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Abstract
In this paper we present a dictionary-based framework for the reconstruction of a field of
ensemble average propagators (EAPs), given a high angular resolution diffusion MRI data set.
Existing techniques often consider voxel-wise reconstruction of the EAP field thereby leading to a
noisy reconstruction across the field. We present a dictionary learning framework for achieving a
smooth EAP reconstruction across the field wherein, the dictionary atoms are learned from the
data via an initial regression using adaptive spline kernels. The formulation involves a two stage
optimization where the first stage involves optimizing for a sparse dictionary using a K-SVD
based updating and the second stage involves a quadratic cost function optimization with a non-
local means based regularization across the field. The novelty lies in a dictionary based
reconstruction as well as an NLM-based regularization that helps preserving features in the
reconstructed field. We document experimental results on synthetic data from crossing fibers and
real optic chiasm data set that demonstrate the advantages of the proposed approach.
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1. INTRODUCTION
Diffusion weighted MRI is a non-invasive imaging technique which tells the connectivity
patterns of fibrous tissues through sensing the Brownian motion of water molecules. One of
the major tasks of diffusion MRI is the reconstruction of the 3-D diffusion ensemble average
propagator (EAP), P(r), which characterizes the diffusion of water molecules with a
probability density function (PDF) defined at each voxel. P(r) cannot be measured directly.
Instead, the diffusion signal, S(q), is sensed by the scanner. Under the narrow pulse
assumption, the diffusion signal in q-space and the diffusion propagator in displacement (r)
space are related through the Fourier transform [1]:

(1)

where E(q) = S(q)/S0, S0 = S(0).

Various techniques have been proposed to reconstruct P(r) from samples of S(q). Diffusion
tensor imaging (DTI) [2] is a simple method which characterizes the diffusion propagator
using an oriented Gaussian function. It is now well know that this model fails to capture
multi-fiber structure with more than one fiber orientations within one voxel. To overcome
the limitation of DTI, high angular resolution diffusion imaging (HARDI) [3] was proposed
where S(q) is measured on a single shell in the q-space. It is possible to fit more
sophisticated models to the signal such as a mixture of Gaussian densities [3]. Other
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techniques include diffusion orientation transform (DOT) [4], diffusion propagator imaging
[5], tomographic reconstruction methods [6] and spherical deconvolution [7].

The DW-MRI datasets are usually provided as a field of S(q, x) where x specifies spatial
locations. Most of the existing reconstruction methods reconstruct P(r, x) at each location x
independently which do not consider the spatial coherency that inherently exists in the data.
In a recent study [8], a spatially regularized reconstruction approach was developed that
exploits sparse representation of P(r) in spherical ridgelet basis. In this framework, spherical
ridgelet transform was applied at every voxel on S(q, x) to obtain a sparse representation.
Then the sparsity of transform-domain coefficients as well as the total variation of the
reconstructed signal field S(q, x), with respect to x were used to formulate the reconstruction
as the following optimization problem:

(2)

In this formulation, A is the spherical ridgelet transform matrix, C contains the transform
coefficients at all voxels in the field of interest where each column, ci, is one set of
transform coefficients at ith voxel. AC represents the reconstructed diffusion signal field and
TV{AC} is the total variation of the reconstructed field. The third term enforces correlations
among ci from neighbouring voxels which makes the solution of the coefficient field
spatially regularized. The final step is to calculate the diffusion propagator from the
reconstructions as  where  A denotes the Fourier transform basis of the
functions (i.e., spherical ridgelets).

A in the above formulation is fixed to be the spherical ridgelet bases truncated up to a certain
degree. In contrast we introduce a dictionary-based method where we learn the basis
functions in A from data examples that will provide a sparse representation. Through
updating both A and C during the optimization process, we obtain a dictionary learned from
the specific dataset as well as the corresponding sparse representation of the reconstruction.
The globally defined dictionary plays an implicit role of regularizing the reconstructions
over different voxels. We also introduce the spherical deconvolution model with adaptive
kernels to control the way the dictionary gets updated. In addition, we use an NLM-based
regularization which further suppresses the noise. We will briefly introduce the adaptive
kernels in Section 2 and give the dictionary learning framework in Section 3. Section 4 will
show the experiment results and Section 5 is the conclusion section.

2. ADAPTIVE KERNELS FOR MULTI-FIBER RECONSTRUCTION
Given a diffusion-weighted MR dataset, there are many methods employing different
spherical deconvolution kernels to reconstruct the multi-fiber diffusion profile. In the
spherical deconvolution framework, the DW-MRI signal is considered as the convolution of
a kernel function k with a probability density function f over the sphere [7]:

(3)

where b is the diffusion weighting, ||g|| = 1 and q ~ √bg. The integration is over the domain
of||parameter p. Many well known reconstruction techniques turn out to be the special cases
of Equation 3 by picking certain kernel functions k(b, g|p) and mixing densities f(p) [7]. For
example, k can be multivariate Gaussian function k(b, g|D) =(—bgTDg)[9]. The choices of
such fix-shaped kernels are used to represent the diffusion property of the underlying fibers;
however they also impose some unnecessary assumptions which may not hold for the real
DW-MRI dataset.
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Adaptive spline kernels [10] were proposed as a flexible kernel model to fit datasets with
varieties of different diffusion patterns. The density function f is re-parametrized on the

sphere as  where v1, . . . , vN is a set of unit vectors uniformly
distributed on the hemisphere. By letting the reconstruction kernel K(b, g|vj) = ∫ϕ(p|vj)k(b,
g|p)dp and considering the case of a constant b-value (which is quite common in HARDI
acquisition), we have:

(4)

where K is represented in spline bases ψk. The shape of the kernel is flexible and is
determined by the control points ck. When we plug a number of measurements S(gi), i =
1, ..., M and the corresponding gradient directions gi into Equation 4, we obtain M linear
equations with respect to unknowns wj and ck. wj and ck are then estimated through non-
negative least square fitting in an alternative pattern. In other words, wj is estimated while ck
are fixed and then ck's are estimated while wj are fixed. See [10] for details of the search
algorithm.

Finally, the diffusion propagator is calculated by the estimated wj and ck parameters and by
applying the Fourier transform on both sides of Equation 4. Since ψk are known spline
bases, their Fourier transforms can be calculated beforehand.

3. DICTIONARY BASED RECONSTRUCTION FRAMEWORK
In the afore-mentioned spherical deconvolution framework, diffusion signal is modelled as
weighted sum of kernel functions each of which represents the diffusion properties of a
single fiber. The number of parameters, ck, in kernel functions and the weights, wj, is
usually very large which makes the reconstruction problem ill-posed. Fortunately, the fact
that the number of fibers at each voxel is limited in real datasets allows us to exploit the
sparsity of weighting coefficients to solve the reconstruction problem. The problem of
searching for the proper kernel function as well as the sparse weighting coefficients can be
solved by a dictionary learning paradigm.

For a given voxel v, we define the weights as a vector wv whose jth element is denoted by
wj, the measurements as vector ev whose ith element is denoted by E(gi), and Kv which
denotes the kernel Kv(i, j) = K(gi|vj). With these notations Equation 4 becomes ev = Kvwv
where K is flexible by changing coefficients ck. Modelling signal within a single voxel can
be interpreted as a dictionary learning problem with one observation and dictionary atoms
formed by our splines.

Instead of fitting the adaptive kernel to the signal at each voxel individually, here we use an
over complete dictionary KM×D, D > N for all the voxels. We define E = [e1, ..., eV] as the
measurements from all the voxels in the field of interest, W = [w1, ..., wv] as the
corresponding weights respect to the new global dictionary K. Now, we can formulate the
modelling of the whole field as the optimization problem:

(5)

where T0 specifies how many non-zero weights are allowed. There are many algorithms
which solve this dictionary learning problem, we pick the K-SVD algorithm [11] because of
its simplicity and efficiency. The global dictionary K implicitly brings in some spatial
regularization such that the reconstructed field KW does not change independently at each
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voxel. The dictionary size D and sparsity constraint T0 indirectly control the smoothness of
the reconstructions.

In order to further suppress the noise during the reconstruction, we introduce an explicit
regularization term:

(6)

where  is a roughness measure of the reconstruction KW . In Equation 2,  is set
to be the total variation. In this paper, we propose to use the deviation of KW from its non-

local means NL{KW} [12], i.e. .

A direct solution to this problem is difficult because of the complicated regularization term.
We split the original problem into two sub-problems by introducing an auxiliary variable Y
= KW and solve them using an alternating method. With the auxiliary variable included, the
original problem can be written as:

(7)

At each iteration t, we are solving the following two problems:

(8)

(9)

The problem in setp 2 is actually a quadratic problem which has a closed form solution:

(10)

To initialize the dictionary K, we individually fit the adaptive spline kernel to every voxel in
the field and pick D of the kernels with the largest weights across the field. And at each
iteration t, we refit the adaptive kernel to Kt to ensure that the atoms of our dictionary can
still be expressed in Equation 4.

4. EXPERIMENTS
In this section, we evaluate our proposed reconstruction framework by comparing to the
reconstruction of P(r) on individual voxels, and our regularized framework. The experiments
demonstrate the advantages of the regularization from the learned global dictionary as well
as the non-local smoothness regularizer.

4.1. Synthetic Dataset
We first evaluate the reconstruction performance with our synthetic data field using the
simulation model proposed in [13] with cylindrical fiber radius of 5μm, length 5mm and
diffusion weighting b = 1500s/mm2. All the data were simulated using 81 gradient directions
with different noise δ level changing from 0 to 0.3. We compared our results against both
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the voxel-wise reconstruction as well as voxel-wise reconstruction on the smoothed data
field using the non-local mean denoising algorithm. For the individual adaptive kernel, we
picked N = 321, P = 5, ψk to be a 3rd-order B-spline basis function. For our dictionary
learning framework, we set dictionary size D = 100, T0 = 4, λ = 2δ and μ = 10δ where δ can
be estimated in real dataset. For NLM, we set the radius of local patch to be 3, the radius of
neighbourhood search window to be 5. In our experiments, we observed the advantages of
our method is not sensitive to choices of λ and μ.

The results show that the proposed method is much more accurate when the noise level is
high since the voxel-wise reconstruction method does not take advantage of the smooth
global fiber structure and is more vulnerable to the noise.

4.2. Real Dataset
We also performed an evaluation of the proposed method with real data from a rat optic
chiasm, which contains samples measured with 46 different directions with b-value around
1240s/mm2. The S0 image as well as the region of interest, marked with a blue box, are
shown in Figure 2. The reconstructed P(r) field at the region of interest is shown in Figure 3.
We observe that the proposed method generates a smooth reconstruction while keeping the
underlying fiber structure. The parameter setting is the same as those used in the synthetic
experiments except that we picked a different value of T0 = 12 and estimated the value of δ
= 0.17 from the homogeneous (noisy) areas of the image.

5. CONCLUSION
We proposed a novel EAP reconstruction framework based on dictionary learning that
allows us to improve the reconstruction with a non-local regularization. This method
reconstructs the whole field of EAPs. Through learning a dictionary from the given data
volume and enforcing the regularization, our approach generates reconstructions at voxels
that are robust to noise and preserve fiber structures at the same time. The advantages are
shown through both synthetic and real data experiments.
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Fig. 1.
Reconstructed field (δ = 0.2) using (a) voxel-wise individual reconstruction, (b) voxel-wise
reconstruction on NLM denoised data field, (c) the proposed method. (d) shows the angular
error for different δ.
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Fig. 2.
S0 image of the optic chiasm and the ROI.
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Fig. 3.
Reconstructed region of interest using (a) voxel-wise individual reconstruction, (b) the
proposed method.
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