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Abstract
This article investigates the suitability of local intensity distributions to analyze six emphysema
classes in 342 CT scans obtained from 16 sites hosting scanners by 3 vendors and a total of 9
specific models in subjects with Chronic Obstructive Pulmonary Disease (COPD). We propose
using kernel density estimation to deal with the inherent sparsity of local intensity histograms
obtained from scarcely populated regions of interest. We validate our approach by leave-one-
subject-out classification experiments and full-lung analyses. We compare our results with
recently published LBP texture-based methodology. We demonstrate the efficacy of using
intensity information alone in multi-scanner cohorts, which is a simpler, more intuitive approach.
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1. INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a major cause of chronic morbidity and
mortality throughout the world. Beyond spirometric pulmonary function tests (PFTs),
computed tomography (CT) has been postulated adequate for assessing the severity and
extension of emphysema in vivo, allowing for monitoring its progression and evaluating its
response to therapy [1]. A standard technique employed is called densitometric analysis [2].
This technique consists of choosing a Hounsfield unit threshold in the lung mask to
discriminate emphysema from non emphysematous tissue. Although densitometry is very
sensitive to noise and acquisition parameters [3], it represents the method of choice for most
clinical studies [4].

Much of the work developed in the field of emphysema quantification in CT has attempted
to enrich thresholding approaches by incorporating the spatial structure of density values, or
texture [5-8]. Most of these approaches introduce several disadvantages: low performance,
poor understanding of the consequences of inter-scanner variability, and obscurity of
physical meaning.

Prototypic radiologic patterns of emphysematous involvement of the secondary pulmonary
lobule corresponding to centrilobular, paraseptal and panlobular disease have been described
[9]. This view eventually leads to six distinct emphysema patterns: normal tissue (NT),
paraseptal (PS), panlobular (PL) and mild/moderate/severe centrilobular emphysema
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(CL1/2/3). In Fig. 1 we provide examples of these patterns, which illustrate their
radiographic expression.

We postulate that the discrimination problem is primarily based on variations in local
intensity rather than on spatial regularity (spatial statistics of order greater than one),
especially as datasets from several scanners are introduced in the classification problem.
One approach to emphysema quantification in which texture and intensity are accounted for
in an orthogonal manner resides in the work by Sørensen et. al. [10], based on Local Binary
Patterns (LBPs) [11].

Although [10] finds that coupling locally-computed LBPs and intensity produces good
classification, we will show that as scanner-dependent intensity-range variations come into
place, the LBP component becomes irrelevant, and properly modeled local intensity
performs better and more simply.

2. METHODS
2.1. ROI Size

The proposed methodology is based in proper labeling of two-dimensional regions of
interest. The physical extent of such regions is critical to the classification, since an ROI that
is too small will not contain a whole secondary lobe, and an ROI that is too big will dim the
boundaries between regions with different pattern classes. Therefore we work with
physically normalized image units, across the different scanner resolutions.

2.2. High Order Spatial Statistics: Local Binary Patterns
Local Binary Patterns (LBPs) were originally proposed by Ojala et. al. [11] as a compact
encoding of the grey values around a pixel location. When LBP values have been computed
for every voxel in the ROI, LBP histograms can be constructed. Such representation
captures the frequency of certain micro-structures like corners, edges and constant regions.
Figure 2 shows LBP histograms averaged for all available samples of the six classes under
study.

In their work Sørensen et. al. [10] proposed a methodology based on the coupling of LBPs
and adaptively binned intensity histograms (LBPINT), obtaining remarkable classification
success. It is our goal to investigate which part of that success is due to the intensity part of
the description, and which part can be genuinely attributed to textural information.

2.3. First Order Spatial Statistics: Local Intensity
The intensity probability function of a given tissue class is a complete description of its first-
order spatial statistics. In parametric approaches, the underlying probability function for a
given tissue class can be established in terms of a model distribution and a number of
parameters estimated from training data. This is partially exploited in some texture
approaches like Haralick descriptors [12]. As opposed to this, non-parametric approaches do
not assume any model distributions, and do not require parameter estimation.

2.3.1. Kernel Density Estimation—Intensity probability distribution functions (PDFs)
can be estimated using the classic method known as kernel density estimation (KDE). Given
an independent and identically distributed sample set (x1, x2, …, xn), drawn from some
distribution with an unknown density f, we are interested in estimating the shape of this
function f. Its kernel density estimator is known to be
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(1)

where K(·) is usually a Gaussian kernel and h > 0 is a smoothing parameter called the
bandwidth. In all our results we use the methodology described in state-of-the-art work by
Botev et al. [13], to determine the value of the bandwidth parameter (independently for each
sample). See Fig. 3 for a plot of the density estimates averaged for all available samples of
the six classes under study.

2.4. Classifier
All previously described histograms (LBP, INT, LBPINT, KDE) are taken as representation
of a given ROI. In order to classify unseen ROIs we make use of the kNN classifier using
the Minkowski L1 distance as metric. This distance is computed from a test sample to every
training sample and then we classify it using the most frequent class label among the k
closest samples in the training set, or the closest sample label if two or more labels are
equally the most frequent among them.

3. EXPERIMENTAL RESULTS
342 CT scans were randomly selected from the COPDGene cohort with 50 scans each from
smokers with different severity levels defined by Global Initiative on Obstructive Lung
Disease severity level (GOLD) 0 to 4 and GOLD U plus 42 non-smoking controls. The 342
CT scans were acquired at 16 sites hosting scanners by 3 vendors and a total of 9 specific
models. On a subset of 267 CT scans, samples from the six classes under study were
selected by an experienced pulmonologist by clicking on locations surrounded by the
desired type of tissue, providing a total of 1525 samples.

Methodological parameters have been tuned according to previous findings. ROI size (24.18
× 24.18 mm2), LBP parameters (R = 1, P = 8) and size of adaptive histograms (N = 10) have
been chosen according to [10]. The value of k for the kNN classifier was determined
empirically to be optimal in terms of classification success for k = 5 when chosen among k
∈ {1, 3, 5, 7, 9}.

3.1. Leave-One-Subject-Out Sample Classification
We evaluate the performance of the proposed descriptions by leave-one-subject-out
classification success estimation using the manually selected samples. See Table 1 for a
comparison of Sørensen’s LBPs, adaptively binned intensity histograms (INT), joint LBP-
intensity histograms (LBPINT), and PDFs reconstructed via KDE. In each leave-out trial, all
ROIs from one subject are held out and designated for testing, and subsequently, the ROIs in
the test set are classified using all the remaining ROIs as prototypes in the classifier.

3.2. Full-lung analysis
For further validation we proceed by full-lung classification of 342 of the CT scans from the
aforementioned workshop. Regularly sampling and classifying the lung field results in an
approximation of the percentage of every tissue class for a given scan. The classification
was performed at a fixed sampling grid with spacing 10 × 10 × 20 pixels. We perform
classification of the grid locations according to our bench-mark methodology [10] and to the
developed methodology. In Fig. 4 we represent, for every tissue class, the percentage of
ROIs that have been classified as belonging to that class for every CT scan. This is done for
both methodologies in a two-dimensional plot. Regression lines are computed for every
tissue class. The proximity of the obtained regressions to the identity function suggests that
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our technique and the reference technique based on a texture descriptor are similar
suggesting that the extra complexity brought by the LBP descriptor might not be needed for
this problem.

In Fig. 5 we show the labelings obtained using both the benchmark methodology (LBPINT)
and the propose method (KDE), over-imposed on the concerned CT slice.

4. DISCUSSION
We show that emphysema discrimination in multi-scanner cohorts using intesity and texture
fails in favor of more simple descriptions based on intensity only. We also demonstrate that
as we model intensity probability distribution non-parametrically using kernels, the
classification is even better. High correlates of emphysema class percentages for reference
and proposed methodologies suggests that texture-based techniques based on LBP do not
incorparte additional knowledge with respect to the local density.
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Fig. 1.
Examples of emphysema regions of size 24.18 × 24.18 mm2 in the window [−1000, −500]
HU. (a) NT. (b) CL1. (c) CL2. (d) CL3. (e) PL. (f) PS.

Mendoza et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 June 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Average LBP code histograms for the six emphysema classes under study
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Fig. 3.
Average kernel density estimates for all samples for the six emphysema classes under study
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Fig. 4.
Scatter plot that shows the percentage labeled ROIs obtained using the LBPINT and KDE
for the 342 analyzed subjects. (a) NT. (b) PS. (c) PL. (d) CL1. (e) CL2. (f) CL3. For
reference, the identity line is shown. Notice the good agreement between both methods for
each tissue class.
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Fig. 5.
Classification results for three stages of disease severity using the methodologies under
study. (Top row) axial and coronal slices for the original CTs. (Middle row) Classification
results for KDE. (Bottom row) Classification results using LBPINT.
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