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Abstract—Nano quadcopters are ideal for gas source localiza-
tion (GSL) as they are safe, agile and inexpensive. However, their
extremely restricted sensors and computational resources make
GSL a daunting challenge. In this work, we propose a novel bug
algorithm named ‘Sniffy Bug’, which allows a fully autonomous
swarm of gas-seeking nano quadcopters to localize a gas source in
an unknown, cluttered and GPS-denied environments. The com-
putationally efficient, mapless algorithm foresees in the avoidance
of obstacles and other swarm members, while pursuing desired
waypoints. The waypoints are first set for exploration, and, when
a single swarm member has sensed the gas, by a particle swarm
optimization-based procedure. We evolve all the parameters of
the bug (and PSO) algorithm, using our novel simulation pipeline,
‘AutoGDM’. It builds on and expands open source tools in order
to enable fully automated end-to-end environment generation and
gas dispersion modeling, allowing for learning in simulation.
Flight tests show that Sniffy Bug with evolved parameters
outperforms manually selected parameters in cluttered, real-
world environments. Videos: https://bit.ly/37MmtdL

I. INTRODUCTION

Gas source localization (GSL) by autonomous robots is
important for search and rescue and inspection, as it is a
very dangerous and time-consuming task for humans. A swarm
of nano quadcopters is an ideal candidate for GSL in large,
cluttered, indoor environments. The quadcopters’ tiny size
allows them to fly in narrow spaces, while operating as a
swarm enables them to spread out and find the gas source
much quicker than a single robot would.

To enable a fully autonomous gas-seeking swarm, the nano
quadcopters need to navigate in unknown, cluttered, GPS-
denied environments by avoiding obstacles and each other.
Currently, indoor swarm navigation is still challenging and
an active research topic even for larger quadcopters (> 500
grams) [1], [2]. State-of-the-art methods use heavy sensors like
LiDAR and high-resolution cameras to construct a detailed
metric map of the environment, while also estimating the
robot’s position for navigation with Simultaneous Localiza-
tion And Mapping (SLAM, e.g., ORB-SLAM2 [3]). These
methods do not fit within the extreme resource restrictions of
nano quadcopters. The payload of nano quadcopters is in the
order of grams, ruling out heavy, power-hungry sensors like
LiDAR. Furthermore, SLAM algorithms typically require GBs
of memory [4] and need considerable processing power. One
of the most efficient implementations of SLAM runs real-time
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Fig. 1. A fully autonomous and collaborative swarm of gas-seeking nano
quadcopters, finding and locating an isopropyl alcohol source. The source is
visible in the background: a spinning fan above a can of isopropyl alcohol.

(18.21 fps) on an ODROID-XU4 [5], which has a CPU with a
4-core @ 2GHz plus a 4-core @1.3GHz. These properties rule
out the use of SLAM on nano quadcopters such as the BitCraze
Crazyflie, which has an STM32F405 processor with 1MB of
flash memory and a single core @168MHz. As a result of
the severe resource constraints, previous work has explored
alternative navigation strategies. A promising solution was
introduced in [6], in which a bug algorithm enabled a swarm of
nano quadcopters to explore unknown, cluttered environments
and come back to the starting location.

Besides navigating, the swarm also needs a robust strategy
to locate the gas source, which by itself is a highly challenging
task. This is mostly due to the complex spreading of gas in
cluttered environments. Moreover, current sensors have poor
quality compared to animals’ smelling capabilities [7], which
is further complicated by the propellers’ own down-wash [8].

Various solutions to odor source localization have been
studied. Probabilistic GSL strategies [9], [10] usually inter-
nally maintain a map with the probabilities for the odor
source location and often simulate the gas distribution. This is
computationally challenging for nano quadcopters, a situation
that deteriorates when they have to operate in environments
with complex shapes, obstacles and a complex airflow field.
In contrast, bio-inspired finite-state machines [11], [12] have
very low computational requirements, though until now they
have focused on deploying a single agent [13]. Moreover,
reinforcement and evolutionary learning approaches have been
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investigated, mostly in simulation [14], [15], [16], [17], [18],
but a few works also transferred the learned policy to obstacle-
free environments in the real world [19], [20]. A limiting factor
for approaches that learn in simulation is that gas dispersion
modeling has been a time-intensive process, requiring domain
knowledge for accurate modeling. Only few environments
have been made available to the public [21], [22], whereas
learning algorithms require many different environments.

Due to the difficulty of the problem in the real world, most
often the experiments involve a single robot seeking for an
odor source in an obstacle-free environment of modest size,
e.g., in the order of 4 × 4 m [23], [24], [25], [26]. Few
experiments have been performed in larger areas involving
multiple robots. Very promising in this area is the use of
particle swarm optimization (PSO) [27], as it is able to
deal with the local maxima in gas concentration that arise
in more complex environments. Closest to our work is an
implementation of PSO on a group of large (2.95 kg), outdoor
flying quadcopters [28] , using LiDAR and GPS for navigation.

In this article, we introduce a novel PSO-powered bug
algorithm, Sniffy Bug, to tackle the problem of GSL in chal-
lenging, cluttered, and GPS-denied environments. The nano
quadcopters execute PSO by estimating their relative positions
and by communicating observed gas concentrations to each
other using onboard Ultra-Wideband (UWB) [29]. In order
to optimize the parameters of Sniffy Bug with an artificial
evolution, we also develop and present the first fully Auto-
mated end-to-end environment generation and Gas Dispersion
Modeling pipeline, which we term AutoGDM. We validate our
approach with robot experiments in cluttered environments,
showing that evolved parameters outperform manually tuned
parameters. This leads to the following three contributions:

1) The first robotic demonstration of a swarm of au-
tonomous nano quadcopters locating a gas source in
unknown, GPS-denied environments with obstacles.

2) A novel, computationally highly efficient bug algorithm,
Sniffy Bug, of which the parameters are evolved for
PSO-based gas source localization in unknown, cluttered
and GPS-denied environments.

3) The first fully automated environment generation and
gas dispersion modeling pipeline, AutoGDM.

In the remainder of this article, we explain our methodology
(Section II), present simulation and flight results (Section III),
and draw conclusions (Section IV).

II. METHOD

A. System Design

Our 37.5 g Bitcraze CrazyFlie [30] nano quadcopter (Fig-
ure 2), is equipped with sensors for waypoint tracking, ob-
stacle avoidance, relative localization, communication and gas
sensing. We use the optical flow deck and IMU sensors for
estimating the drone’s state and tracking waypoints. Addition-
ally, we use the BitCraze multiranger deck with four laser
range sensors in the drone’s positive and negative x and y
axis (Figure 2), to sense and avoid obstacles. Finally, we

Fig. 2. A 37.5 g nano quadcopter, capable of autonomous waypoint tracking,
obstacle avoidance, relative localization, communication and gas sensing.

have designed a custom, open-source PCB, capable of gas
sensing and relative localization. It features a Figaro TGS8100
MEMS MOX gas sensor, which is lightweight, inexpensive,
low-power, and was previously deployed onboard a nano
quadcopter [31]. We use it to seek isopropyl alcohol, but it is
sensitive to many other substances, such as carbon monoxide.
The TGS8100 changes resistance based on exposure to gas,
which can be computed according to Equation 1.

Rs =

(
Vc
VRL

− 1

)
·RL (1)

Here Rs is the sensor resistance, Vc circuit voltage (3.0 V),
VRL the voltage drop over the load resistor in a voltage
divider, and RL is the load resistor’s resistance (68 kΩ).
Since different sensors can have different offsets in the sensor
reading, we have designed our algorithm not to need absolute
measurements like a concentration in ppm. From now on, we
report a corrected version of VRL, where higher means more
gas. VRL is corrected by its initial low-passed reading, without
any gas present, in order to correct sensor-specific bias.

For relative ranging, communication, and localization, we
use a Decawave DWM1000 UWB module. Following [29],
an extended Kalman filter (EKF) uses onboard sensing from
all agents, measuring velocity, yaw rate, and height, which is
fused with the UWB range measurements. It does not rely on
external systems or magnetometers. Additionally, all agents are
programmed to maintain constant yaw, as it further improves
the stability and accuracy of the estimates.

B. Algorithm Design

We design a highly efficient algorithm, both from a compu-
tational and sensor perspective. We generate waypoints in the
reference frame of each agent using PSO, based on the relative
positions and gas readings of all agents. The reference frame
of the agent is initialized just before takeoff, and is maintained
using dead reckoning by fusing data from the IMU and optic
flow sensors. While the reference frame does drift over time,
only the drift since the last seen ‘best waypoint’ in PSO will
be relevant, as it will be saved in the drifted frame.

The waypoints are tracked using a bug algorithm that
follows walls and other objects, moving safely around them.
Each agent computes a new waypoint if it reaches within dwp



of its previous goal, if the last update was more than twp
seconds ago, or when one of the agents smells a concentration
superior to what has been seen by any agent during the
run, and higher than the pre-defined detection threshold. A
detection threshold is in place to avoid reacting based on
sensor drift and noise. A timeout time, twp, is necessary, as the
predicted waypoint may be unreachable (e.g., inside a closed
room). We term each new waypoint, generated if one of the
above criteria is met, a ‘waypoint iteration’ (e.g., waypoint
iteration five is the fifth waypoint generated during that run).

1) Waypoint generation: Each agent computes its next
waypoint according to Equation 2.

gi,j = xi,j + vi,j (2)

Here gi,j is the goal waypoint of agent i, in iteration j, xi,j its
position when generating the waypoint, and vi,j its ‘velocity
vector’. The velocity vector is determined depending on the
drone’s mode, which can be either ‘exploring’, or ‘seeking’.
‘Exploring’ is activated when none of the agents has smelled
gas, while ‘seeking’ is activated when an agent has detected
gas. During exploration, vi,j is computed with Equation 3:

vi,j = ω′(gi,j−1 − xi,j) + rr (ri,j − xi,j) (3)

Here gi,j−1 is the goal computed in the previous iteration
and ri,j a random point within a square of size rrand around
the agent’s current position. A new random point is generated
each iteration. Finally, ω′ and rr are scalars that impact the
behavior of the agent. gi,j and vi,j are initialized randomly in
a square of size rrand around the agent. Intuitively, Equation 3
shows the new velocity vector is a weighted sum of: 1) a
vector toward the previously computed goal (also referred to
as inertia), and 2) a vector towards a random point.

After smelling gas, i.e., one of the agents detects a concen-
tration above a pre-defined threshold, we update the waypoints
according to Equation 4.

vi,j = ω(gi,j−1 − xi,y) + ϕpαi,j (pi,j − xi,j) +

ϕgβi,j (sj − xi,j)
(4)

Here pi,j is the waypoint at which agent i has seen its highest
concentration so far, up to iteration j. sj is the swarm’s best
seen waypoint, up to iteration j. αi,j and βi,j are random
values between 0 and 1, generated for each waypoint iteration
for each agent. Finally, ϕp and ϕg are scalars that impact
the behavior of the agent. So again, more intuitively, the
vector towards the next waypoint is a weighted sum of the
vectors towards its previously computed waypoint, the best
seen position by the agent, and the best seen position by the
swarm. As we will see later, this allows the swarm to converge
to high concentrations of gas, whilst still exploring.

2) Waypoint tracking: Tracking waypoints in cluttered en-
vironments is hard due to the limited sensing and computa-
tional resources. Sniffy Bug is designed to operate at constant
yaw, and consists of three states (Figure 3): 1) Line Following,
2) Wall Following, and 3) Attraction-Repulsion Swarming.

Line Following – When no obstacles are present, the agent
follows a virtual line towards the goal waypoint, making sure

to only move in directions where it can ‘see’ using a laser
ranger, improving safety. The agent makes sure to stay within
a distance dline from the line, moving as shown in Figure 3.

Wall Following – When the agent detects an obstacle, and
no other agents are close, it will follow the object similar to
other bug algorithms [32]. Sniffy Bug’s wall-following stage
is visible in Figure 3. It is terminated if one of the following
criteria is met: 1) a new waypoint has been generated, 2) the
agent has avoided the obstacle, or 3) another agent is close.
In case 1 and 2 line following is selected, whereas in case 3
attraction-repulsion swarming is activated. Figure 3 illustrates
wall following in Sniffy Bug. The agent starts by computing
desiredlaser, which is the laser direction that points most
directly to the goal waypoint, laser 3 in this case. It then
determines the initial search direction in the direction of the
waypoint, anti-clockwise in this case. The agent now starts
looking for laser rangers detecting a safe value (above dlaser),
starting from lasers 3, in the anti-clockwise direction. As a
result, we follow the wall in a chainsaw pattern, alternating
between lasers 3 and 0. Next, the agent uses odometry to detect
that it has avoided the obstacle, by exiting and re-entering the
green zone, while getting closer to the goal waypoint.

Attraction-Repulsion Swarming – When the agent detects
at least one other agent within a distance dswarm, it uses
attraction-repulsion swarming to avoid other agents and ob-
jects, while tracking its goal waypoint. This state is terminated
when no agent is within dswarm, selecting ‘line following’
instead. As can be seen in Figure 3 and Equations 5,6, the
final commanded velocity vector is a sum of repulsive forces
away from low laser readings and close agents, while exerting
an attractive force to the goal waypoint.

Ai,t =

#agents∑
k=0

kswarm · Relu (dswarm − ‖xi,k,t‖) ·
xi,k,t

‖xi,k,t‖

+

3∑
k=0

klaser · Relu
(
d
′
laser − lk,t

)
· R
(
k + 2

2
π

)
· i

+
gi,t

‖gi,t‖
· Vdesired

(5)

In Equation 5, Ai,t is the attraction vector of agent i at time
step (so not iteration) t, specifying the motion direction. Each
time step the agent receives new estimates and re-computes
Ai,t. The first term results in repulsion away from other
agents that are closer than dswarm, while the second term
adds repulsion from laser rangers seeing a value lower than
d′laser, and the third term adds attraction to the goal waypoint.

In the first term, kswarm is the swarm repulsion gain, and
dswarm is the threshold to start avoiding agents. xi,k,t is the
vector between agent i and agent k, at time step t. The rectified
linear unit (Relu) makes sure only close agents are repulsed.
In the second term, klaser is the laser repulsion gain, and
d′laser is the threshold to start repulsing a laser. lk,t is the laser
reading k at step t, numbered according to Figure 3. Relu
makes sure only lasers recording values lower than d′laser are
repulsed. R(·) is the rotation matrix, used to rotate i in the
direction away from laser k, such that the second term adds
repulsion away from low lasers. The third term adds attraction
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Fig. 3. Sniffy Bug’s three states: line following, wall following, and attraction-repulsion swarming.

from the agent’s current position to the goal. gi,t is the vector
from agent i to the goal waypoint, at time step t. This term is
scaled to be of size Vdesired, which is the desired velocity, a
user-defined scalar. As a last step, we normalize Ai,t to have
size Vdesired too, using Equation 6.

Vcommand =
Ait

‖Ait‖
· Vdesired (6)

Here Vcommand is the velocity vector sent to the low-level
control loops. Commanding a constant speed prevents both
deadlocks in which the drones hover in place and peaks in
velocity that induce collisions.

C. AutoGDM

Fully automated gas dispersion modeling based on Compu-
tational Fluid Dynamics (CFD) requires three main steps: 1)
Environment generation, 2) CFD, and 3) Filament simulation
(Figure 4).

1) Environment Generation: We use the procedural en-
vironment generator described in [32], which can generate
environments of any desired size with a number of requested
rooms. Additionally, AutoGDM allows users to insert their
own 2D binary occupancy images, making it possible to model
any desired 2.5D environment by extruding the 2D image.

2) CFD: CFD consists of two main stages, i.e., meshing
and solving (flow field generation). We use the open-source
package OpenFOAM [33] for both stages. To feed the gen-
erated environments into OpenFOAM, the binary occupancy
maps are converted into 3D triangulated surface geometries of
the flow volume. We detect the largest volume in the image and
declare it as our flow volume and test area. We create a mesh
using OpenFOAM blockMesh and snappyHexMesh, and
assign inlet and outlet boundary conditions randomly to ver-
tical surfaces. Finally, we use OpenFOAM pimpleFOAM to
solve for kinematic pressure, p, and the velocity vector, U .

3) Filament simulation: In the final stage of AutoGDM,
we use the GADEN ROS package [21] to model a gas source
based on filament dispersion theory. It releases filaments that
expand over time, and disappear when they find their way to
the outlet. The expansion of the filaments and the dispersion
rate of the source (i.e., filaments dispersed per second), is
random within a user-defined range.

Occupancy Map 
 

Mesh

Flow FieldConcentration Field

CAD Flow Volume

Environment Generation Computational Fluid Dynamics

Filament Simulation
Select Boundary Conditions 

Place Source

Fig. 4. AutoGDM, a fully automated environment generation and gas
dispersion modeling pipeline.

D. Evolutionary Optimization

We feed the generated gas data into Swarmulator1, an open
source lightweight C++ simulator for simulating swarms. The
agent is modelled as a point mass, which is velocity-controlled
using a P controller. We describe both the environment and
laser rays as a set of lines, making it extremely fast to
model laser rangers. An agent ‘crashes’ when one of its laser
rangers reads less than 0.1 m or when another agent is closer
than 0.5 m. The agents are fed with gas data directly from
AutoGDM, which is updated every 1.0 s in simulation time.

Using this simulation environment, we evolve the parame-
ters of Sniffy Bug with the ‘simple genetic algorithm’ from the
open-source PyGMO/PAGMO package [34]. The population
consists of 50 individuals and is evolved for 400 generations.
The algorithm uses tournament selection, mating through ex-
ponential crossover and mutation using a polynomial mutation
operator. The mutation probability is 0.1, while the crossover
probability is 0.9. The genome consists of 13 different vari-
ables, as shown in Table I, including their ranges set during
evolution. Parameters that have a physical meaning when
negative are allowed to be negative, while variables such as
time and distance need to be positive.

1https://github.com/coppolam/swarmulator

https://github.com/coppolam/swarmulator


Fig. 5. Environment selection probability P (i) for all 100 environments at
the end of evolution. The environments below the x-axis show that harder
environments, with higher P (i), contain more obstacles and local optima.

Each agent’s cost is defined as its average distance to source
with an added penalty (+ 1.0) for a crash. Even without
a penalty the agents will learn to avoid obstacles to some
capacity, but a penalty stimulates prudence. Other metrics like
‘time to source’ were also considered, but we found average
distance to work best and to be most objective. It leads to
finding the most direct paths and staying close to the source.

In each generation, we select n environments out of the
total of m environments generated using AutoGDM. As
considerable heterogeneity exists between environments, we
may end up with a controller that is only able to solve easy
environments. This is known as the problem of hard instances.
To tackle this problem, we study the effect of ‘doping’ [35] on
performance in simulation. When using doping, the probability
of selecting environment number i is:

P (i) =
D(i)∑m
k=0D(k)

(7)

D(i) is the ‘difficulty’ of environment i, computed based on
previous experience. If environment i is selected to be evalu-
ated, we save the median of all 50 costs in the population. We
use median instead of mean to avoid a small number of poor-
performing agents to have a large impact. D(i) is the mean of
the last three recorded medians. If no history is present, D(i)
is the average of all difficulties of all environments. Using
Equation 7 implies that we start with an even distribution, but
over time give environments with greater difficulty a higher
chance to be selected in each draw. When not using doping,
we set P (i) = 1

m , resulting in a uniform distribution.

III. RESULTS

A. Training in Simulation

For evolution, we used AutoGDM to randomly generate
100 environments of 10 × 10 m in size, the size of our
experimental arena. This size is sufficiently large for creating
environments with separate rooms, in which local maxima of
gas concentration may exist. At the same time, it is sufficiently
small for exploration by a limited number of robots. We
use 3 agents, with Vdesired = 0.5 m/s. Figure 5 shows that
the generated environments differ in obstacle configuration
and gas distribution. During each generation, every genome

Variable Manually Selected Evolved Evolution range
ω 0.5 0.271 [-5,5]
ϕp 0.8 -0.333 [-5,5]
ϕg 2.0 1.856 [-5,5]
ω′ 0.3 1.571 [-5,5]
rr 0.7 2.034 [0,5]
twp 10.0 51.979 [0,100]
dwp 0.5 2.690 [0,5]
dlaser 1.5 1.407 [0,5]
dswarm 1.5 0.782 [0,5]
dline 0.2 0.469 [0,1]
klaser 5.0 16.167 [0,20]
kswarm 15.0 10.032 [0,20]
d′laser 1.5 0.594 [0,5]

TABLE I
PARAMETERS EVOLVED IN EVOLUTION USING DOPING, CONSULT

SECTION II-B FOR THE MEANING OF THE VARIABLES.

is evaluated on a random set of 10 out of the total 100
environments, with a maximum duration per run of 100 s.
All headings and starting positions are randomized after each
generation. Agents are spawned in some part of the area so
that a path exists towards the gas source.

We assess training results for training with doping. Table I
shows the evolved parameters in comparison with the manually
designed parameters. rrange is set to 10 m, creating random
waypoints in a box of 10 m in size around the agent during
‘exploring’. This box is scaled by evolved parameter rr (Equa-
tion 3). When generating new waypoints, the agent has learned
to move strongly towards the swarm’s best-seen position sj ,
away from its personal best-seen position pi,j , and towards its
previously computed goal gi,j−1. We expect this to be best in
the environments encountered in evolution, as in most cases
only one optimal position (with the highest concentration)
exists. Hence, it does not need its personal best position to
avoid converging to local optima. ω adds ‘momentum’ to the
waypoints generated, increasing stability.
dswarm shows that attraction-repulsion swarming is engaged

only when another agent is within 0.782 m. This is substan-
tially lower than the manually chosen 1.5 m, which can be
explained by a lower cost when agents stay close to each other
after finding the source. It also makes it easier to pass through
narrow passages, but could increase the collision risk when
agents are close to each other for a long time. Furthermore,
dwp is set to 2.69 m , which is much higher than our manual
choice and the timer has been practically disabled (twp =
51.979). Instead of using the timeout, the evolved version
uses PSO to determine the desired direction to follow, until
it has travelled far enough and generates a new waypoint.
For obstacle avoidance we see that the manual parameters
are more conservative than the evolved counterparts. Being
less conservative allows the agents to get closer to the source
quicker, at the cost of an increased collision risk. This is an
interesting trade-off, balancing individual collision risks with
more efficient gas source localization.

After training, the probability for each environment in each
draw can be evaluated as a measure of difficulty. Figure 5
shows a histogram of all 100 probabilities along with some
environments on the spectrum. Generally, more cluttered en-
vironments with more local minima are more difficult.



Success Rate Avg Distance
to Source [m]

Avg time
to source [s]

Manual params PSO 90 % 3.06 51.58
Manual params Anemotaxis 91 % 4.12 60.56
Manual params Chemotaxis 80 % 4.31 68.61
Evolved PSO w/o Doping 89 % 2.95 44.33
Evolved PSO with Doping 92 % 2.75 41.94

TABLE II
SNIFFY BUG EVALUATED ON 100 RANDOMLY GENERATED

ENVIRONMENTS.

B. Baseline Comparison in Simulation

It is difficult to compare Sniffy Bug with a baseline algo-
rithm, since it would need to seek a gas source in cluttered
environments, avoiding obstacles with only four laser rangers
and navigating without external positioning. To the best of
our knowledge, such an algorithm does not yet exist. Hence,
we replace the gas-seeking part of Sniffy Bug (PSO) by two
other well-known strategies, leading to (i) Sniffy Bug with
anemotaxis, and (ii) Sniffy Bug with chemotaxis. In the case
of anemotaxis, inspired by [7], waypoints are placed randomly
when no gas is present, and upwind when gas is detected.
Then, when the agent loses track of the plume, it generates
random waypoints around the last point it has seen inside the
plume, until it finds the plume again. Similarly, the chemotaxis
baseline uses Sniffy Bug for avoidance of obstacles and
other agents, but places waypoints in the direction of the gas
concentration gradient if a gradient is present. The chemotaxis
baseline determines the gradient by moving a small distance
in x and y before computing a new waypoint, while the
anemotaxis baseline receives ground-truth airflow data straight
from AutoGDM. We expect that the baseline algorithms’
sensor measurements - and hence performance - would transfer
less well to real experiments. For chemotaxis we expect that
estimating the gradient in presence of noise and drift of the
sensor data will yield inaccurate measurements. Anemotaxis
based on measuring the weak airflow in indoor environments
will be even more challenging.

We evaluate the models in simulation on all 100 generated
test environments, and randomize start position 10 times in
each environment, for a total of 1,000 runs for each model.
We record different performance metrics: 1) success rate, 2)
average distance to source, and 3) average time to source.
Success rate is defined as the fraction of runs during which at
least one of the agents reaches within 1.5 m from the source,
whereas average time to source is the average time it takes an
agent to reach within 1.5 m from the source. For agents not
reaching the source, 100 s is taken as time to source.

Table II shows that Sniffy Bug with PSO outperforms
anemotaxis and chemotaxis in average time and distance to
source, and has a success rate similar to the anemotaxis
baseline. Chemotaxis suffers from the gas gradient not always
pointing in the direction of the source. Due to local optima,
and a lack of observable gradient further away from the source,
chemotaxis is not as effective as PSO or anemotaxis. Since
we expect the sim2real gap to be much more severe for
anemotaxis than for PSO, which only needs gas readings, we
decide to proceed with PSO.

Fig. 6. Sniffy Bug with manual
parameters, successfully locating the
source.

Fig. 7. Sniffy Bug with parame-
ters evolved using doping, finding the
source quicker.
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Fig. 8. Three sets of parameters evaluated in simulation: 1) manually set
parameters, 2) parameters evolved without doping, and 3) parameters evolved
using doping [35] to address the hard instance problem.

C. Doping in Simulation

We now compare Sniffy Bug using PSO with manual
parameters, parameters evolved without doping, and param-
eters evolved with doping. Table II shows that the evolved
parameters without doping find the source quicker, and with
a smaller average distance to source, compared to the manual
parameters. However, its success rate is slightly inferior to
the manual parameters. This is caused by the hard instance
problem [35]: the parameters perform well on average but fail
on the more difficult environments.

Figures 6 and 7 show runs in simulation of the manual and
evolved version with doping respectively, with the same initial
conditions. The parameters evolved with doping outperform
the other controllers in all metrics. Doping helps to tackle
harder environments, improving success rate and thereby av-
erage distance to source and time to source. This effect is
further exemplified by Figure 8. The doping controller does
not only result in a lower average distance to source, it also
shows a smaller spread. Doping managed to reduce the size of
the long tail that is present in the set of evolved parameters.

As we test on a finite set of environments, and the as-
sumptions of normality may not hold, we use the empirical
bootstrap [36] to compare the means of the average distance
to source. Using 1,000,000 bootstrap iterations, we find that
only when comparing the manual parameters with evolved
parameters with doping, the null hypothesis can be rejected,
with P = 2× 10−6, showing that parameters evolved with
doping perform significantly better than manual parameters.



(a) Environment 1: the agents need to
explore the ‘room’ in the corner to
smell the gas.

(b) Environment 2: the agents need to
go around a long wall to locate the
source.

(c) Environment 3: an easier environ-
ment with some obstacles.

(d) Environment 4: an empty environ-
ment.

Fig. 9. Time-lapse images of real-world experiments in four distinct envi-
ronment setups, 10 × 10 m in size, seeking a real isopropyl alcohol source.
The nano quadcopters’ trajectories are visible due to their blue lights.

D. Flight Tests

Finally, we transfer the evolved solution to the real world,
validating our methodology. We deploy our swarm in four
different environments of 10 × 10 m in size, as shown in
Figure 9. We place a small can of isopropyl alcohol with
a 5V computer fan within the room as the gas source. We
compare manual parameters with the parameters evolved using
doping, by comparing their recorded gas readings. Each set
of parameters is evaluated three times for each environment,
resulting in a total of 24 runs. A run is terminated when: 1)
the swarm is stationary and close to the source, or 2) at least
two members of the swarm crash. Each run lasts at least 120 s.
Figure 10 corresponds to the run depicted in Figure 9a.
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Fig. 10. Evolved Sniffy Bug seeking an isopropyl alcohol gas source in
environment 1. After agent 3 finds the source, all three agents quickly find
their way to higher concentrations.

Figure 11 shows the maximum recorded gas readings by
the swarm, for each time step for each run. Especially for
environment 1, it clearly shows the more efficient source
seeking behavior of our evolved controller. Table III shows
the average and maximum observed concentrations by the
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(d) Environment 4.

Fig. 11. Maximum recorded gas reading by the swarm, for each time step
for each run.

Manual Evolved
Avg ± std Max ± std Avg ± std Max ± std

Env 1 0.250 ± 0.036 0.406 ± 0.049 0.330 ± 0.046 0.566 ± 0.069
Env 2 0.162 ± 0.055 0.214 ± 0.070 0.165 ± 0.046 0.237 ± 0.063
Env 3 0.200 ± 0.074 0.300 ± 0.103 0.258 ± 0.045 0.412 ± 0.029
Env 4 0.240 ± 0.123 0.398 ± 0.143 0.176 ± 0.062 0.349 ± 0.151

TABLE III
AVERAGE AND MAXIMUM SMELLED CONCENTRATION BY THE SWARM,
FOR MANUAL AND EVOLVED PARAMETERS, AVERAGED OVER 3 RUNS.

swarm, averaged over all three runs per environment. It shows
that for environments with obstacles, our evolved controller
outperforms the manual controller in average observed gas
readings and average maximum observed gas readings.

The evolved controller was able to reach the source within
±2.0 m in 11 out of 12 runs, with one failed run due to
converging towards a local optimum in environment 4 (pos-
sibly due to sensor drift). The manual parameters failed once
in environment 2 and once in environment 3. The manual
parameters were less safe around obstacles, recording a total
of 3 crashes in environments 1 and 2. The evolved parameters
recorded only one obstacle crash in all runs (environment 2).
We hypothesize that the more efficient, evolved GSL strategy
reduces the time around dangerous obstacles.

On the other hand, the evolved parameters recorded 2 drone
crashes, both in environment 4, when the agents were really
close to each other and the source for extended periods of time.
The manual parameters result in more distance between agents,
making it more robust against downwash and momentarily
poor relative position estimates. This can be avoided in future
work by a higher penalty for collisions during evolution, or
classifying a run as a crash when agents are, for instance,
0.8 m away from each other instead of 0.5 m.

The results show that AutoGDM can be used to evolve a
controller that not only works in the real world in challenging
conditions, but even outperforms manually chosen parameters.
While GADEN [21] and OpenFOAM [33] are by themselves
already validated packages, the results corroborate the validity
of our simulation pipeline, from the randomization of the
source position and boundary conditions to the simulated
drones’ particle motion model.



IV. CONCLUSION

We have introduced a novel bug algorithm, Sniffy Bug, lead-
ing to the first fully autonomous swarm of gas-seeking nano
quadcopters. The parameters of the algorithm are evolved,
outperforming a human-designed controller in all metrics in
simulation and robot experiments. We evolve the parameters
of the bug algorithm in simulation and successfully transfer
the solution to a challenging real-world environment. We also
contribute the first fully automated environment generation and
gas dispersion modeling pipeline, AutoGDM, that allows for
learning GSL in simulation in complex environments.

In future work, our methodology may be extended to larger
swarms of nano quadcopters, exploring buildings and seeking
a gas source fully autonomously. PSO was designed to work
in large optimization problems with many local optima, and is
likely to extend to more complex configurations and to GSL in
3D. Finally, we hope that our approach can serve as inspiration
for tackling also other complex tasks with swarms of resource-
constrained nano quadcopters.
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[34] D. Izzo, M. Ruciński, and F. Biscani, The Generalized Island Model, 01
2012, vol. 415, pp. 151–169.

[35] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma, “DECA: The
doping-driven evolutionary control algorithm,” Applied Artificial Intel-
ligence, vol. 22, pp. 169–197, 03 2008.

[36] B. Efron, “Bootstrap methods: Another look at the jackknife,” Ann.
Statist., vol. 7, no. 1, pp. 1–26, 01 1979.


	I Introduction
	II Method
	II-A System Design
	II-B Algorithm Design
	II-B1 Waypoint generation
	II-B2 Waypoint tracking

	II-C AutoGDM
	II-C1 Environment Generation
	II-C2 CFD
	II-C3 Filament simulation

	II-D Evolutionary Optimization

	III Results
	III-A Training in Simulation
	III-B Baseline Comparison in Simulation
	III-C Doping in Simulation
	III-D Flight Tests

	IV Conclusion
	References

