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Abstract— The aim of this paper is to study the influence
of locality mechanisms in vision transformers. Transformers
originated from machine translation and are particularly good
at modelling long-range dependencies within a long sequence.
Although the global interaction between the token embeddings
could be well modelled by the self-attention mechanism of
transformers, what is lacking is a locality mechanism for infor-
mation exchange within a local region. In this paper, locality
mechanism is systematically investigated by carefully designed
controlled experiments. We add locality to vision transformers
into the feed-forward network. This seemingly simple solution is
inspired by the comparison between feed-forward networks and
inverted residual blocks. The importance of locality mechanisms
is validated in two ways: 1) A wide range of design choices
(activation function, layer placement, expansion ratio) are
available for incorporating locality mechanisms and proper
choices can lead to a performance gain over the baseline, and
2) The same locality mechanism is successfully applied to vision
transformers with different architecture designs, which shows
the generalization of the locality concept. For ImageNet2012
classification, the locality-enhanced transformers outperform
the baselines Swin-T [1], DeiT-T [2] and PVT-T [3] by 1.0%,
2.6% and 3.1% with a negligible increase in the number
of parameters and computational effort. Code is available at
https://github.com/ofsoundof/LocalViT.

I. INTRODUCTION

Recent advances in machine learning (ML) research, such
as computer vision and natural language processing, have
been driven by backbone models that can be adapted to
different problems [4], [5]. However, the foundation models
in vision and language tend to be heavy and computational
expensive, thus hindering their applicability in edge devices
such as drones and robotics. Thus, how to improve the
efficiency of neural models such as convolutional neural
networks (CNNs) and transformers becomes important.

CNNs are based on locality in that convolutional filters
only perceive a local region of the input image, i.e. the
receptive field. By stacking multiple layers, the effective
receptive fields of a deep neural network can be enlarged
progressively. This design enables the network to learn a
hierarchy of deep features, which is essential for the success
of CNNs. Meanwhile, the local, repetitive connections save
many parameters compared with fully connected layers. Yet,
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one problem is that a larger receptive field can only be
achieved by combining layers, despite alternative attempts
at enlarging the receptive field [6].

Fig. 1: Comparison between LocalViT and the baseline
transformers. The transformers enhanced by the proposed
locality mechanism outperform their baselines

A parallel research strand incorporates global connectivity
into the network via self-attention [4], [7], [8], [9], [10].
This family of networks, i.e. transformer networks, originates
from machine translation and is very good at modelling
long-range dependencies in sequences. There also is a rising
interest in applying transformers to vision [11], [5], [2].
Vision transformers have already achieved performances
quite competitive with their CNN counterparts.

To process 2D images with transformers, the input image
is first converted to a sequence of tokens which correspond
to patches in the image. Then the attention module attends
to all tokens and a weighted sum is computed as the tokens
for the next layer. In this way, the effective receptive field
is expanded to the whole image via a single self-attention
layer. Yet, the problem of visual transformers is that global
connectivity contradicts the convolutional idea.

Considering the merits of CNNs vs. transformers, a natural
question is whether we can efficiently combine the locality of
CNNs and the global connectivity of vision transformers to
improve performance while not increasing model complexity.

This aim of this paper is aligned with other works that try
to answer this interesting question, i.e. taking the advantage
of both convolution and transformers [12], [13], [14], [15],
[16], [17]. Differently, we provide a systematic analysis
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of various design choices of the locality mechanism by
rigorous and controlled experiments. Beyond that, we try
to generalize the conclusions from the ablation study to a
bunch of vision transformers. Thus, the aim of this paper
is to thoroughly investigate a single component (locality
mechanism) in vision transformers.

To conduct the investigation, we start with a mechanism
that injects locality into the feed-forward network of trans-
formers, which is inspired by examining the feed-forward
network and inverted residuals [18], [19]. The feed-forward
network of transformers consists of two fully connected lay-
ers and the hidden dimension between them is expanded to
extract richer features. Similarly, in inverted residual blocks,
the hidden channel between the two 1 × 1 convolutions is
also expanded. The major difference between them is the ef-
ficient depth-wise convolution in the inverted residual block.
Such convolution can provide precisely the mechanism for
local information aggregation which is missing in the feed-
forward network of vision transformers. To cope with the
convolution, the image tokens of the sequence from the self-
attention module must be rearranged to a 2D feature map,
which is processed by the feed-forward network. The class
token is split out and bypasses the feed-forward network.
The derived new feature map is converted back to image
tokens and concatenated with the bypassed class token. The
concatenated sequence is processed by the next transformer
layer.

Through the empirical study, we derive two sets of conclu-
sions. Firstly, four important properties of the investigated
locality mechanism are revealed. i. Locality mechanism
alone can already improve the performance of the baseline
transformer. ii. A better activation function can result in a
significant performance gain. iii. The locality mechanism is
more important for lower layers. iv. Expanding the hidden
dimension of the feed-forward network leads to a larger
model capacity and a higher classification accuracy. Sec-
ondly, as shown in Fig. 1, the locality mechanism is suc-
cessfully applied to 5 vision transformers, which underlines
its generality. The contributions of this paper are three-fold:

1) We study a locality mechanism that enhances vision
transformers. The modified transformer architecture
combines a self-attention mechanism for global rela-
tionship modelling and a locality mechanism for local
information aggregation.

2) We analyze the basic properties of the introduced
locality mechanism. The influence of each component
(depth-wise convolution, non-linear activation func-
tion, layer placement, and hidden dimension expansion
ratio) is singled out.

3) We apply these ideas to vision transformers incl.
DeiT [2], Swin transformers [1], T2T-ViT [20],
PVT [3], and TNT [21]. Experiments show that the
simple technique proposed in this paper generalizes
well to various transformer architectures.

II. RELATED WORK

A. Transformers

Transformers were first introduced in [4] for machine
translation. The proposed attention mechanism aggregates
information from the whole input sequence. Thus, transform-
ers are especially good at modelling long-range dependencies
between elements of a sequence. Since then, there have been
several attempts to adapt transformers towards vision and
robotics [11], [22], [23], [24], [25], [26], [27]. Most recently,
transformers are proposed to solve robotic problems by
learning the mapping from language and vision observations
to robot actions [23].

B. Locality vs. global connectivity

Both local information and global connectivity help to
reason about the relationships between image contents. The
convolution operation applies a sliding window to the input
and local information is inherently aggregated to compute
new representations. Thus, locality is an intrinsic property
of CNNs [28]. Although CNNs can extract information from
a larger receptive field by stacking layers and forming deep
networks, they still lack global connectivity [29], [30], [31].
To overcome this problem, some researchers add global
connectivity to CNNs with non-local blocks [32], [33].

By contrast, transformers are especially good at modelling
long-range dependencies within a a sequence owing to their
attention mechanism [4]. But, in return, a locality mechanism
remains to be added for visual perception. Some works
already contributed towards this goal [20], [1], [34], [35],
[36], [37]. Those works mainly focus on improving the
tokenization and self-attention parts. There are also some
works that introduce hybrid architectures of CNNs and
transformers [15], [16]. In the meanwhile, we also noticed
some other works introducing convolutions to different parts
of transformers [17], [12]. The difference between our work
and the other works is that we systematically investigate
locality mechanism and single out its importance to trans-
former architectures. This is inspired by the comparison
between vision transformers and the inverted residual blocks
in MobileNets.

C. Inverted residuals

Compared with normal convolution, the computations of
depth-wise convolution are only conducted channel-wise.
That is, to obtain a channel of the output feature map,
the convolution is only conducted on one input feature
map. Thus, depth-wise convolution is efficient both in terms
of parameters and computation. Thus, Howard et al. first
proposed the MobileNet architecture based on depth-wise
separable convolutions [38]. This lightweight and computa-
tionally efficient network is quite friendly for mobile devices.
Since then, depth-wise convolution has been widely used to
design efficient models. Inverted residual blocks are based
on depth-wise convolution and were first introduced in Mo-
bileNetV2 [18]. The inverted residual blocks are composed
of a sequence of 1 × 1 - depth-wise -1 × 1 convolutions.
The hidden dimension between the two 1 × 1 convolutions



is expanded. The utilization of depth-wise convolution avoids
the drastic increase of model complexity brought by normal
convolution. Due to the efficiency of this module, it is
widely used to form the search space of neural architecture
search (NAS) [19], [39], [40]. The expansion of the hidden
dimension of inverted residuals is quite similar to the feed-
forward network of vision transformers. This motivates us to
think about the connection between them (See Sec. III-B).

III. METHODOLOGY

Transformers are usually composed of encoders and de-
coders with similar building blocks. For the image classifi-
cation task considered here, only the encoders are included
in the network. Thus, we mainly describe the operations in
the encoder layers. The encoders have two components, i.e.
the self-attention mechanism that relates a token to all of the
tokens and a feed-forward network that is applied to every
token. We specifically explain how to introduce locality into
the feed-forward network.

A. Input interpretation

(a) The input is regarded as a sequence of tokens.

(b) An equivalent perspective is to still rearrange the tokens as a 2D lattice.

Fig. 2: Visualization of the feed-forward network in trans-
formers from different perspectives. In this figure, n = 2,
γ = 2, d = 5.

Sequence perspective. Inherited from language mod-
elling, transformers regard the input as a sequence that
contains elements of embedded vectors. Consider an input
image X ∈ RC×H×W , where C and H × W denote the
channel and spatial dimension of the input image, resp. The
input image is first converted to tokens {X̂i ∈ Rd|i =
1, . . . , N}, where d = C × p2 is the embedding dimension
and N = HW

p2 . The tokens can be aggregated into a matrix
X̂ ∈ RN×d.

Self-attention. In the self-attention mechanism, the rela-
tionship between the tokens is modelled by the similarity
between the projected query-key pairs, yielding the attention

score. The new tokens are computed as the weighted sum of
the project values. That is,

Z = Softmax(QKT /
√
d)V, (1)

where the Softmax function is applied to the rows of the
similarity matrix and d provides a normalization. The query,
key, and value are a projection of the tokens, i.e. Q = X̂WQ,
K = X̂WK , V = X̂WV . The projection matrices WQ and
WK have the same size while WV could have a different
size. In practice, the three projection matrices usually have
the same size, i.e. WQ,WK ,WV ∈ Rd×d.

Feed-forward network. After the self-attention layer, a
feed-forward network is appended. The feed-forward net-
work consists of two fully-connected layers and transforms
the features along the embedding dimension. The hidden di-
mension between the two fully-connected layers is expanded
to learn a richer feature representation. That is,

Y = f(ZW1)W2, (2)

where W1 ∈ Rd×γd, W2 ∈ Rγd×d, and f(·) denotes a non-
linear activation function. For the sake of simplicity, the bias
term is omitted. The dimension expansion ratio γ is usually
set to 4. As shown in Fig. 2a, the input to the feed-forward
network is regarded as a sequence of embedding vectors.

Lattice perspective. Since the feed-forward network is
applied position-wise to a sequence of tokens Z ∈ RN×d, an
exactly equivalent representation is to rearrange the sequence
of tokens into a 2D lattice as shown in Fig. 2b. Then the
reshaped feature representation is

Zr = Seq2Img(Z),Zr ∈ Rh×w×d, (3)

where h = H/p and w = W/p. The operation Seq2Img
converts a sequence to a 2D feature map. Each token is
placed to a pixel location of the feature map. The benefit
of this perspective is that the proximity between tokens is
recovered, which provides the chance to introduce locality
into the network. The fully-connected layers could be re-
placed by 1× 1 convolutions, i.e.

Yr = f(Zr ⊛Wr
1)⊛Wr

2, (4)
Y = Img2Seq(Yr), (5)

where Wr
1 ∈ Rd×γd×1×1 and Wr

2 ∈ Rγd×d×1×1 are
reshaped from W1 and W2 and represent the convolutional
kernels. The operation Img2Seq converts the image feature
map back to a token sequence which is used by the next
self-attention layer.

B. Locality

Since only 1×1 convolution is applied to the feature map,
there is a lack of information interaction between adjacent
pixels. Besides, the self-attention part of the transformer only
captures global dependencies between all of the tokens. Thus,
the transformer block does not have a mechanism to model
the local dependencies between nearby pixels. It would be
interesting if locality could be brought to transformers in an
efficient way.
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Fig. 3: Comparison between the (a) convolutional version
of the feed-forward network in vision transformers, the (b)
inverted residual blocks, and (c) the utilized network that
brings locality mechanism into transformers. “DW” denotes
depth-wise convolution. To cope with the convolution oper-
ation, the conversion between sequence and image feature
map is added by “Seq2Img” and “Img2Seq” in (c). Note
that after each convolution, there are activation functions.
In Table II, we systematically investigate influence of the
activation function after the depthwise convolution in (c).

The expansion of the hidden dimension between fully-
connected layers and the lattice perspective of the feed-
forward network remind us of the inverted residual block
proposed in MobileNets [18], [19]. As shown in Fig. 3, both
of the feed-forward network and the inverted residual expand
and squeeze the hidden dimension by 1×1 convolution. The
only difference is that there is a depth-wise convolution in
the inverted residual block. Depth-wise convolution applies
a k × k (k > 1) convolution kernel per channel. The
features inside the k × k kernel is aggregated to compute
a new feature. Thus, depth-wise convolution is an efficient
way of introducing locality into the network. Considering
that, we reintroduce depth-wise convolution into the feed-
forward network of transformers. And the computation could
be represented as

Yr = f
(
f(Zr ⊛Wr

1)⊛Wd

)
⊛Wr

2, (6)

where Wd ∈ Rγd×1×k×k is the kernel of the depth-wise
convolution. The finally used network is shown in Fig. 3c.
The input, i.e. a sequence of tokens is first reshaped to a
feature map rearranged on a 2D lattice. Then two 1 × 1
convolutions along with a depth-wise convolution are applied
to the feature map. After that, the feature map is reshaped to
a sequence of tokens which are used as by the self-attention
of the network transformer layer.

Note that the non-linear activation functions are not vi-
sualized in Fig. 3. Yet, they play a quite important role in
enhancing the network capacity, especially for efficient net-
works. In particular, we try ReLU6, h-swish [19], squeeze-
and-excitation (SE) module [41], efficient channel attention
(ECA) module [42], and their combinations. A thorough

analysis of the activation function is discussed in the ex-
periments section.

C. Class token

To apply vision transformers to image classification, a
trainable class token is added and inserted into the token
embedding, i.e.

X̂← Concat(Xcls, X̂), (7)

where ← denotes the assignment operation, Xcls ∈ R1×d

is the class token. The new matrix has the dimension of
(N + 1) × d and N + 1 = HW

p2 + 1 tokens. In the self-
attention module, the class token exchanges information
with all other image tokens and gathers information for the
final classification. In the feed-forward network, the same
transformation is applied to the class and image tokens.

When depth-wise convolution is introduced into the feed-
forward network, the sequence of tokens needs to be re-
arranged into an image feature map. Yet, the additional
dimension brought by the class token makes the exact
rearrangement impossible. To circumvent this problem, we
split the N + 1 tokens in Eqn. (1) into a class token and
image tokens again, i.e.

(Zcls,Z)← Split(Z). (8)

Then the new image token is passed through the feed-forward
network according to Eqns. (3), (6), and (5), leading to
Y. The class token is not passed through the feed-forward
network. Instead, it is directly concatenated with Y, i.e.

Y ← Concat(Zcls,Y). (9)

The split and concatenation of the class token is done for
every layer. Although the class token Zcls is not passed
through the feed-forward network, the performance of the
overall network is not adversely affected. This is because
the information exchange and aggregation is done only in
the self-attention part. A feed-forward network like Eqn. (2)
only enforces a transformation within each token.

IV. EXPERIMENTAL RESULTS

This section gives the experimental results for image
classification. We first study how the locality brought by
depth-wise convolution can improve the performance of
transformers. Then we investigate the influence of several
design choices including the non-linear activation function,
the placement of the locality, and the hidden dimension
expansion ratio γ. All those experiments are based on DeiT-
T [2]. Then, we study the generalization to other vision
transformers including T2T-ViT [20], PVT [3], TNT [21],
Swin transformer [1] for image classification. The transform-
ers that are equipped with locality are denoted as LocalViT
followed by the suffix that denotes the basic architecture.



A. Implementation details
We introduce the locality mechanism into five vision

transformers including DeiT [2], Swin transformers [1], T2T-
ViT [20], PVT [3], TNT [21]. Since those transformers
have different architectures, slightly different considerations
should be made. First of all, a Tokens-to-Token (T2T)
module is designed in T2T-ViT [20] and is inserted into
the head of the network. Basically, the T2T module is
also a transformer block with feed-forward networks. Thus,
the same modification is also applied to the T2T module.
Secondly, TNT introduced an inner transformer block for the
image tokens along with the outer transformer block. Yet, we
observed huge increase of GPU memory. Thus, the locality
mechanism is only applied to the outer transformer block
of TNT [21]. Thirdly, for PVT [3], the class token is only
introduced in the final stage of the pyramid. Thus, the split
and concatenation of the class token for the feed-forward
network is only applied in the final stage. Fourthly, there is
no class token in Swin transformers [1]. The classification
is done based on an averaged pooled feature map. Thus, the
special treatment of the class token is not needed in our
modified Swin transformers.

For fast experiment, we shrink TNT and Swin transformers
and get smaller versions of them. TNT-T is derived by
reducing the embedding dimension from 384 to 192. Swin-
M is derived by reducing the number of transformer blocks
in the third stage from 6 to 2.

Experimental setup. The ImageNet2012 dataset [43] is
used in this paper. The dataset contains 1.28M training im-
ages and 50K validation images from one thousand classes.
We follow the same training protocol as DeiT [2]. The input
image is randomly cropped with size 224 × 224. Cross-
entropy is used as the loss function. Label smoothing is used.
The weight decay factor is set to 0.05. The AdamW optimizer
is used with a momentum of 0.9. The training continues
for 300 epochs. The batch size is set to 1024. The initial
learning rate is set to 1 × 10−3 and decreases to 1 × 10−5

following a cosine learning rate scheduler. During validation,
a center crop of the validation images is conducted. We use
8 NVIDIA TITAN RTX GPUs to run the experiments.

B. Influence of the locality

TABLE I: Investigation of the locality brought by depth-wise
convolution. *ReLU6 is used as the activation function after
depth-wise convolution. †Results derived by modifying the
DeiT architecture and training the network with the same
training protocol

Network γ
Depthwise

Conv
Params Top-1

(M) Acc. (%)
DeiT-T [2] 4 No 5.7 72.2
LocalViT-T 4 No 5.7 72.5 (0.3↑)
LocalViT-T* 4 Yes 5.8 73.7 (1.5↑)
DeiT-T [2] 6 No 7.5 73.1†
LocalViT-T 6 No 7.5 74.3 (1.2↑)
LocalViT-T* 6 Yes 7.7 76.1 (3.0↑)

We first study how the local information could help to
improve the performance of vision transformers in Table I.

TABLE II: Investigation of the non-linear activation function.
The combination of HS, ECA [42], and SE [41] is studied.
“HS” means h-swish activation. “SE-**” means the reduction
ratio in the squeeze-and-excitation module. γ is set to 4.

Activation Params Top-1
(M) Acc. (%)

Deit-T [2] 5.7 72.2
ReLU6 5.8 73.7 (1.5↑)
HS 5.8 74.4 (2.2↑)
HS + ECA 5.8 74.5 (2.3↑)
HS + SE-192 5.9 74.8 (2.6↑)
HS + SE-96 6.0 74.8 (2.6↑)
HS + SE-48 6.1 75.0 (2.8↑)
HS + SE-4 9.4 75.8 (3.6↑)

Different hidden dimension expansion ratios γ are investi-
gated. First of all, due to the change of the operations in
the feed-forward network (Sec. IV-A), the Top-1 accuracy
of LocalViT-T is slightly increased even without the depth-
wise convolution. The performance gain is 0.3% for γ = 4
and is increased to 1.2% for γ = 6. Note that compared
with DeiT-T, no additional parameters and computation are
introduced for the improvement. When locality is incorpo-
rated into the feed-forward network, there is a significant
improvement of the model accuracy, i.e. 1.5% for γ = 4
and 3.0% for γ = 6. Compared with the baseline, there
only is a marginal increase in the number of parameters and
a negligible increase in the amount of computation. Thus,
the performance of vision transformers can be significantly
improved by the incorporation of a locality mechanism and
the adaptation of the operation in the feed-forward network.

C. Activation functions

The non-linear activation function after depth-wise convo-
lution used in the above experiments is simply ReLU6. The
benefit of using other non-linear activation functions is also
studied. In Table II, the ablation study based on LocalViT-
T is done. First of all, by replacing the activation function
from ReLU6 to h-swish, the gain of Top-1 accuracy over
the baseline is increased from 1.5% to 2.2%. This shows
the benefit of h-swish activation functions can be easily ex-
tended from CNNs to vision transformers. Next, the h-swish
activation function is combined with other channel attention
modules including ECA [42] and SE [41]. The ECA and SE
modules are placed directly after the h-swish function. By
adding ECA, the performance is further improved by 0.1%.
Considering that only 60 parameters are introduced, this
improvement is still considerable under a harsh parameter
budget.

Another significant improvement is brought by a squeeze-
and-excitation module. When the reduction ratio in the
squeeze-and-excitation module is reduced from 192 to 4, the
gain of Top-1 accuracy is gradually increased from 2.6% to
3.6%. The number of parameters is also increased accord-
ingly. Note that, for all of the networks, the computational
complexity is almost the same. This implies that if there is no
strict limitation on the number of parameters, advanced non-
linear activation functions could be used. In the following



TABLE III: Influence of the placement of locality. “All”
means all of the transformer layers are enhanced by depth-
wise convolution. “Low”, “Mid”, and “High” mean the
lower, middle, and higher transformer layers are equipped
with depth-wise convolution, respectively. The study is based
on LocalViT-T.

Layer Params FLOPs Top-1
Placement (M) (G) Acc. (%)

High: 9∼12 5.78 1.26 69.1
Mid: 5∼8 5.78 1.26 72.1
Low: 1∼4 5.78 1.26 73.1
Low: 1∼8 5.84 1.27 74.0
All: 1∼12 5.91 1.28 74.8

TABLE IV: Investigating the expansion ratio of hidden layers
in the feed-forward network.

γ SE Params FLOPs Top-1
(M) (G) Acc. (%)

1 No 3.1 0.7 65.9
Yes 3.1 0.7 66.2

2 No 4.0 0.9 70.1
Yes 4.0 0.9 70.6

3 No 4.9 1.1 72.9
Yes 5.0 1.1 73.1

4 No 5.8 1.3 74.4
Yes 5.9 1.3 74.8

experiments, we use the combination of h-swish and SE
as the non-linear activation function after depth-wise con-
volution. Additionally, the reduction ratio of the squeeze-
and-excitation module is chosen such that only 4 channels
are kept after the squeeze operation. This choice of design
achieves a good balance between the number of parameters
and the model accuracy. Thus, local information is also
important in vision transformers. A wide range of efficient
modules could be introduced into the feed-forward network
of vision transformers to expand the network capacity.

D. Placement of locality, expansion ratio, and discussion

The transformer layers where the locality is introduced
can also influence the performance of the network. Thus, an
ablation study based on LocalViT-T is conducted to study
their effect. The results is reported in Table III. There are
in total 12 transformer layers in the network. We divide
the 12 layers into 3 groups corresponding to “Low”, “Mid”,
and “High” stages. For the former 3 rows of Table III, we
independently insert locality into the three stages. As the
locality is moved gradually from lower stages to the higher
stages, the accuracy of the network is decreased. This shows
that local information is especially important for the lower
layers. This is also consistent with our intuition. When the
depth-wise convolution is applied to the lower layers, the
local information aggregated there could also be propagated
to the higher layers, which is important to improve the overall
performance of the network.

When the locality is introduced only in the higher stage,
the Top-1 accuracy is even lower than DeiT-T. To investigate
whether locality in the higher layers always has an adverse
effect, we progressively allow more lower layers to have

TABLE V: Image classification results for different CNNs
and vision transformers. The locality functionality is enabled
for five different vision transformers

Network Params
(M)

FLOPs
(G)

Top-1
Acc. (%)

Top-5
Acc. (%)

CNNs
ResNet-18 [31] 11.7 1.8 69.8 89.1
ResNet-50 [31] 25.6 4.1 76.1 92.9
DenseNet-169 [44] 14.2 3.4 75.6 92.8
RegNet-4GF [45] 20.7 4.0 80.0 –
MobileNetV1 [38] 4.2 0.6 70.6 –
MobileNetV2 [18] 6.9 0.6 74.7 –
EfficientNet-B0 [40] 5.3 0.4 77.1 93.3

Transformers
DeiT-T [2] 5.7 1.3 72.2 91.1
LocalViT-T 5.9 1.3 74.8 (2.6↑) 92.6
DeiT-T⚗ [2] 5.9 1.3 74.5 –
DeiT-S [2] 22.1 4.6 79.8 95.1
LocalViT-S 22.4 4.6 80.8 (1.0↑) 95.4
DeiT-S⚗ [2] 22.4 4.6 81.2 –
T2T-ViT-7 [20] 4.3 1.2 71.7 –
LocalViT-T2T 4.3 1.2 72.5 (0.8↑) –
TNT-T [21] 6.1 1.4 73.6 91.9
LocalViT-TNT 6.3 1.4 75.9 (2.3↑) 93.0
PVT-T [3] 13.2 4.7 75.1 92.3
LocalViT-PVT 13.5 4.8 78.2 (3.1↑) 94.2
Swin-M [1] 21.2 3.0 79.2 94.5
LocalViT-Swin-M 21.7 3.0 80.4 (1.2↑) 95.0
Swin-T [1] 28.3 4.5 80.9 95.3
LocalViT-Swin 29.1 4.5 81.9 (1.0↑) 95.7

depth-wise convolution until locality is enabled for all layers.
This corresponds to the last three rows of Table III. Starting
from the lower layers, the performance of the network could
be gradually improved as locality is enabled for more layers.
Thus, introducing the locality to the lower layers is more
advantageous compared with higher layers.

The effect of the expansion ratio of the hidden dimension
of the feed-forward network is also investigated. The results
are shown in Table IV. Expanding the hidden dimension of
the feed-forward network can have a significant effect on the
performance of the transformers. As the expansion ratio is
increased from 1 to 4, the Top-1 accuracy is increased from
less than 70% to nearly 75%. The model complexity is also
almost doubled. Thus, the network performance and model
complexity can be balanced by the hidden dimension expan-
sion ratio γ. Squeeze-and-excitation can be more beneficial
for smaller γ.

E. Generalization and comparison with state-of-the-art

Finally, we try to incorporate locality into vision trans-
formers including DeiT [2], Swin transformers [1], T2T-
ViT [20], TNT [21], PVT [3] and compare their performance
with CNNs. We draw three major conclusions from Table V.
Firstly, the effectiveness of locality can be generalized to a
wide range of vision transformers based on the following
observations. 1) Compared with DeiT, LocalViT can yield
a higher classification accuracy for both the tiny and small
version of the network. The increase of Top-1 accuracy is
2.6% and 1.0%, resp. LocalViT-T even outperforms DeiT-T⚗
which is enhanced by knowledge distillation from RegNetY-
160 [45]. The small version LocalViT-S is slightly worse



(a) DeiT-S [2] vs. LocalViT-S. (b) Swin-T [1] vs. LocalViT-Swin. (c) PVT-T [3] vs. LocalViT-PVT. (d) TNT-T [21] vs. LocalViT-TNT.

Fig. 4: Comparison of Top-1 and Top-5 accuracy between the baseline transformers and the locality enhanced LocalViT

(a) Input. (b) Pooling. (c) DeiT (d) LocalViT

Fig. 5: Comparison of feature maps. (a) Random sampled
input images from ImageNet (b) Max pooled images with
kernel size 16 × 16. (c) & (d) Feature map of the last
transformer layer from DeiT and LocalViT

than DeiT-S⚗ by 0.4%. 2) LocalViT-T2T outperforms T2T-
ViT-7 by 0.8%. Note that T2T-ViT already tries to model the
local structure information in the tokens-to-token module. 3)
In TNT, an additional transformer block is used to extract
local features for the image tokens. Thus, the locality is also
considered in TNT. The modified network, i.e. LocalViT-
TNT could still improve the classification accuracy by a
large margin of 2.3%. 4) The biggest improvement comes
from PVT. Introducing the locality module leads to a gain
of 3.1% over PVT-T. 5) Swin transformer already adopts
shifted windows that constrain attention in a local region.
Yet, adding locality processing module into the network
could still improve the performance of Swin transformers.
6) The comparison of the training log between the baseline
transformers and LocalViT is shown in Fig. 4. As shown
in Fig. 4, during the training phase, LocalViT outperforms
the baseline transformers consistently in terms of both Top-
1 and Top-5 accuracy. The gap between LocalViT and the
baseline transformers is more obvious in the early training
phase. For example, the gap of the Top-1 accuracy between
LocalViT-T and DeiT-T could be as large as 10% during
the early training phase (at about Epoch 25). Thus, this
confirms that the locality mechanism introduced by LocalViT
can enlarge the capacity of vision transformers and lead to
better performances.

Secondly, some versions of the enhanced vision trans-
former LocalViT are already quite comparable or even out-
perform CNNs. This conclusion can be drawn by making the
pairwise comparison, i.e. LocalViT-T vs. MobileNetV2 (1.4),
LocalViT-S vs. ResNet-50, LocalViT-T2T vs. MobileNetV1,
LocalViT-PVT vs. DenseNet-169 etc.

Thirdly, by comparing the feature maps of transformers
with and without locality mechanism in Fig. 5c and Fig. 5d,
it is clear that LocalViT does a better job at localizing the
objects in the presented input images.

Discussion of limitation. As shown in Table V, intro-
ducing locality mechanism increases the complexity of the
network. As a result, the inference of the network could be
slowed down. We report the throughput of different methods
on one NVIDIA TITAN Xp GPU in Table VI. When com-
paring with the DeiT-T and TNT-T, there is only a marginal
decrease (less than 10%) of throughput for LocalViT. The
throughput of LocalViT-T and DeiT-T is almost comparable.
For PVT-T and Swin-T, the locality enhanced transformer
LocalViT is faced with a larger throughput decrease. But
the the decrease is still within 24%. Yet, considering the
non-trivial improvement of the locality enhanced transformer
network, we think this is acceptable. The value of this
paper is to show the importance of locality mechanism
in vision transformers rather than achieving state-of-the-art
performances. And we believe that the conclusion derived
under rigorous and controlled experiments could help the
community to understand the locality mechanism in vision
transformers. Combination with other design choices towards
more efficient networks could be done in follow-up works.

TABLE VI: Throughput comparison between the baseline
networks and those enhanced by the locality mechanism. The
inference is conducted on a single NVIDIA TITAN Xp GPU

Network Throughput
images/s Network Throughput

images/s
DeiT-T 346.3 PVT-T 318.4
LocalViT-T 336.9 (2.7% ↓) LocalViT-PVT 248.3 (22.0% ↓)
TNT-T 222.0 Swin-T 206.3
LocalViT-TNT 208.3 (6.2% ↓) LocalViT-Swin 158.2 (23.3% ↓)

V. CONCLUSION

In this paper, we investigated the influence of locality
mechanism in the feed-forward of vision transformers. We
introduced the locality mechanism into vision transformers
by incorporating 2D depth-wise convolutions followed by a
non-linear activation function into the feed-forward network
of vision transformers. To cope with the locality mechanism,
the sequence of tokens embedding is rearranged into a lattice
as a 2D feature map, which is used as the input to the en-
hanced feed-forward network. To enable the rearrangement,



the class token is split before the feed-forward network and
concatenated with other image embeddings after the feed-
forward network. A series of studies were made to investigate
various factors (activation function, layer placement, and
expansion ratio) that might influence of performance of the
locality mechanism. The proposed locality mechanism is
successfully applied to five different vision transformers,
which validates its generality.
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