce smoother trajectories using
spline interpolation [16].

To use the ARA* algorithm for motion planning for
fixed-wing vehicles, we must use a heuristic that provides
a lower bound on the distance to the goal. For the non-
holonomic Dubins airplane model, there are existing methods
for computing the optimal path length from a start state
to a goal state, but they are expensive to compute and
require the consideration of low-altitude and high-altitude
cases [15]. To simplify this computation, we always assume
the high altitude case, which allows adding a helical descent
or ascent without worrying about collisions with the ground.
Our heuristic may therefore inadmissible, but is much more
computationally efficient. The computation of this heuristic
is summarized in Algorithm 1: First, we use the Dubins car
model to compute the minimum path length from the start
state to the goal state in the xy plane. Following the approach
of [18], to find the shortest length path, we check each of six
types of Dubins Car paths, with each path consisting of three
segments: Right (R), Straight (S) and Left (L) [18]. Then,
we compute the minimum time necessary for the ascent or
descent. Then, if there is not enough time for the airplane to
change altitude, we add helical sections to the trajectory to
allow the airplane to descend in the z dimension and return
to the same position and bearing in the xy plane.

III. LEARNING FROM DEMONSTRATIONS

We assume that the set of safe states S in (2) is unknown.
These conditions may be determined by the layout of the
airspace at an airport, the motion of other airplanes, or
weather. Our goal in this work is to learn about the un-
safe conditions through inverse optimal control. To enable
learning J using gradient descent, we use the soft penalty
formulation in (3).

In order to learn the true penalty J(s), we require a data set
of expert demonstrations, D =

{
se

i (t)
}

i=1,...,M . Although we
do not know the true penalty J(s), we have a current best
estimate, Jθ (s). This cost, Jθ , is a function of non-linear
features f of the state s, defined in Section IV along with
particular examples of cost functions. We parametrize Jθ as
linear in the features of the state f(s):

Jθ (s) = θ
T f(s). (7)

The motion planner can use this estimated Jθ to plan
trajectories satisfying (3). Our next goal is to formulate the
loss function that will allow us to update Jθ using trajectories
from the expert and learner.

We assume that the demonstrated expert trajectories follow
the principal of maximum entropy [19], which states that the
probability of an expert’s trajectory τ with a lower cost is
exponentially more likely to be selected than a trajectory
with a higher cost:

P(τ) ∝ e−C(τ) (8)

Using this assumption, we can apply the maximum entropy
inverse reinforcement learning algorithm described by [12],
and its deep learning counterpart [13]. A detailed comparison
of related works can be found in [14]. This approach seeks
to find the cost function Jθ that maximizes the log likelihood
of expert trajectories D:

L(θ) = logP(D,θ |Jθ ) (9)

If the cost function Jθ is a linear function the features,
this problem is convex. [12] shows that the gradient of
this objective is the difference in feature counts along the
trajectories of the expert and the learner. To compute the
gradient of L with respect to θ , we need to first introduce
the state visitation counts of the expert computed using the
data set D:

fD = ∑
τ∈D

∑
s∈τ

P(τ)f(s) (10)

In [12], the expert’s empirical feature counts are compared
to the expectation of the learner’s state visitation counts:

E[fθ ] = ∑
s∈S

f(s)P(s|Jθ ) (11)

Using these two quantities, we can express the gradient of
L to be equal to the difference in feature counts along the
trajectories of the expert and the learner [12], [13]:

∇θL= E[fθ ]− fD (12)

As in [20], we assume that the distribution of the learner’s
sampled trajectories is uniform. Therefore, the expectation



Algorithm 2 Inverse Optimal Control for Air Traffic
1: for n = 0,1, . . . ,M do
2: Receive expert trajectories ordered by arrival time

D =
{

se
i (t)
}

i=1,...,M

3: for i = 0,1, . . . ,M do
4: Obtain start state, s0, and end state, sg, of se

i (t)
5: Obtain other airplanes’ trajectories, so

k(t) for k < i
6: Use ARA* planner to minimize Jθ over s(t)
7: Compute stochastic gradient:

∇̂θL=
T

∑
t=t0

f
(
s(t)
)
−

Ti

∑
t=t0

f
(
se

i (t)
)

8: Update cost parameters θ with step size α:

θt+1 = θt +α∇̂θL

9: end for
10: end for

E[fθ ] can be estimated using samples from learner with
the current cost function Jθ and we can use the stochastic
gradient computed using trajectories from the learner with
the current cost Jθ ,

{
si(t)

}
i=1,...,N , and trajectories from the

expert,
{

se
i (t)
}

i=1,...,M :

∇̂θL=
1
N

N

∑
i=1

Ti

∑
t=t0

f
(
si(t)

)
︸ ︷︷ ︸

learner

− 1
M

M

∑
i=1

Ti

∑
t=t0

f
(
se

i (t)
)

︸ ︷︷ ︸
expert

(13)

Gradient ascent on the objective L(J) will increase the cost
of the states that the learner visits, but the expert does not,
so that the learner will avoid those states in the future. In
practice, we set M = N = 1.

We summarize our approach in Algorithm 2. The learner
obtains sets of time-synchronized expert trajectories for the
landings of two or more airplanes. Then, for each trajectory
in the expert’s data set, the ARA* planner is used to plan
a trajectory between the same start and end states. Given
the expert’s and learner’s trajectories, we can then compute
the stochastic gradient and perform a gradient step on the θ

parameter of the cost function. If the planner fails to produce
a solution within the time limit, we use only the expert’s
trajectory for the gradient computation.

IV. SAFETY IN A MULTI-AGENT SYSTEM

Our next goal is to use prior knowledge to add structure to
the cost function J to speed up learning. We assume that the
centralized air traffic controller plans the landing trajectories
for airplanes in the order of their arrival. When planning the
trajectory for every new airplane, s(t), the trajectories of the
n previous airplanes are known, denoted

{
so

k(t)
}

k=1,...,n. We
also know the location of the destination airport, sa.

Also, recall that the planning problem is computed in a
discrete state space s̄ ∈ G, so we will only need to compute
the cost of states on this discrete grid and can use the

conversion from s to s̄ in (5). Therefore, rather than directly
learning J, we only need to learn J̄ : G → R. To relate this
form to the previous notation, this is equivalent to choosing a
feature extraction function f(s) that converts the continuous
states s to discrete states s̄ and then applies additional non-
linear operations.

We assume that J̄ depends on two types of safety con-
straints: location relative to a specific airport, and the pair-
wise spacing between airplanes. The first component of the
cost function J̄ controls the airspace around airport a and can
be expressed as J̄a

(
s̄(t)
)
. The second cost function controls

the pairwise spacing of airplanes and can be written as
J̄o
(
s̄(t), s̄o

k(t)
)
, where s̄o

k(t) is the location of a nearby airplane
at time t. If there are n other airplanes in the area, we must
sum this objective for all other airplanes: ∑

n
k=1 J̄o

(
s̄(t), s̄o

k(t)
)
.

Therefore, J̄
(
s̄(t)
)

can be written as a sum of the two types
of soft penalties:

J̄(s(t)) = J̄a
(
s̄(t)
)
+

n

∑
k=1

J̄o
(
s̄(t), s̄o

k(t)
)

(14)

Next, we parametrize J̄a and J̄o to allow us to learn these
functions using gradient descent. Motivated by planning
in the presence of potential functions [8], we choose to
represent J̄a as a spatial potential field, approximated using
a fine discretization of the input space. This approximation
represents the cost function as a value for each state s̄ ∈
G on a discrete grid. A cost function used for motion
planning must be non-negative. Also, the formulation must
be piece-wise linear in features of state, f(s), to satisfy the
assumptions of [12]. Therefore, we use a cost function of
the following form:

J̄a
(
s̄(t)
)
= ∑

s̄i∈G
max

{
wi,0

}
1s̄(t)=s̄i

(
s̄(t)
)
, (15)

where G ⊂R4 is a finite set of all states within the controlled
airspace and 1 is the indicator function. By learning wi for
each discrete state in the space, we construct a look-up table
of costs to enable efficient motion planning.

Next, we describe the penalty on pairwise distances be-
tween airplanes to control the airspace around each airplane.
Each prior arrival is treated as a moving obstacle with a
known trajectory, s̄o

k(t), and a cylindrical shape. We choose
the penalty on getting too close to another airplane to be a
linear drop-off potential function [21]:

J̄o
(
s̄(t), s̄o

k(t)
)
=umax

{
vz−|∆z(t)|,0

}
·max

{
vxy−

√
∆2

x(t)+∆2
y(t),0

}
, (16)

where ∆(t) = s̄(t)− s̄o
k(t) and ∆x(t), ∆y(t) and ∆z(t) are the

components of the difference in the discrete positions of the
two airplanes at time t. We consider the relative positions
in the horizontal and vertical dimensions separately since
the clearance requirements in altitude may be different. The
vxy and vz thresholds are learned through gradient descent,
while the scaling factor u is determined as a hyper parameter.
The parameters for J̄a and J̄o can now be learned through



Fig. 1: A visualization of the Seattle-Tacoma airport data
provided by FlightAware, with arrivals indicated in teal and
departures in green [23].

stochastic gradient descent:

θ =
[
{wi}s̄i∈G ,vxy,vz

]
(17)

The number of parameters wi is large and equal to |G|. In
the next section, we describe the practical considerations of
learning this set of parameters.

V. METHODS AND SYSTEM ARCHITECTURE

Now, we describe the implementation of the inverse opti-
mal control system that learns from the air traffic data set.

A. Dataset Processing

In this work, we narrow our focus to airplane landings at
the Seattle-Tacoma airport (SEA), but this approach can be
generalized to take-offs or inter-airport routing. Specifically,
our goal is to mimic the Standard Terminal Arrival Routes at
the SEA airport [22]. We use recorded trajectories from the
11th - 13th of January, 2016 as provided by FlightAware [23].
A visualization of current data is displayed in Figure 1. The
data set provides the location of airplanes asynchronously at
a time interval of about 30 seconds.

The airplane locations were provided as GPS measure-
ments of latitude, longitude and altitude from onboard in-
strumentation. Bearing was estimated from subsequent ob-
served locations. The provided WGS-84 measurement (GPS
latitude, longtiude and altitude location) were converted to
a local east-north-up (ENU) Cartesian system centered on
the location of the Seattle-Tacoma airport [24], [25]. All
distances are provided in kilometers and bearing angles in
radians from the +x axis. The +z axis indicates up and is
perpendicular to the tangent plane.

By utilizing the Dubins airplane model, we make a con-
stant velocity assumption. Real airplane trajectories acceler-
ate and decelerate, especially during take-offs and landings.
Extending our approach to acceleration or jerk-based motion
primitives as in [26] is left to future work.

GPS Position
& Bearing

x, y, z, φ

ENU in km
s ∈ R4

Motion
Primitive Grid

s̄ ∈ G

Fig. 2: Three parametrizations are used for expressing air-
plane states. The raw data provided by FlightAware is given
in GPS latitude, longitude and altitude. We can convert from
GPS to a local east-north-up (ENU) Cartesian frame. Then,
we discretize the state with a resolution of ρ to obtain the
motion primitive grid coordinates via (5). Continuous state
representations are denoted in blue and discrete - in red.

B. Interpolation

The FlightAware data set provides waypoints at a time
interval of about 30 seconds. We needed to perform inter-
polation, which is required for three reasons: 1) to generate
time-synchronized trajectories for multiple airplanes, 2) to
approximate the cost along a continuous trajectory, and 3)
to generate dense trajectory data for SGD updates. The
interpolation is computed for the x, y and z components of
the trajectory separately using the Univariate Spline module
of the SciPy library [27]. The bearing of the aircraft is
then computed using subsequent xt ,yt ,zt locations, φt =
arctan2(yt+1− yt ,xt+1− xt).

C. Planning

The ARA* planner is given a fixed time limit of 30
seconds. The planner does not always find a solution within
the time limit, in which case we assume that the learner
obtained a trajectory with zero cost and no states. This
provides a lower bound on the learner’s cost and assumes that
the learner is able to instantly move directly from that start to
the goal. In this case, we can use only the expert’s trajectory
for the stochastic gradient to update the cost function. The
parameters of the motion primitives, such as the maximum
turning rate and maximum rate of climb, were chosen based
capabilities of commercial aircraft and tuned through a grid
search procedure by comparing with actual trajectories. The
parameters were chosen to be: forward velocity v = 100
m/s, rate of climb ∆z = 6 m/s, time discretization ∆t = 30
s, angular velocity ∆θ1 = 0.025 radians/s. An additional
allowed turning rate of ∆θ2 = 0.0025 radians/s mitigated
some of the imprecision resulting from the coarse time
discretization. The Dubins airplane heuristic still uses the
largest turning speed to compute an approximate lower bound
on the path length. The airplane states were discretized to a
resolution of ρx = ρy = 125 m in the x and y dimensions and
ρz = 50 m in the z dimension. The bearing was discretized
to ρφ = 0.05 radians. Also, due to the discretization of
the control space, it is extremely unlikely that the planned
trajectories end up at exactly the goal state. Therefore, rather
than having a single goal state, we use a goal region of
±[500,500,25] meters and ±0.125 radians centered around
the original goal state.



Fig. 3: We quantify the planning performance of a planner
that uses the learned J̄a function and a planner that minimizes
the path length criterion only. The average minimum path
difference is 1

N ∑
N
i=1

1
T ∑

T
t=1 minu ||s̄i(t)− s̄e

i (u)||2, a measure
of how far the learner’s trajectory strays from the expert’s
demonstration on average. Error bars denote a one standard
deviation bound and N = 300.

D. Learning

To fit the cost function J̄a as described in (15), we need to
store cost function values for each discrete state in the state
space. We observe that the true structure of the data is sparse,
so rather than storing a dense look-up table of cost values,
we implement a sparse hash-map approach, which allows
a constant-time evaluation of a state’s cost. J̄a is initialized
to a cost of wi = 100 for all states. When we observe a
particular state and perform a gradient step, we store the new
value in the hash table. To further improve computational
efficiency, the cost function was discretized on a slightly
coarser grid that that of the motion primitive discretization,
with resolution 0.25 in the x and y dimensions and 0.125
in the z dimension. The bearing was discretized to 0.125
radians. A step size of α = 10.0 was used for learning.

The discretization of the cost function presents a challenge
if the localization information is not exact. The provided
dataset uses GPS locations, which are susceptible to drifts
and sensor noise. One possible solution is evaluating the
cost function at planning time by computing the average
of multiple nearby cells of the cost function grid. This is
expensive due to the sparse data structure used to store the
values of the cost function. Instead, we add Gaussian noise
to the state st before the gradient update of the cost function
(13). A small amount of white Gaussian noise is added to
the input state st before discretization: wt ∼N (0,Σ), where
Σ = [0.25,0.25,0.125]I. The cost function J̄o was initialized
with overly conservative thresholds of [vxy = 60,vz = 60] in
discretized units, which is equivalent to [7.5,3] km. A step
size of α = 0.01 was used, with gradients larger than 100.0
clipped. The slope of the cost function is u = 1.0.

VI. RESULTS

The arrival route function J̄a has an extremely large num-
ber of parameters and therefore requires more data to train.
We trained this function first without considering distances
between airplanes. Then, we fixed the routing cost function
while learning the inter-airplane safety function J̄o.

A. Learning the Airport Routing Cost

First, we train the airport routing cost, J̄a, that defines the
allowed paths for airplanes arriving to the Seattle-Tacoma
airport. Rather than the expensive computation of L(Jθ ) (9),
we benchmark performance by the margin between the cost
of the learner’s trajectory and that of the expert, given an
expert trajectory s̄e

i (t) and a corresponding planned trajectory
s̄(t):

L̂(J̄a) =
Ti

∑
t=t0

J̄a
(
s̄(t)
)
−

Ti

∑
t=t0

J̄a
(
s̄e

i (t)
)

(18)

As the cost of the expert trajectory decreases relative to that
of the expert, the objective increases and the probability of
the expert’s trajectory (9) increases. In Figure 4a, we observe
that the benchmark L̂(Jθ ) increases during training.

It is important to note that the use of a fixed time limit for
the ARA* planner often produces time-outs. In this case, the
gradient step is computed using only the expert trajectory,
treating the learner’s trajectory as a cost of zero. Also, to
speed up learning for the first 1000 iterations, we used
only the expert’s trajectory for the gradient step since the
fraction of time-outs is large at the beginning of training. It
is interesting that the number of time-outs decreases during
training, as we can see in Figure 4b. As the cost of the
expert trajectories and the corresponding states decreases, the
Dubins airplane heuristic becomes a tighter lower bound on
the motion cost of the trajectories that move through those
states. In Figure 5, we can see two examples of planned
trajectories. We compare a trajectory planned using only the
minimum path length objective to a trajectory planend using
the learned J̄a cost function. After training, the learner closely
follows the expert’s trajectory, with small oscillations in the
z-axis. Figure 3 quantifies this comparison of the minimum
path length planner and the routing cost planner over 1000
trajectories.

B. Learning the Inter-Airplane Safety Cost

Now, we turn to learning the cost function that controls
the spacing between pairs of airplanes, J̄o. We examine an
example of five concurrent landing trajectories planned using
the learned costs J̄a and J̄o in Figure 6. The cost function J̄a
is visualized in green, with darker values indicating lower
cost, and lighter values indicating higher cost. The five
airplane trajectories are indicated with colored curves, with
the current location of each airplane marked with a small
filled circle. The thresholds of the J̄a function are marked
with large unfilled circles of corresponding colors. If a sixth
airplane approached the airport, it would consider these
unfilled circles to be states with very high cost and would
avoid these regions, eliminating the posibility of collisions.



(a) Cost Margin L̂(J̄a) (b) Fraction of Time-outs

Fig. 4: First, we train the airport routing cost function J̄a. In Fig 4a, we observe that, L̂(J̄a), the margin between the expert’s
cost and the learner’s cost increases during training, which we use as a proxy for the true optimization objective L(J̄a). The
ARA* planner is given a fixed time budget and sometimes exceeds that time budget without finding a solution. Fig 4b shows
the fraction of time-outs, which decreases during training. In both plots, each data point is the average of 50 consecutive
training steps.

(a) Minimum path length (b) Using J̄a

Fig. 5: A comparison of the expert’s and learner’s 3D trajectories for two different objective functions. The actual ATC
trajectory is denoted with green arrows and a green spline. The planner’s path is marked with red arrows and interpolated
by the red curve. The units are in kilometers in the ENU coordinate system. In 5a, the planner minimizes the path length
alone, and in Figure 5b, the planner uses the learned airport routing cost, J̄a.

VII. CONCLUSION

This work develops the method for search-based planning
using cost functions learned through inverse optimal control.
We demonstrate that the learned cost functions encode the
implicit safety criteria of human ATC trajectories while
maintaining high efficiency comparable to that of human
operators. Our approach is well suited for planning trajec-
tories over longer distances of tens of kilometers, but the
Dubins airplane dynamics model has obvious limitations due
to the coarse discretization of the control space, which are

especially apparent during the last stages of a landing. Given
a data set with more precise location measurements at a
higher frequency, one possible solution could be to directly
learn the motion primitives from data. This approach would
still need to be verified in a high-fidelity air traffic simulation.

We hypothesize that the learned cost functions could
enable distributed control in dense airspaces, as an alternative
to completely centralized trajectory generation and air traffic
control. The airplane spacing function J̄o learns the relative
importance of other vehicles during trajectory planning, indi-
cating which other vehicles can be ignored during planning.



(a) t = 180 s (b) t = 360 s (c) t = 480 s

Fig. 6: A top down view of five trajectories produced by the learner using both J̄a and J̄o, with the trajectories of the
airplanes denoted in red, blue, yellow, purple and green, and their current locations denoted with a small filled circle. The
large unfilled circles denote the threshold of the J̄o cost, preventing airplanes from getting too close to each other. The
learned cost function J̄a is in the background indicated by green shading, with dark green indicating low cost states, and
white indicating high cost states. We observe that the controller maximizes the efficiency of this landing sequence by pushing
the trajectories of the airplanes as close together as allowed by the safety criterion.

The airport routing function J̄a may be found to encode
which areas of the airspace are unused and can be utilized
by other autonomous air traffic.
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