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Abstract— Imitation Learning (IL) is an effective framework
to learn visuomotor skills from offline demonstration data.
However, IL methods often fail to generalize to new scene
configurations not covered by training data. On the other hand,
humans can manipulate objects in varying conditions. Key to
such capability is hand-eye coordination, a cognitive ability
that enables humans to adaptively direct their movements at
task-relevant objects and be invariant to the objects’ absolute
spatial location. In this work, we present a learnable action
space, Hand-eye Action Networks (HAN), that can approx-
imate human’s hand-eye coordination behaviors by learning
from human teleoperated demonstrations. Through a set of
challenging multi-stage manipulation tasks, we show that a
visuomotor policy equipped with HAN is able to inherit the
key spatial invariance property of hand-eye coordination and
achieve zero-shot generalization to new scene configurations.
Additional materials available at https://sites.google.
com/stanford.edu/han

I. INTRODUCTION

Imitation Learning (IL) is a promising paradigm to acquire
complex visualmotor skills by learning from a fixed set of
expert demonstrations [2, 4, 5, 11, 32, 45]. However, IL
suffers from an important limitation - it is difficult for the
robot to generalize to new situations unseen in the training
data, especially when learning to directly map image inputs
to action outputs using neural networks [45]. This is because
with finite training data and flexible function approximators,
the robot may learn to focus on spurious correlations between
the pixels and the demonstrated actions instead of the true
intended behaviors. This limitation is especially pronounced
for realistic multi-object manipulation tasks due to the large
space of possible environment configurations. For example, a
task of serving tea requires the robot to correctly manipulate
a teapot and a mug starting from a combinatorial space of
the objects’ initial configurations.

A crucial ability that enables humans to manipulate objects
under varying conditions is hand-eye coordination, which
is the cognitive ability of coordinating visual attentions and
hand movements [12]. Such coordination coupled with the
ability to switch visual attention at different stages of a task
allows humans to adaptively direct their movements at task-
relevant objects and be invariant to the objects’ absolute
spatial locations [3, 12, 30]. For example, when serving tea,
one would first locate the teapot and guide their hands toward
the attended location. Once the teapot is grasped, the person
would switch to attend to the mug and guide the teapot
movements accordingly.

In the context of IL, humans that provide teleoperated task
demonstrations also use hand-eye coordination to guide robot
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Fig. 1. (left) Human exhibits hand-eye coordination when controlling the
robot to complete a tea serving task: Human’s gaze is fixated on the teapot
handle when guiding the robot’s action using a controller. Such coordinated
movements is best explained by the relative locations of the gripper and
the attended location rather than their absolute location, meaning that the
movements is spatially-invariant. (right) Our method approximates human’s
hand-eye coordination behavior through (1) generate a visual keypoint-based
attention from the image observation (2) project the keypoint into the 3D
scene and (3) guide the robot action by the attended target location.

movements. In demonstrating the tea-serving task (illustrated
in Fig. 1), the operator’s decision sequence is invariant to
the initial workspace configuration: the demonstrated end
effector movement can be explained by the relative location
between the end effector and the teapot, rather than their
absolute locations. Based on this observation, we hypothesize
that we can attenuate the spurious correlations between
the input images and demonstrated actions in visuomotor
policies by enforcing human-like coordination of visual
attention and end effector movements, enabling the policies
to better generalize to new situations. In this paper, we ask:
can we enable imitation learning algorithms to recover the
coordinated hand-eye movements of a human from a set
of teleoperated demonstrations of manipulation tasks? In
other words, without knowing the true underlying cognitive
process of the human operator, can we approximate the telop-
erator’s hand-eye coordination and visual attention behaviors
from a dataset of human-controlled robot actions and the
corresponding image observations?

To answer this question, we develop a learnable action
space called Hand-eye Action Networks (HAN). The goal
of HAN is to guide the robot’s end effector movements
directly using the 3D spatial locations selected by a learned
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visual attention model, and to learn such behavior directly
from demonstration data. We illustrate the high-level idea
in Fig. 1. The key technical challenge in developing such
an action space is that common visual attention models in
computer vision research are based on 2D regions [23] or
spatial maps [38], whereas the robot end effector actions are
in 3D. To bridge this gap, the primary component in HAN
is a 3D visual attention network that maps an input RGB
image to a set of 3D keypoints relative to the robot’s base
coordinate frame. In addition, to mimic a human’s ability to
switch attention at different stages of a task, we introduce
an attention switching network to select a 3D target location
from the candidate keypoints generated by the 3D attention
layer. Finally, an action target network learns to generate
end effector action commands according to the selected 3D
location. Together, HAN is a fully differentiable network
within a deep imitation learning architecture, allowing end-
to-end training with a simple behavior cloning objective, and
is applicable to a wide range of manipulation tasks.

Through a diverse set of robotic manipulation experi-
ments including grasping, stacking and tool manipulation,
we demonstrate the effectiveness of HAN for learning vi-
suomotor policies. More importantly, we show that HAN
inherits the key property of spatial-invariance from human’s
coordinated hand-eye movements and is able to achieve
strong zero-shot generalization to new environment initial
configurations unseen in the training demonstrations.

The highlights of our work are as follows:
• We develop a novel action space for learning human-

like hand-eye coordination behaviors end-to-end from
human-teleoperated demonstrations.

• To enable tight coupling between visual attention and
robot actions, we develop a novel 3D attention mech-
anism that learns to generate 3D keypoints at task-
relevant locations for guiding robot movements without
direct keypoint supervisions.

• We evaluate on three simulated continuous control tasks
of varying difficulties, and demonstrate that our action
space enables a policy to generalize to tasks with unseen
environment configurations in a zero-shot manner. We
also show that the learned action space qualitatively
exhibits human-like coordinated hand-eye movements.

II. RELATED WORKS

Imitation learning. Imitation learning (IL) has been
widely studied in the context of robotic manipulation tasks
[2, 4, 5, 11, 32]. Typical IL formulations include inverse
reinforcement learning (IRL) [31] which infers a cost
function from expert demonstrations and behavioral cloning
(BC) [1] which directly learns a policy mapping from
observations to actions. This paper studies the problem of
behavioral cloning. Recent works [7, 19, 26, 44] use deep
neural networks to map directly from image observations to
action, and have proven effective for learning visualmotor
skills for complex and diverse manipulation tasks. However,
these policies tend to generalize poorly to new situations
due to spurious connections between pixels and actions.
This problem can be partially alleviated by learning from

an online teacher [29], but this assumes that the expert is
available on-demand to label actions, which can be infeasible
for human supervisors [15], and the policy performance is
still be limited by the coverage of the collected dataset.

Visual attentions for policy learning. Drawing inspira-
tion from human cognition [3, 12, 30], visual attention in
computer vision enables a neural network model to focus on
certain spatial locations of an image to extract information
relevant for downstream tasks such as object recognition [23]
and image captioning [38]. Recent works have attempted to
equip interactive agents with attention [17, 24, 35, 43]. For
example, Zhang et al. [43] leverages human attention as a
prior to extract relevant information from expert demonstra-
tion in imitation learning. While these works are effective in
extracting task-relevant visual features, it is unclear how to
leverage the extracted visual features for generating actions,
especially when the 2D visual features and 3D robot actions
reside in different spaces. Our paper introduces a new action
space that directly uses the visually attended spatial locations
to guide robot movements and can be trained end-to-end
from human demonstrations.

Spatially-invariant action spaces. Our idea of spatially-
invariant action space is inspired by a series of work by Zeng
et al. and colleagues [34, 37, 39–42]. Central to these works
is the idea of grounding robot actions to a spatial action map,
where each pixel in the action map indicates the Q-value of
executing an action (e.g., grasping and pushing [41]) at that
spatial location. Because the action map is generated through
a fully convolutional network, the convolution kernels can
be shared across different locations on the map, enabling
the robot to manipulate objects at locations outside of the
training range. However, these methods are tied to top-down
views with specially designed high-level actions such as top-
down grasping or pushing, limiting their applicability to more
fine-grained manipulation tasks. In contrast, our method can
learn spatially-invariant policies with continuous end effector
control, allowing our method to solve complex manipulation
tasks such as tasks that require tool-use.

Keypoint representations for control. Keypoints have
been shown to be an effective representation for visuo-
motor policy learning [8, 14, 21, 22, 27]. For example,
kPAM [21] uses 3D keypoints as features for deep imitation
learning. However, these works mainly consider keypoints
as a feature space or a way to regularize deep network-
based policies. We instead show that we can learn to ground
3D keypoints onto task-relevant locations in a scene and
use the grounded keypoints to guide robot actions, enabling
strong generalization to unseen observations. Our method
uses no additional supervision other than the continuous
control actions demonstrated through teleoperation.

Reference frame selection for control. Learning to au-
tomatically select the reference frame for the robot action
has also been used for reducing the dimensionality of the
data and allowing additional generalization [10, 25, 33]. The
major difference between our method and these works is we
are learning to localize the action attention directly from the
broad vision space without the assumption of knowing the
salient objects [25] or the ground truth positions [33]. In a



sense, we believe that human demonstrations already contain
rich spatial hints for reference frame selection, which has the
potential to be learned without additional supervisions [10].
Also, visual observation is a more generic information input
for most of manipulation tasks.

III. PROBLEM DEFINITION

We consider a robot manipulation task as a Markov
Decision Process (MDP), M = (S,A, T , R, γ, ρ0), with
state space S, action space A, transition distribution
T (st+1|st, at) , reward function R(st, at, st+1), discount
factor γ ∈ [0, 1), and initial state distribution ρ0. At every
step, the policy π observes st, chooses an action at = π(st),
and observes the next state st+1 ∼ T (·|st, at) and reward
rt = R(st, at, st+1). The goal is to learn an policy π that
maximizes the expected return E[

∑∞
t=0 γ

tR(st, at, st+1)].
In this work, we take a behavior cloning (BC) approach

to the imitation learning problem. We assume access to a
dataset of N task demonstrations D = {τi}Ni=1 where each
demonstration is a trajectory τi = (si0, a

i
0, s

i
1, a

i
1, ..., s

i
Ti

) that
begins in a start state si0 ∼ ρ0(·). The goal of BC is to train a
policy πθ(s) to clone the actions in the demonstrations with
an objective arg minθ E(s,a)∼D||πθ(s)− a||2.

In this work, we aim to enable policies trained with the BC
objective to generalize to states not in D without additional
training data (zero-shot generalization). Specifically, we fo-
cus on generalizing to tasks with new initial distributions ρ̂0.
As a simple example, we wish to enable a policy trained on
lifting a cube from the center of the table to generalize to
tasks in which the cube is initialized at the edge of the table.

We focus on learning visuomotor policies. Our policy
takes RGB image observations as input and outputs end-
effector actions in the form of relative position changes
∆(x, y, z) and a binary gripper open / close action. We defer
full 6-DoF control to future works.

IV. METHOD

The primary technical contribution of this paper is a
novel action space for imitation learning that enables trained
visuomotor policies to generalize to new scene configurations
without additional training data. The action space enables the
agent to choose spatial locations in an image. These locations
are projected to 3D and transformed into the robot frame,
and are used to guide robot end effector actions. Through
end-to-end training with an behavior cloning objective, the
action space allows the agent to pay attention to objects of
interest in the scene that best explain the actions taken by
the demonstrator. In this way, this learnable action space tries
to mimic the hand-eye coordination mechanism used by the
human that provided demonstrations.

Our proposed action space consists of three core com-
ponents: (1) a 3D visual attention network that focuses on
regions relevant to the task and places 3D keypoints inside
the regions, (2) an attention switching network that attends to
different keypoints depending on the current stage of the task,
and (3) an action target network that generates the robot end
effector actions based on the attended 3D spatial locations.
The three components are fully differentiable and can be

trained end-to-end within a deep imitation learning architec-
ture from a dataset of demonstrations. In the following, we
motivate and describe each component in details. The overall
architecture is illustrated in Fig. 2.

A. 3D Visual Attention Network

Common neural network-based visual attention mecha-
nisms output 2D regions [23] or spatial maps [38]. However,
since the robot’s end effector actions are in the 3D space, it
is difficult to recover the 3D location of the 2D attention in a
differentiable pipeline. To bridge this gap, we develop a 3D
visual attention network that maps an input RGB image to
a set of 3D keypoints relative to the robot’s base coordinate
frame. The network consists of an non-parametric 2D region
proposal module and a learned 3D keypoint detector.

2D region proposal for coarse-level attention: Given
an input image of size H ×W × 3, we take N fixed-size
random crops of the image, each with size H ′×W ′×3, where
H ′ < H,W ′ < W . These regional crops can be considered
as the candidates for coarse-level attention for the subsequent
attention switching network (Sec. IV-B) to select the region
of interests (ROI) that are likely to contain task-relevant
objects. While this is similar to the region proposal network
(RPN) in the 2D detection framework FasterRCNN [28],
there is no supervision on which regions contain objects -
the proposals are completely random and serve as the basis
for the subsequent attention switching mechanism.

3D keypoint detection for refined attention: To bridge
the gap between the 2D regions and 3D robot movements,
we learn a 3D keypoint detector to extract a 3D keypoint
from each 2D region generated by the region proposal
layer. The keypoint detector is a deep convolutional network
followed by a spatial softmax layer [6]. The spatial softmax
layer maps each region’s convolutional feature map to a
single 2D keypoint (u′i, v

′
i), with u′i ∈ [0, H ′], v′i ∈ [0,W ′]

indicating the location of the keypoint relative to the i-th
region. We convert each relative keypoint location to global
pixel coordinates to obtain keypoints {(ui, vi)}Ni=1 for all N
regions in the input image frame.

To convert these 2D keypoints to 3D, we use the depth val-
ues {di}Ni=1 at each location, captured from a depth camera,
and use the camera parameters and extrinsic transformation
between the camera and the robot to transform keypoints in
the camera frame {(ui, vi, di)}Ni=1 to 3D keypoints in the
robot frame xkp = {(xi, yi, zi)}Ni=1.

The 3D keypoints provide fine-grained attention for lo-
calizing candidate task-relevant objects in the scene. For
instance, when the robot is tasked to to grasp the teapot
in Fig. 1, an ideal 3D keypoint should be grounded onto the
handle of the teapot to guide the end effector movement.
However, we still need to select a single 3D location from
the N 3D keypoint candidates for guiding the robot action.
Next, we describe how to make such a selection depending
on the current stage of the task.

B. Attention Switching Network

Everyday manipulation tasks are multi-stage, and each
stage requires the robot to attend to different parts of the
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Fig. 2. Architecture Overview. HAN has three main components: (1) N regions are randomly sample from the input image. Then a 3D visual attention
network localizes a 3D keypoint x̂kp for each region. (Sec. IV-A) (2) An attention switching network generates a single target keypoint xkp by aggregating
the candidate keypoints through confidence-weighted sum. (Sec. IV-B) (3) The final local action target is set by moving the predict keypoint xkp by a
learned offset xoffset. The network predicts offset xoffset, control gain k, and the binary gripper open/close command xgrip. The final output action
a is then calculated through the function on the bottom (Sec. IV-C).

scene. In the tea serving example, after securing a stable
grasp of the teapot, the robot needs to switch attention from
the teapot handle to the mug for the next stage of the task. We
model such behavior with an attention switching network.

The main function of the attention switching network is
to use the candidate keypoints from the 3D visual attention
network (Sec. IV-A) to generate a single 3D location to guide
the robot’s next action. Instead of selecting exactly one key-
point, which would be non-differentiable, we take a weighted
average of the candidates, where the weights are learned. The
weights are computed by passing the convolutional feature
maps for each region (Sec. IV-A) through a shallow multi-
layer percetron (MLP) and softmax normalization. The final
output 3D location xkp is simply a weighted sum of all the
the candidate keypoints x̂kp, i.e., xkp =

∑N
i=1 cix̂

(i)
kp , where

ci is the normalized confidence of each candidate keypoint.

C. Action Target Network

Having described how to locate task-relevant objects in
a scene using the 3D visual attention network and how to
select a target 3D keypoint based on the current stage of the
task, we now explain how to guide the robot action with the
selected target keypoint.

The goal of the action target network is to map the
predicted target keypoints to robot end effector actions that
best match the demonstrated actions. While it is tempting
to parameterize this mapping with a neural network, such
flexible function approximators may prevent the model from
learning meaningful coordination between the target keypoint
and the action: empirically, we found that the network simply
learns to ignore the target keypoint and use other input
information instead (described later).

On the other hand, the mapping should be expressive
enough to fit the highly nonlinear relationship between the
target and the end effector in complex manipulation tasks.
For example, to grasp an object top-down, the gripper needs
to first move to a location above the object to avoid collision,

and then grasp by approaching from above. In addition,
human demonstrations often contain noises and suboptimal
actions that cannot be explained by, e.g., a linear path. To
balance between over-parameterization and expressiveness,
we propose to train a neural network to set constrained local
action targets relative to the target keypoint. Specifically,
the network sets action target location xtarget relative to
the keypoint xkp by predicting a 3D spatial offset vector
xoffset ∈ R3. The action target relative to the end effector
position xee can thus be expressed as:

xtarget = xkp + xoffset − xee (1)
To generate the local end effector actions a = ∆(x, y, z),

we use a learned scalar gain k to modulate the action
magnitude based on the target location relative to the end
effector:

a = k(xkp + xoffset − xee) (2)

xoffset, k, and xgrip (gripper open / close) are predicted
by an MLP. The inputs to this MLP are (1) keypoint position
xkp (2) end effector position xee (3) the visual features of
a local image patch around the current gripper, and (4) the
visual features of all the ROIs. These features provide both
local and global information of the entire scene and allows
the network to predict fine-grained control commands.

In practice, we constrain the range of the each coordinate
in xoffset to be between -0.1 and 0.1. We also constrain the
gain k to be between 0 and 1. Empirically, we found these
constraints to work well across the tasks we evaluated on.
Such a parameterization both allows the network to fit the
highly nonlinear demonstration trajectories and also prevent
it from degenerating and ignoring the target keypoint. In the
experiment section, we present both quantitative and qualita-
tive evidence that the constrained action target allows HAN
to recover meaningful hand-eye coordination behaviors.

D. Deep Imitation Learning
The three components as described above constitutes our

Hand-eye Action Networks. The networks are trained end-



TABLE I
QUANTITATIVE EVALUATION IN THE Lifting ENVIRONMENT

Demo type 50-Expert 200-Expert
Eval region Int. Ext. Int. Ext.
BC-states 0.77 0.2 0.97 0.5
BC-image[9] 0.37 0.1 0.67 0.13
HAN(mlp-ATN) 1.0 0.47 1.0 0.57
HAN(no-ROI) 0.33 0.07 0.97 0.1
HAN(no-con) 1.0 0.53 1.0 0.67
HAN 1.0 0.6 1.0 0.73

to-end with the behavior cloning objective given a set of
demonstration data. The loss function has two components:
(1) an L2 loss and (2) a Cosine similarity loss:

L = ||at − a∗t ||2 + λ arccos(
aTt a

∗
t

||at|| ||a∗t ||
) (3)

where at is the predicted four-dimensional action (first three
from (2), the last is the gripper action), the a∗t is the
ground truth action from the demonstration. λ is a constant
balancing the two loss terms. The Cosine similarity loss
improves directional alignment between the demonstrated
and the predicted actions [45].

V. EXPERIMENTS

In this section, we seek to answer the following questions:
(1) Does including HAN in a deep imitation learning pipeline
improve the task performance and zero-shot generalization
ability? (2) Does our method approximate hand-eye coordi-
nation behavior? Specifically, does HAN learn to focus on
task-relevant regions and switch attentions at different stages
of the task without direct supervision? (3) How does each
component of HAN affect the final performance?

To answer these questions, we designed three table-top
manipulation task domains with varying difficulties: from the
most basic block lifting to the most complex multi-stage tool-
using domain. We evaluate our method and all baselines on
both training task distribution and zero-shot generalization
to tasks with new initial configurations. We then analyze the
role that each component of HAN plays through a series of
ablation studies. Finally, we provide qualitative analysis of
the learned hand-eye coordination behavior.

A. Task Setup

All tasks are designed using MuJoCo [36] and the robo-
suite framework [46]. The workspace consists of a Sawyer
robotic arm in front of a table. The arm is controlled using an
Operational Space Controller [13] in end effector positions.
Environment observations are RGB images captured by a
front-view camera rendered at 120 × 160 resolution. We in
addition make use of a depth camera to extract depth values
for 3D keypoint generation (Sec. IV-A).

Evaluation protocols: To evaluate zero-shot generaliza-
tion, we define interpolation and extrapolation regions for
object initialization in each task, as shown in Fig. 3. We
collect demonstrations only on tasks with objects initialized
in the interpolation regions and report results on both inter-
polation and extrapolation tasks.

(a) Lifting (b) Stacking (c) Tool-using

Fig. 3. Initial states for the three manipulation tasks we evaluate on. During
data collection, objects are initialized in the interpolation regions, which
are delineated by the red lines. We evaluate all methods with tasks that
are initialized with both interpolation and extrapolation regions, which are
delineated by red lines. The dashed line in Tool-using environment indicates
the boundary beyond which objects are deemed unreachable by the robot,
which requires the assistance of the tool.

TABLE II
QUANTITATIVE EVALUATION IN THE Stacking ENVIRONMENT

Demo type 100-Expert 200-Expert 100-Human 200-Human
Eval region Int. Ext. Int. Ext. Int. Ext. Int. Ext.
BC-states 0.53 0.1 0.97 0.73 0.67 0.07 0.67 0.13
BC-image[9] 0.3 0.03 0.8 0.13 0.3 0.03 0.5 0.1
HAN(mlp-ATN) 0.8 0.47 0.93 0.7 0.4 0.13 0.73 0.23
HAN(no-ROI) 0.47 0.13 0.9 0.13 0.27 0.03 0.5 0.03
HAN(no-con) 0.93 0.53 0.9 0.63 0.53 0.17 0.43 0.3
HAN 0.93 0.63 0.93 0.87 0.6 0.33 0.83 0.57

Lifting: As shown in Fig. 3(a), the task is to grasp and lift
a cube initialized at a random location by 10 cm. This task
evaluates the generalization ability of all methods without
introducing the challenge of multi-stage tasks.

Stacking: The robot must pick up the red block and place
it on top of the green plate, as shown in Fig. 3(b). During
training, the red block and the green plate are initialized in
the interpolation region (blue). The corresponding extrapo-
lation regions are adjacent to the interpolation regions (red).
This task evaluates our method’s ability to switch attention
(red block then green plate) at different stages of the task.

Tool-using: As shown in Fig. 3(c), the robot must insert
the blue cube into the wooden ring. However, the arm may
not move past the dotted line, so the robot needs to (1)
grasp the tool, (2) use the tool to hook the blue block
behind the dotted line, (3) grasp the block, and (4) insert
the block into the wooden ring. Each object has its own
interpolation and extrapolation region as shown in the figure.
First, completing the task requires a variety of manipulation
skills such as grasping, tool-using and insertion. Second,
the task is long-horizon (∼450 steps compared to ∼100 for
Lifting and ∼ 130 for Stacking). Finally, fetching the cube
using the tool requires the policy to learn to manipulate
one object with another instead of modeling only gripper-
object interactions, testing the generality of our hand-eye
coordination formulation.

B. Learning Setup and Baselines

Demonstrations: We consider two sources of data: expert
demonstrations and human demonstrations. Expert demon-
strations are generated by a hard-coded policy with added
Gaussian noise. The human demonstrations are recorded
using RoboTurk [18, 20], which is a platform that allows
users to demonstrate manipulation tasks through low-latency



Fig. 4. Key snapshots along the rollout of the Stacking (top) and Tool-using (bottom) domains, respectively. The blue spheres are the predicted keypoints.
The yellow sphere indicates the location of the action target generated by the action target network (Sec. IV-C). Some of these action targets can be
occluded by objects in the scene. The red boxes are the 2D bounding box with highest confidence scores (Sec. IV-B).

teleoperation with a smartphone interface. Learning from
expert demonstrations examines whether we can recover
the hand-eye coordination behaviors given “clean data”. On
the other hand, human demonstrations are often noisy and
suboptimal. This means that not all demonstrated actions can
be explained by hand-eye coordination. For example, we
observed that a human teleoperator can take a curvy path
to reach an object instead of a straight line. The sideways
components of the actions cannot be explained by the atten-
tion. This challenging setup examines our method’s ability
to recover hand-eye coordination behaviors from noisy data.

Baselines: We compare our methods against five model
variants to show the effectiveness of our design choices:
• BC-states: An MLP that takes ground-truth object poses

and robot proprioception as input.
• BC-image: A deep imitation learning model adapted

from the end-to-end model variant of [9]. The baseline
has the identical ConvNet backbone as our model,
followed by a spatial softmax [16] with 64 keypoints.

• HAN (mlp-ATN): Our HAN but with the action target
network parameterized by an MLP that maps input fea-
tures directly to actions instead of using our constrained
action target formulation (Sec. IV-C).

• HAN (no-ROI): Our HAN but without the region-based
attention. The 3D attention layer generates a single 3D
keypoint directly from the entire input image instead of
the ROIs. The 3D keypoints are then fed into our action
target network to generate the final actions.

• HAN (no-con): Our HAN but without constraining the
offset xoffset and scalar gain k.

• HAN: Our full model with all components in Sec. IV.

C. Results
We report performance of all methods as the maximum

success rate achieved during training over 30 evaluation roll-
outs. In Lifting (Tab. I), with sufficient data (200 demos), all
HAN variants and BC-states are able to achieve near-perfect
success rate in the interpolation region. In extrapolation,
HAN (mlp-ATN) outperforms the BC-image baseline signifi-
cantly. Adopting our local action target formulation (Eq. (2))
and imposing the constraints yields another absolute 10% and
6% gains, respectively. Note that the 2D region proposal is
crucial for extrapolation (the no-ROI variant only achieves

TABLE III
QUANTITATIVE EVALUATION IN THE Tool Using ENVIRONMENT

Demo type 100-Expert 200-Expert
Eval region Int. Ext. Int. Ext.
BC-states 0.13 0.03 0.23 0.0
BC-image[9] 0.3 0.03 0.33 0.07
HAN(mlp-ATN) 0.53 0.27 0.87 0.33
HAN(no-ROI) 0.0 0.0 0.0 0.0
HAN 0.73 0.43 0.9 0.6

0.1 success rate). This substantiates our main hypothesis that
the spatial-invariance provided by the attention mechanism
is crucial for zero-shot generalization. With less data (50
demos), HAN achieves even greater gain over baselines and
outperforms BC-states that has access to ground truth state in
extrapolation with a wide margin (0.6 vs. 0.2). Similar trends
are observed in Stacking (Tab. II) and Tool-using (Tab. III).

Hand-eye coordination We further verify that our learned
action space can approximate hand-eye coordination behav-
iors through qualitative visualization. In Fig.4, we visualize
the predicted 3D keypoints, their corresponding 2D ROIs,
and action targets in the key frames of two policy rollouts.
For the top row (Stacking), we highlight that immediately
after the robot secured a grasp of the cube (frame 2), the
3D keypoint sharply switched to the green plate to proceed
to the next stage of the task (frame 3). And the keypoint
consistently locate the most relevant region to guide the robot
actions. We observed similar behavior for Tool-using (bottom
row), where the network attends to the most relevant target
object (tool, box, ring) at different stages of the task.

Human demonstrations As noted in Sec. V-B, human
demonstrations often contain noise and suboptimal actions.
This requires our method to recover hand-eye coordination
behaviors from noisy samples that may not conform to our
assumptions. We evaluate learning with human demonstra-
tions in Stacking and show the results in Tab. II. Compared
to the other image-based methods, HAN has the smallest
performance drop between human and expert demonstrations
and still outperforms all other baselines in both interpolation
and extrapolation. Our observations for model ablations also
still hold when learning from human data. This verifies
that our approach is indeed capable of learning hand-eye



coordination behavior from human data.

VI. CONCLUSION

We presented Hand-eye Action Networks (HAN), a fully
differentiable policy network with a novel action space for
learning robotic manipulation tasks through imitation learn-
ing. Through extensive experiments, we demonstrate HAN’s
ability to solve challenging manipulation tasks and, more
importantly, to generalize to unseen situations, a property
not present in existing imitation learning algorithms.

Although we mainly focused on imitation learning, other
training frameworks such as reinforcement learning can
potentially benefit from HAN as well. We also plan to extend
HAN to handle rotational actions.
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