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Abstract— A fundamental task in robotics is to navigate
between two locations. In particular, real-world navigation can
require long-horizon planning using high-dimensional RGB
images, which poses a substantial challenge for end-to-end
learning-based approaches. Current semi-parametric methods
instead achieve long-horizon navigation by combining learned
modules with a topological memory of the environment, often
represented as a graph over previously collected images. How-
ever, using these graphs in practice requires tuning a number
of pruning heuristics. These heuristics are necessary to avoid
spurious edges, limit runtime memory usage and maintain
reasonably fast graph queries in large environments. In this
work, we present One-4-All (O4A), a method leveraging self-
supervised and manifold learning to obtain a graph-free, end-
to-end navigation pipeline in which the goal is specified as an
image. Navigation is achieved by greedily minimizing a potential
function defined continuously over image embeddings. Our
system is trained offline on non-expert exploration sequences of
RGB data and controls, and does not require any depth or pose
measurements. We show that O4A can reach long-range goals
in 8 simulated Gibson indoor environments and that resulting
embeddings are topologically similar to ground truth maps,
even if no pose is observed. We further demonstrate successful
real-world navigation using a Jackal UGV platform.a

I. INTRODUCTION

Navigation is a crucial component in any robotics stack
that requires a robot to move from one location to another.
This problem is characterized by a robot’s ability to identify
the most efficient and feasible path between a start pose and
a goal pose in a given environment. The standard approach
involves first piloting the robot within the environment to
build a metric map, often using a range sensor, and then
using this representation for planning [1]. However, the
memory complexity of these methods scales poorly with the
size of the environment, and they do not exploit semantic
information nor visual cues [2].

As an alternative, learning-based approaches, also dubbed
experiential learning [3], have gained momentum due to
their ability to work directly with high-dimensional data
(e.g., images) and reason about non-geometric concepts in
a scene. Furthermore, these methods are more intuitive to
use for non-expert users as they allow for goal positions
to be specified using images of places or objects rather
than coordinates in a metric space [4]. However, end-to-end
experiential learning generally learns a global controller that
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(a) First trajectory (b) Second trajectory

Fig. 1: Navigation paths produced by O4A (Robot, blue)
and by human teleoperation (Expert, magenta) in a 4.65m
x 9.10m laboratory. When prompted with a goal image (red
star), the robot uses its current front and back RGB observa-
tions (orange) to navigate towards the goal by minimizing a
neural potential function over image embeddings. The paths
were captured using information from a ViCON system,
which was not available to the agent.

maps images directly to actions, failing to reason about long-
horizon goals. Furthermore, they are well-known for being
data inefficient [5], [6].

To overcome the challenges of long-horizon navigation,
topological memory representations [7] are used to divide
the navigation problem into two parts. First, the memory rep-
resentation is used to produce a globally coherent navigation
plan, which is then followed waypoint by waypoint using
a learned or classical local controller [8]. Approaches that
incorporate both memory and learning-based components are
referred to as semi-parametric, while approaches that rely
solely on learning are known as fully-parametric.

While semi-parametric methods have proven to be effec-
tive for image-based navigation both indoors [9], [10], [4],
[11] and outdoors [12], [13], they still encounter memory
issues. This is a result of the topological memory typically
being encoded as a graph whose nodes represent visited
states and edges represent traversability. As the environment
size increases, more nodes and edges are required in the
graph, increasing the memory requirements.

In addition, spurious connections in the graph can impede
navigation performance as they may represent non-feasible
transitions in the physical world, leading to failure modes
in the global planning stage. Although the literature offers
partial solutions to these limitations by pruning the graph
with hand-crafted heuristics [10], [12], these methods add
complexity to the problem and generally require tuning for
each environment.
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To address these limitations, we propose One-4-All
(O4A), an end-to-end fully-parametric method for image-
goal navigation. O4A is trained offline using non-expert
exploration sequences of RGB data and controls. We first
rely on self-supervised learning to identify neighboring RGB
observations. Armed with this notion of connectivity, we
compute a graph to derive a manifold learning objective
[14], [15] for our planning module, which we dub the
geodesic regressor. The geodesic regressor will learn to
predict shortest path lengths between pairs of RGB images
and in that sense, encodes the geometry of the environment
and acts as our memory module [16], [17], [18], [19]. While
we do compute a temporary graph during training, we discard
it for navigation, and found that it does not require the hand-
crafted graph pruning heuristics of existing semi-parametric
methods. Intuitively, we trade a potentially high number of
nodes and edges in a graph for a fixed number of learnable
parameters, thus mitigating the memory limitations of semi-
parametric approaches. Inference is also improved: graph
queries are replaced with efficient forward passes in a neural
network.

For navigation, we draw inspiration from potential fields
planning [20] and use the output of our geodesic regressor as
an attractor in a potential function. This allows us to frame
navigation as a minimization problem, with the global mini-
mizer being the goal image. We show how this navigation ap-
proach enables the robot to perform long-horizon navigation
and succeed even in geometrically complex environments.

To summarize, our main contributions are:

• An offline self-supervised training procedure using non-
expert exploration sequences of RGB data and controls,
without any depth or pose measurements;

• A graph-free, end-to-end navigation pipeline that avoids
tuning graph pruning heuristics;

• A potential fields-based planner that avoids local
minima and reaches long-horizon goals, thanks to a
geodesic attractor trained with a manifold learning
objective;

• An interpretable system that recovers the topology of
the environment in its latent space, even in the absence
of any pose information.

We show that O4A achieves state-of-the-art indoor nav-
igation in 8 simulated environments. We further provide a
real-world evaluation using the Jackal UGV platform.

II. RELATED WORK

The problem of robot navigation has been extensively
studied [1]. In recent years, there has been a growing trend
towards image-based learning approaches or experiential
learning [3]. These approaches have the advantage of being
able to reason about the geometry of an environment, as
well as the semantic aspects of traversability, such as tall
grass in a field [2]. In contrast, classical approaches that rely
purely on the geometry of the environment through metric
representations struggle with such semantic aspects, leading
to inefficient navigation plans [21].

Reinforcement Learning (RL) agents are a prominent
example of experiential learning and have been widely
employed for image-based embodied navigation [19], [22],
[23], [24]. While these approaches provide a sound solution
to the navigation problem, RL policies are known to be
data-hungry, with some offline RL methods requiring up to
30 hours of training data [6]. Moreover, one of the key
challenges of RL is their limited navigation capabilities over
long horizons [25], [5].

To overcome the long horizon limitation, semi-parametric
approaches use a topological memory encoded as a graph [7].
Examples in the literature [4], [8], [9], [10], [12], [25], [26],
[27] use this topological memory as a global planner to
obtain navigation waypoints that guide the agent towards a
goal and a local policy to navigate between these waypoints.
However, these methods have two significant limitations.
First, spurious connections in the graph can adversely affect
the planner’s ability to derive a feasible plan (e.g., they allow
the planner to warp over the map). Secondly, these methods
do not scale well in terms of memory as the number of
vertices and edges in the graph increases with the size of the
environment.

These limitations are partially addressed by hand-crafted
heuristics. Examples of these include connectivity thresholds
to prune the number of spurious edges [9], [25], node
sparsification strategies [8], [26] and lifelong updates to the
graph [10]. However, these methods end up adding a non-
negligible number of parameters that require tuning and are
often environment dependant. In contrast, we do not rely on
such heuristics and use the raw connectivity derived from
an inverse kinematics head trained on top of a backbone,
which is itself trained using temporal contrastive learning
(i.e., explicitly maintain consecutive RGB observations close
in latent space while also pushing away non-consecutive ones
[15]).

Of particular interest to this work are Semi-Parametric
Topological Memory (SPTM) [9] and Visual Navigation with
Goals (ViNG) [12]. SPTM uses a classifier to determine
the connectivity between two temporally close images and
creates an unweighted graph based on this. This graph does
not accurately reflect the distance between two close or
distant samples as they are not weighted, exacerbating the
spurious edges issue. Similarly, ViNG uses a classifier to
estimate the temporal number of steps between samples and
weight the edges of the graph with these estimates. Planning
is performed over the graph and a relative pose predictor
is paired with a PD controller to navigate waypoints. Both
methods employ pruning and sparsification strategies. Our
method does not prune the graph and directly estimates
the action between two samples, allowing us to predict
connectivity and local controls simultaneously.

Additionally, both SPTM and ViNG create a graph using
all training images and produce navigation plans by querying
the graph using Dijkstra’s algorithm [28]. In contrast, we use
image embeddings to weigh a training graph and learn to
predict shortest path lengths over it with a geodesic regressor.
This allows to address the memory limitation of graph-based



Fig. 2: O4A consists of 4 learnable modules for image-goal navigation. Learning is entirely achieved using previously
collected RGB observation trajectories τo = {ot}Tt=1 and corresponding actions τa = {at}Tt=1, without pose. The local
backbone h (left) takes as input RGB images to produce low-dimensional embeddings x ∈ X . The inverse kinematics
head f† (center) uses pairs of embeddings to predict the action required to traverse from one embedding to the other (order
matters), or the inability to do so through the NOT_CONNECTED output. h and f† are then used to construct a directed graph G,
where nodes represent images and edges represent traversability. The forward kinematics head (bottom right) f is trained
using edges from G to predict the next embedding xj given the current one xi and an action aij ∈ A. The geometry of the
graph G is embedded in a neural network using a geodesic regressor p+ (top right), which predicts the shortest path length
for any pair of embeddings. Once all the modules are trained, G can be discarded, and p+ be used as part of a potential
function, as illustrated in Figure 3 and detailed in Equation 5.

methods and also enables the estimation of shortest path
distances between previously unseen images.

There has also been research on alternative memory rep-
resentations for embodied navigation, including the use of
semantic [11], [17], [29], spatial [16], [18], [30] or embed-
ding representations [19]. To the best of our knowledge, none
of these representations exploit a training graph to obtain a
geodesic regressor for navigation. Our approach is inspired
by Plan2Vec [15] which is a pure planning method and uses
its geodesic regressor (referred to as global metric) as a
heuristic for graph search. O4A instead tackles planning and
navigation simultaneously and uses the geodesic regressor in
a potential function [20].

Finally, several existing methods rely on access to ground
truth pose information in order to learn temporal estimates
or relative pose between samples [8], [10], [12], [27]. Our
method can be trained in a self-supervised manner using only
raw RGB image samples and actions, making it independent
of pose information.

III. METHOD
A. Problem Definition

We consider a robot with a discrete action space
A = {STOP, FORWARD, ROTATE_RIGHT, ROTATE_LEFT} for
an image-goal navigation task [31]. Using our knowledge
of the robot’s geometry and an appropriate exteroceptive
onboard sensor (e.g., a front laser scanner), we assume that
the set of collision-free actions Afree can be estimated.

When prompted with a goal image og , the agent should
navigate to the goal location in a partially observable setting
using only RGB observations ot and the Afree estimates.
The agent further needs to identify when the goal has been
reached by autonomously calling STOP near the goal [31].

B. Data
We aim to achieve image-goal navigation using learned

modules parameterized by deep neural networks. For any
given environment, we assume that some previously col-
lected observation trajectory τo = {ot}Tt=1 and correspond-
ing actions τa = {at}Tt=1 are available. We consider a single
trajectory from a single environment for notational concise-
ness, but in practice use multiple data trajectories (Fig. 2)
from different environments. We do not require an expert
data collection policy and the dataset could be the product of
teleoperation, self-exploration or random walks, as long as it
sufficiently covers the free space of the environment. Of note,
we tackle navigation in an unsupervised setting and do not
assume access to pose estimates for each image observation,
which greatly simplifies data collection. Moreover, we do
not collect any depth measurement, and only rely on a front
laser scanner at runtime for simple collision checking.

C. System
a) Overview: We illustrate and present an overview

of our system in Figure 2. We first rely on self-supervised
learning to learn an RGB backbone paired with a connectiv-
ity head to infer a graph over all images in τo. The graph
will then be used to derive training objectives for a forward
kinematics module and a geodesic regressor. We finally show
how to navigate the trained system in Subsection III-D.

b) Local Backbone: The local backbone learns a map-
ping from raw images to low-dimensional embeddings h :
ORGB → X . For simplicity, we will denote extracted
features as x = h(o). The function h will serve a dual
purpose: 1) to extract low-dimensional features in X = Rn

that will be used as input for other modules, and 2) to learn
a local metric defined as



dh(xt, xs) = ∥xt − xs∥2 (1)

between pairs of observations. Given the lack of pose in-
formation in the training data, h is trained via self-supervised
learning. We use a variant of a contrastive loss function often
used to train Siamese architectures [32]

Lh(xt, xt+1, N ) = (m+ − dh(xt, xt+1))
2

+
1

|N |
∑

x−∈N

max(0,m− − dh(xt, x
−))2,

(2)

where m+, m− ∈ R+, m+ < m− are positive and negative
margins, respectively, and N is a set of random data from
τo, which are used as so-called negatives. Equation 2 is an
instance of temporal contrastive learning: consecutive obser-
vations (positive pairs), which we know to be indeed close in
terms of pose, are encouraged to be at a distance of exactly
m+ in X . Negatives are pushed to be at least at a distance of
m−, reflecting the fact that they should not share the same
neighborhood even if the exact distance between them is
unknown at this stage. This latest observation motivates the
term "local metric" [15], since the actual distance dh is only
informative when applied to positive pairs that are close in
latent space. It should be stressed that dh cannot predict how
far negative pairs are apart in general, as it tends to saturate
around m− as discussed in [15].

c) Inverse Kinematics Head: The component f† :
X × X → A ∪ {NOT_CONNECTED} predicts the action
needed to travel between two embeddings, or returns the
NOT_CONNECTED token when the transition is deemed not
feasible in a single action. f† therefore acts as both a
loop closing module and an inverse kinematics predictor.
It is trained using the standard cross-entropy loss on the
actions observed in τa. We use the same negatives N from
Equation 2 to train the NOT_CONNECTED class.

Even if most negatives in N are true negatives (in the
sense that the observations are not connectable with one
action step), both h and f† can be exposed to occasional
false negatives during training. For example, if the same
location is visited twice, the induced observations may not
be temporally consecutive and can then appear in N . These
false negatives in fact correspond to the loop closures that
should be discovered by the trained system in the data. In
practice, it turns out that false negatives do not prevent f†

from learning a decent connectivity (Fig. 4).
d) Graph Construction: Equipped with h and f†, we

can now build a directed graph G whose edges are weighted
using dh (Equation 1). We first treat the collected data as
a chain graph with observed edges Eo = {(ot, ot+1) :
ot, ot+1 ∈ τo} and then run pairwise computations to
obtain new loop closure edges Ep = {(ot, os) : ot, os ∈
τo, f†(xt, xs) ∈ A}. The final graph is G = (τo, Eo ∪
Ep). No additional post-processing of the graph is required,
contrary to existing methods [9], [10], [12], [26] which can
require tuning numerous hyperparameters to curate nodes

and edges.
e) Forward Kinematics Head: The forward kinematics

head is denoted by f : X × A → X and trained using
edges/transitions from G. For any edge (ot, os) in G during
training, the module is trained with the mean squared error
loss to approximate the function (xt, f

†(xt, xs)) 7→ xs, using
the inverse kinematics head f† to provide an input action
even if none was observed. f will therefore benefit from
additional transitions in Ep that were not initially observed
in Eo. The above is an instance of semi-supervised learning
called co-training [33], in which the functions h and f†

are used to label unseen transitions in the training set, thus
enhancing the supervisory signal that is employed to train f .

f) Geodesic Regressor: The final component and core
planning module p+ : X × X → R+ learns to predict the
shortest path lengths on G. We denote these distances as
dG(ot, og) and compute them with Dijkstra’s algorithm. dG
is defined over observation pairs from the discrete vertex set
of G. We aim to extend it over the continuous latent space
X to predict shortest path lengths for any pair of images at
runtime. The training loss of the geodesic regressor is

Lp+(os, ot) = (p+(xs, xt)− dG(os, ot))
2. (3)

Interpreting observations as samples from a manifold
embedded in the high-dimensional RGB space, the backbone
h learns an embedding with locally Euclidean neighborhoods
(dh), which are chained together by the graph search to
compute the geodesic (intrinsic) distance over the entire man-
ifold. Equation 3 in fact corresponds to a manifold learning
objective [15], [14], and we will show the O4A training
results in interpretable visualizations of the environment in
Figure 4.

Once all the components have been trained, G can be dis-
carded and is not required for deploying the system. Indeed,
both f and p+ will provide all the required information for
image-goal navigation, as we will detail in Subsection III-
D. In fact, the geodesic regressor p+ can be interpreted as
encoding the geometry of G, thereby trading a potentially
high number of nodes and edges for a fixed number of
learnable parameters.

g) Multiple Environment Setting: When k environ-
ments are considered, we train both h and f† on the entire
data. To provide a more challenging task for the model, we
sample negatives N from either the same environment or a
different one. h and f† can then be used to close loops and
compute a set of graphs {Gi}ki=1, one per environment. The
forward kinematics f are then trained using transitions from
all the graphs. Finally, each Gi is used to train a geodesic
regressor p+i . In summary, h, f† and f are shared across
environments while p+i is environment-specific.

D. Navigation

In this section, we discuss how to deploy O4A for naviga-
tion. Our approach is strongly inspired by Artificial Potential
Field (APF) methods [20], which plan motions over the agent
configuration space by defining A) an attractive potential
around the goal, and B) repulsive potentials around obstacles,



allowing the agent to minimize the total potential function via
gradient descent to reach the goal while avoiding obstacles.

As with APF, O4A will navigate by minimizing an attrac-
tor located at at the goal. Since actual agent and goal states
are unobserved, the potential computations occur over the
latent space X , i.e. the embeddings of the agent and goal
RGB observations. As the attractor, we use the geodesic
regressor p+ which estimates the geodesic distance to the
goal. Critically, this attractor factors in the environment
geometry and can, for example, drive an agent out of a
dead end to reach a goal that is close in terms of Euclidean
distance, but far geodesically (c.f. Fig. 3). This property
is somewhat reminiscent of navigation functions in APF
literature [20], a special class of potential functions with a
unique global minimizer at the goal, among other properties.

Algorithm 1 Navigation
Input: env, goal image og ∈ ORGB , thresh ∈ R+,

backbone h, forward kinematics f , collision detection func-
tion γ, potential function P
o, scan← env.initialize() ▷ RGB and scan
x← h(o)

xg ← h(og)

B ← {x}
while dh(x, xg) > thresh do
Afree ← γ(scan)

a∗ ← argmin
a∈Afree

P(f(x, a), xg,B) ▷ Eq. 5

o, scan← env.step(a∗) ▷ RGB and scan
x← h(o)

B ← B ∪ {x} ▷ Update visited states
end while
env.step(STOP)

In practice, we found that minimizing p+ alone did not
suffice to successfully navigate. The agent would often end
up thrashing between two poses due to a local minimum
in the attractor landscape, which can occur due to learning
errors and the discrete action space. We therefore found it
useful to define a latent repulsor function, which is only
active in a certain radius mr ∈ R+ :

p−(xt, xs) = max(0,mr − dh(xt, xs)). (4)

We use p− to drive the agent away from previously visited
images, the embeddings of which are saved in a buffer B.
By combining repulsors around embeddings in B and the
geodesic attractor p+, we obtain a total potential function of

P(xt, xg,B) = p+(xt, xg) +
∑
x∈B

p−(xt, x) (5)

where xt and xg represent the embeddings of the current and
goal RGB images, respectively.

The detailed navigation procedure is presented in Algo-
rithm 1. During navigation, our agent greedily minimizes P

Fig. 3: An illustration of our potential function P (Equa-
tion 5). Darker colors indicate lower potential. (Left)
Geodesic attractor, which reflects the geodesic distance to
the green goal marker. (Center) Repulsors around previously
visited states represented as red markers. (Right) Total
potential function P , which is minimized by the agent
by picking the action that leads to a potential-minimizing
waypoint W. While we illustrate the potential function on the
map, it is in fact defined directly over image embeddings.

by finding the best candidate action using forward kinematics
over the set Afree estimated by a collision detection function
γ. This stands in contrast to APFs, since we blacklist
collision-inducing actions instead of explicitly modeling re-
pulsors around obstacles. In practice, since the agent rotates
in place, we suppose that only the FORWARD action can cause
collisions, which greatly simplifies the collision detection γ:
we simply define a scan collision box in front of the robot
based on its geometry.

It should also be noted that the STOP action is never
included in Afree. Instead, we found that thresholding the
local metric dh was a more reliable way of calling STOP in
the vicinity of the goal.

IV. EXPERIMENTS

We assess our approach in both simulated and real-world
environments. The agent is a differential drive robot with
two RGB cameras, one facing forward and the other facing
backward, each with a field of view of 90◦. Each image has
a resolution of 96×96 pixels. Consistent with [34], the robot
moves FORWARD by 0.25m and ROTATE by 15◦.

A. Implementation Details

All our models are trained using a batch size of 512. The
local backbone uses a ResNet 18 encoder [36], followed by 5
1D convolutions to fuse the embeddings of the front and rear
facing cameras. The inverse kinematics head is composed
of 4 linear layers. Both the local backbone and inverse
kinematics heads are jointly trained for 410,000 gradient
steps, using m+ = 1 and m− = 10. The forward kinematics
model has 4 linear layers and is trained for 330,000 steps.
The geodesic regressor has 6 linear layers, and the same
architecture is used for all environments, with training also
carried out for 330,000 steps for each regressor. All models
are trained using image augmentations and linear layers are
followed by ReLU non-linearities. The models are trained
using the Adam optimizer [37] with learning rate 5e−4.
Navigation is performed with |B| = 500, mr = 2.5 and
thresh = 3.5 throughout environments and experiments.



TABLE I: Average navigation performance over 8 simulated Gibson environments for One-4-all (O4A) and relevant baselines.
We further study two additional variants of O4A by ablating terms in the potential function (Equation 5). We also denote
which methods rely on a graph (G) for navigation and oracle stopping (other methods need to call STOP autonomously). We
find that O4A substantially outperforms baselines, achieving a higher Success Rate (SR), Soft Success Rate (SSR), Success
Weighted by Path Length (SPL), and a competitive ratio of Collision-Free Trajectories (CFT).

G
Oracle
Stop

Easy (1.5 - 3m) Medium (3 - 5m) Hard (5 - 10m) Very-Hard (>10m)
CFT↑

SR↑ SSR↑ SPL↑ SR↑ SSR↑ SPL↑ SR↑ SSR↑ SPL↑ SR↑ SSR↑ SPL↑

Random – ✓ 0.49 0.49 0.32 0.24 0.24 0.15 0.07 0.07 0.04 0.01 0.01 0.01 0.94
GC-BC [35] – ✓ 0.42 0.42 0.25 0.21 0.21 0.10 0.07 0.07 0.03 0.02 0.02 0.01 0.94
SPTM [9] ✓ – 0.32 0.51 0.14 0.17 0.28 0.06 0.07 0.12 0.03 0.02 0.03 0.01 0.96
ViNG [12] ✓ – 0.29 0.64 0.10 0.19 0.46 0.07 0.11 0.28 0.05 0.06 0.12 0.02 0.99
O4A (Ours) – – 0.95 0.97 0.65 0.93 0.95 0.65 0.90 0.92 0.65 0.85 0.88 0.65 0.96

O4A w/o p− – – 0.11 0.36 0.11 0.07 0.22 0.07 0.03 0.09 0.03 0.01 0.02 0.01 0.99
O4A w/o p+ – – 0.45 0.70 0.13 0.27 0.47 0.09 0.13 0.23 0.04 0.04 0.07 0.02 0.90

B. Simulation

a) Simulator & Data: We perform our experiments
using the Habitat simulator [38] with the Gibson dataset [39].
We use the Gibson split defined in [38] and use eight
environments from it: Hambleton (67m2), Annawan (75m2),
Nicut (90m2), Dunmor (90m2), Cantwell (107m2), Sodaville
(114m2), Aloha (114m2) and Eastville (121m2). A total of
240,000 data points are collected by navigating sequences
of random nearby waypoints, leading to globally suboptimal
trajectories between the initial and final positions. We split
the data into a training set (70%) and a validation set (30%).

b) Baselines: To assess the navigation performance of
our method, we compare against the following baselines:

• Random Agent. An agent sampling actions uniformly
from A \ {STOP}, subject to collision checking. The
policy relies on ground truth pose for oracle stopping.

• Goal Conditioned Behavioral Cloning (GC-BC),
adapted from [35]. We extended the method with Hind-
sight Experience Replay (HER) [40] to relabel new
goals and enhance the training signal for the agent. This
policy also relies on ground truth pose to call STOP.
We collected a distinct set of expert trajectories for this
baseline.

• SPTM [9]. This method is extended with hard-negative
mining as proposed by [12] to improve generalization
performance. To call STOP, we tune a threshold on the
reachability estimator between current and goal images.

• ViNG [12]. The PD controller of the original work
is replaced by an oracle Habitat controller to handle
discrete actions. We tune a threshold on the timestep
predictor to call STOP.

• O4A Without Latent Repulsors. The repulsors p−

are not used during navigation and the agent is driven
towards the goal by greedily minimizing p+.

• O4A Without Geodesic Regressor. We discard the
attractor p+ and only use the latent repulsors p−.

To ensure a fair comparison, all the baselines have the
same capacity and collision checking strategy as O4A. We

substitute the neural architectures used in the baselines
with our local backbone h and inverse kinematics head f†.
Baselines are trained for 415,000 gradient steps and tested
with various hyperparameters, the best of which were used
for benchmarking.

c) Evaluation: To assess the navigation performance,
we rank the difficulty of each trajectory as proposed by [4].
Trajectories are categorized into easy (1.5 − 3m), medium
(3 − 5m), and hard (5 − 10m) based on their geodesic
distance to the goal. We add an extra category labeled
as "very hard" (>10m) to evaluate the agent’s ability to
plan for long-horizon goals. Each difficulty level is assessed
over 1,000 trajectories using a maximum episode length
of 500. To ensure a comprehensive assessment, we sample
distinct starting positions and goals for each environment
and difficulty, resulting in a total of 4,000 trajectories per
environment. Starting and goal positions used for evaluation
are different from those used during data collection.

We assess navigation performance by measuring Success
Rate (SR) and Success weighted by Path-Length (SPL) [31].
A navigation trial is considered successful if the agent comes
to a STOP within a maximum distance of 1m from the goal.
We also use a Soft Success Rate (SSR), where a trial is
successful if the agent is less than 1m away from the goal
at any point during navigation. Lastly, we monitor the ratio
of Collision-Free Trajectories (CFT) across all difficulties.
A trajectory is deemed collision-free if it does not collide
during the experiment.

d) Results: We present quantitative navigation results in
Table I. O4A successfully navigates to goals of all difficulty
levels and outperforms all considered baselines. The tight gap
between SR and SSR showcases the reliability of the STOP

mechanism based on the local metric dh. Surprisingly, the
O4A SPL is stable across all difficulties, despite a decreasing
success rate. This indicates that the quality of successful
paths is in fact slightly better for distant goals. This observa-
tion, combined with visual evaluation of episodes, suggests
that the O4A attractor provides a clearer signal for distant
goals and is noisier when navigating nearby locations. The



two O4A ablations confirm that all considered potentials in
our potential function P are essential contributors to success.

(a) Hambleton

(b) Eastville

Fig. 4: (Left column) O4A graph connectivity over 2 Gibson
environments. Points correspond to the location of RGB
observations and are colored by the sum of their x and y
coordinates. The graphs are free of egregious spurious edges,
which allows to train effective geodesic regressors before dis-
carding them. (Right column) 2 principal components of the
last layer in the geodesic regressor p+ with the same coloring
scheme. The unsupervised latent geometry is consistent with
the environment geometry, and some topological features
(e.g., the obstacle "holes") are evident in the latent space,
even if the training of O4A never used pose information.

While the SPTM and ViNG performance are below those
reported in the original papers, they are in line with recent
comparable benchmarks in the literature [10]. The gap can
be partially explained by variations in the experimental
design. Neither method considers collisions nor how to
stop when the goal is reached. Having STOP in the action
space increases the challenge, due to the agent’s ability to
prematurely terminate episodes because of a false positive.
We also note that SPTM considered omnidirectional actions,
and that the original ViNG results focused on larger-scale
problems in relatively open outdoor settings. The GC-BC
results demonstrate how learning long-range navigation re-
mains challenging for end-to-end methods.

On a more qualitative note, we further explore the O4A
graph connectivity used for training, and show how it learns
interpretable embeddings in Figure 4.

C. Real-World Results
a) Robot Evaluation: For the real-world experiments

we run O4A on the Jackal UGV mobile platform using the

RGB channels (no depth) of two Realsense D435i cameras
with a 90◦ FOV. We detect forward collisions using a
forward-facing Hokuyo laser scanner. We run O4A onboard
using an Intel i7-8700 CPU with 32 GB of RAM. We did not
require a GPU for navigation. The experiments are conducted
in a 4.65m x 9.1m laboratory. We collected a total of 21,000
RGB image samples via teleoperation and split them as in
our simulation experiments.

For evaluation, we chose 9 interesting episodes (3 starting
positions with 3 goal images each) and repeated each 3 times,
for a total of 27 runs. The maximum episode length was set to
300 steps, although the robot ended up exceeding 150 steps
on only 2 occasions. In addition to SR and SSR (Subsection
IV-B), we evaluate the final distance to goal (DTG), the
number of FORWARD steps, and the number of ROTATION

steps. For context, we also teleoperated the robot over the
same episodes to provide an estimate of human performance.
All the models used for the real-world experiments are
finetuned for 30,000 gradient steps starting from the best
checkpoint obtained in the simulation experiments. We run
navigation with |B| = 300, mr = 2.5 and thresh = 5.

b) Results: The Jackal navigation results are presented
in Table II. O4A solves most episodes and achieves an aver-
age DTG of under 1m, even if most goals were not visible
from the starting location and located up to 9 meters away.
The maximal measured DTG was 1.74m. Interestingly, the
number of O4A calls to the FORWARD action is comparable to
human performance, meaning the O4A paths over the plane
are competitive. Moreover, the robot collided only one time
over all episodes using our collision checking strategy. Two
episodes are shown in Figure 1.

TABLE II: Average Jackal navigation performance for O4A
and human teleoperation over 27 episodes. We report the
Success Rate (SR), Soft Success Rate (SSR), final Distance
to Goal (DTG), number of FORWARD steps and number of
rotation steps (ROT.).

SR ↑ SSR ↑ DTG ↓ FORWARD ↓ ROT. ↓

O4A 0.74 0.78 0.83 23 53
Human 0.96 1.00 0.46 20 18

V. LIMITATIONS & FUTURE WORK

While trained O4A is graph-free, we still require learning
a geodesic regressor for each environment to encode the
geometry (in the same way current approaches need to build
an environment-specific graph). Generalizing geodesic re-
gression across environments is a promising area of research,
since it could allow to completely skip the graph building
stage in new settings. Moreover, the real-world experiments
reveal that O4A has difficulty minimizing the number of
rotation actions and some amount of trashing persists. We
believe that this may be caused by the 15◦ discrete rotation
actions: if the robot ideally needs to turn by 7.5◦, it may
instead oscillate between LEFT and RIGHT due to the fact



actions are greedily taken each step instead of explicitly
following a long-term plan. Further tuning of the negative
potentials or an implementation with a continuous action
space should address this problem. Finally, as with a number
of existing navigation and SLAM systems, O4A does not
account for dynamic or semi-static objects.
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