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Abstract

Human connectomes constructed via neuroimaging data offer a comprehensive description of the 

macro-scale structural connectivity within the brain. Thus quantitative assessment of connectome-

scale structural and functional connectivities will not only fundamentally advance our 

understanding of normal brain organization and function, but also have significant importance to 

systematically and comprehensively characterize many devastating brain conditions. In 

recognition of the importance of connectome and connectomics, in this paper, we develop and 

evaluate a novel computational framework to construct structural connectomes from diffusion 

tensor imaging (DTI) data and assess connectome-scale functional connectivity alterations in mild 

cognitive impairment (MCI) and schizophrenia (SZ) from concurrent resting state fMRI (R-fMRI) 

data, in comparison with their healthy controls. By applying effective feature selection 

approaches, we discovered informative and robust functional connectomics signatures that can 

distinctively characterize and successfully differentiate the two brain conditions of MCI and SZ 

from their healthy controls (classification accuracies are 96% and 100%, respectively). Our results 

suggest that connectomics signatures could be a general, powerful methodology for 

characterization and classification of many brain conditions in the future.

Index Terms

Connectome; network-based signature

1. INTRODUCTION

Genomic technologies such as genome-scale gene expression analyses and their derived 

genomics signatures are transforming medicine in many facets including disease prevention, 

differential diagnosis, disease staging, disease sub-type identification, personalized 

treatment, follow-up and prognosis. In parallel, in the neuroscience field, quantitative 

mapping of human brain connectomes [1] aims to construct a comprehensive description of 

the macro-scale structural connectivity within the human brain via neuroimaging data. 

Considering the brain function is realized via large-scale structural and functional 

connectivities [2], mapping connectomes will fundamentally advance our understanding of 

brain structure and function. In particular, a variety of neurological or psychiatric conditions 

such as Alzheimer’s disease and Schizophrenia exhibit widespread alterations in brain 
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connectivities. Essentially, quantitative mapping of brain connectomes in healthy and 

disease populations and extraction of informative and robust connectomics signatures have 

significant importance to systematically and comprehensively understand, characterize, 

diagnose and treat those many devastating brain diseases. Simply, what connectomics is to 

brain connectivity in neuroscience resembles what genomics is to genetics.

Recently, we created and validated a novel data-driven strategy that discovered 358 

consistent and corresponding Regions of Interests (ROIs) in large-scale dataset [3] in which 

each identified ROI was optimized to possess maximal group-wise consistency of diffusion 

tensor imaging (DTI)-derived fiber shape patterns. The neuroscience basis is that each 

brain’s cytoarchitectonic area has a unique set of extrinsic inputs and outputs, called the 

“connectional fingerprint” [2], which largely determine the functions that each brain area 

performs. This close relationship between structural connection pattern and brain function 

has been confirmed and replicated in our recent works [3]. Therefore, these 358 ROIs 

possess intrinsically-established structural and functional correspondences (universal), while 

their locations and sizes are determined in each individual’s space (individualized).

Given DTI data, we can predict and transform the 358 ROIs to a new subject [3] which 

provide natural structural substrates for the construction of functional connectomes. Based 

on the R-fMRI BOLD signals extracted from these ROIs, we assessed the large-scale 

functional connectivities in two brain conditions including mild cognitive impairment 

(MCI), which is a precursor of Alzheimer’s disease, and schizophrenia (SZ), and compared 

them with those in healthy controls. Fig. 1 shows the main steps of our proposed work in 

this paper. In particular, after two-stages feature selection including t-test and correlation-

based feature selection (CFS) [4], we identified a set of connectomics signatures for 

characterization of these two brain conditions. Our experiment showed very promising 

result, which is nearly 100% accuracy of the disease/control classification. We also explored 

the functional roles of the involved ROIs in the connectomics signatures via meta-analysis, 

and it turned out that these most descriptive ROIs are very relevant to MCI and SZ based on 

current neuroscience knowledge.

2. METHODS

2.1. Data acquisition

Twenty-eight participants (10 MCI patients and 18 sociodemographically matched normal 

controls (NC)) were recruited and scanned in a 3.0 Tesla scanner (GE Signa EXCITE, GE 

Healthcare). For R-fMRI, echo time (TE) = 32 ms, repetition time (TR) = 2000 ms, FOV = 

25.6 cm2, matrix = 64 × 64 × 34, 3.8 mm3. For DTI, 25 direction diffusion-weighted whole-

brain volumes were acquired axially parallel to the AC-PC line using diffusion weighting 

values, b = 0 and 1000 s/mm2, flip angle = 90°, TR = 17 s and TE = 78 ms. The imaging 

matrix was 256 × 256 with a rectangular FOV of 256 × 256 mm2 and 72 slices with a slice 

thickness of 2.0 mm.

DTI and R-fMRI datasets of 10 SZ and 10 controls were downloaded from the publicly 

available NA-MIC dataset. The DTI used 51 directions with b=900 and 8 baseline scans 

with b=0. Other scan parameters include: TR 17000 ms, TE 78 ms, FOV 24 cm, 144×144 
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encoding steps, 1.7 mm slice thickness. The R-fMRI was 10 minutes long, and contained 

200 repetitions of a high resolution EPI scan (96×96 in plane, 3mm thickness, TR-3000 ms, 

TE=30, 39 slices, ASSETT). Two cases of SZ subjects were discarded due to low quality of 

DTI data, thus 8 SZ cases were used in this paper.

2.2. ROIs initialization and functional connectome construction

In this paper, we constructed functional connectomes based on these structure-derived 

DICCCOL ROIs which has three advantages: 1) the cortical regions centered on these ROIs 

provide intrinsically-established correspondences across subjects, avoiding being trapped in 

seeking unclear cortical boundaries. 2) The nonlinearity of cortical properties is adequately 

addressed by a global optimization and search procedure, in which group-wise consistency 

is used as an effective constraint. 3) Individual structural variability is effectively addressed 

by directly determining the locations and sizes of ROIs in each individual’s space, thus 

avoiding image registration errors.

As illustrated in Fig. 2, in comparison with current methods for brain connectivity mapping 

that rely on the Brodmann map [1], our functional connectomes based on structure-derived 

ROIs will offer much finer granularity, much better functional homogeneity, much more 

accurate functional localization, and automatically-established cross-subjects 

correspondences [3].

2.3. Feature selection

In the previous steps in Section 2.2, we achieved a 358*358 functional connectivity matrix, 

or functional connectome, for each subject. Because of the symmetry, we actually have 

63903 unique functional connectivity features that is over-complete compared to the number 

of subjects we have. Our strategy is that through a two-stage supervised feature selection 

procedure, only the features with the most distinctive and descriptive characteristics for 

differentiating brain conditions (e.g., MCI or SZ here) will be retained. These preserved 

features (functional connectivities) will served as connectomics signatures for the 

subsequent disease/control classification and their neuroscience interpretation.

The goal of feature selection is to recognize and remove the irrelevant and redundant 

information as much as possible. [4] Since we only have two classes (MCI/SZ patients and 

their normal controls), we adopted a simple t-test (p<0.05) in the first stage to remove the 

connectivities without significant differences between two disease/control classes. After this 

step, there are 658 and 757 connectivities passed through the significance test for MCI and 

SZ, respectively.

Since the t-test evaluates the features separately, the first-stage feature selection did not 

consider the relevance among the features and thus it cannot capture the redundancy of these 

preserved features. To tackle this problem, we employed the Correlation-based Feature 

Selection (CFS) [4] algorithm as the second-stage feature selection. The core idea of CFS is 

that through a heuristic process it evaluates the merit of a subset of features by considering 

the goodness of individual features for predicting the class along with the degree of 

intercorrelation among them. Unlike the first stage t-test, CFS will compute feature-class 

and feature-feature correlations simultaneously.
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Given a feature subset S with k features, the Merits is defined as followed:

(1)

Where  and  are the mean feature-class correlation and the average 

feature-feature intercorrelation respectively. Fig. 3 shows an example of the feature selection 

processes. It is evident that each stage of the feature selection processes significantly 

reduced the number of features and only retain the most significant and distinctive features.

3. RESULTS

3.1. Connectomics signature of MCI and SZ

After two-stage feature selection, we finally achieved 43 and 18 dimensional functional 

connectivities for MCI (Fig. 4a) and SZ (Fig. 4d), respectively. These two sets of features 

will be treated and used as the connectomics signatures for the following disease/control 

classifications.

Based on visual examination of MCI’s connectomics signatures, we can clearly observe two 

distinctive patterns that are highlighted by blue and yellow circles in Fig. 4a. The MCI 

patients exhibited significantly higher and lower functional connectivity than normal 

controls in the first and second patterns, respectively (Fig. 4b and Fig. 4c). Specifically, 

these two patterns were extracted via the K-means clustering (k=2), and 28 and 15 

functional connectivities were assigned to these two signature classes accordingly. This 

result suggests that MCI exhibit a complex pattern of both increased and decreased 

functional connectivities, in comparison to healthy controls. Also, the result demonstrates 

that there are widespread connectivity alterations in the whole brain of MCI subjects, which 

is consistent with current neuroscience studies in the literature. For SZ, all 18 functional 

connectivities show higher correlations than normal controls, suggesting that the SZ brains 

are significantly more active than their controls in resting state. A detailed analysis of above 

connectomics signatures will be given in Section 3.3.

3.2. Disease/control classification using connectomics signature

To verify whether the above selected features, or functional connectomics signatures, have 

the capability to differentiating MCI/SZ patients from their normal controls, we put them 

into the widely used SVM classifier [5] to conduct a disease/control classification. Because 

the numbers of subjects of both MCI and SZ patients are not very large, in this paper, we 

adopted the widely used leave-one-out strategy and the average accuracies of classification 

are 96% and 100% for MCI and SZ, respectively. That is, most of the subjects can be 

correctly classified. It is evident that these two sets of functional connectivities have 

captured the intrinsic difference between MCI/SZ patients and their normal controls and 

hence we named them as “Functional Connectomics Signatures”.
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3.3. Neuroscience interpretation

To interpret the brain science meanings of the connectomics signatures of MCI, Fig. 5a and 

5b visualize the hyper- and hypo- connectivities in MCI on a cerebral cortical surface which 

are corresponding to that in Fig. 4b and 4c, respectively. It is evident that both increased and 

decreased functional connectivities in MCI are widespread across the whole cortex, 

suggesting that MCI is a brain condition with large-scale functional connection alteration. 

Quantitatively, the percentages of increased/decreased connectivities connected to the left 

frontal, left parietal, left temporal, left occipital, right frontal, right parietal, right temporal, 

and right occipital lobes are 19%/18%, 11%/18%, 6%/7%, 2%/3%, 34%/36%, 4%/7%, 

19%/4%, and 4%/7%, respectively. It can be clearly seen that the frontal lobes exhibit 

substantially more functional connectivity alterations than other lobes, e.g., the occipital 

lobes.

Furthermore, we annotated the 358 ROIs into 46 functional networks via meta-analysis in 

the BrainMap (http://brainmap.org/) database. We visualized the top 22 functional networks 

that are most frequently involved in the connectomics signatures of the two brain conditions 

studied in this paper in Figs. 5d and 5e. The names and colors of these 22 networks are 

shown in the bottom of Fig. 5. Quantitatively, the top five functional networks that exhibit 

increased functional connectivity are attention, execution, working memory, audition and 

explicit memory networks, and their percentages among all altered connections are 15%, 

9%, 9%, 6%, 6%, respectively. At the same time, the top five networks that exhibit 

decreased connectivities are emotion, attention, fear, speech language, and working memory 

networks, and their percentages among all decreased connections are 21%, 18%, 11%, 11%, 

11%, respectively. Apparently, the attention network is the most affected one in terms of 

altered connectivities. In addition, it is interesting that the working memory networks are 

among the top five networks with both decreased and increased connectivities. Our results 

are in the line of literature reports [6], but systematically and comprehensively elucidated 

the widespread functional connectivity alterations via functional connectomics signatures.

It is interesting that all the functional connectivites belonging to the signature of SZ are 

increased activities for the patients which suggests that SZ is a brain disorder of hyper-

connectivity. Fig. 5c visualizes the increased connectomics signatures in the context of 22 

annotated functional networks. Quantitatively, the percentages of increased connectivities 

connected to the left frontal, left parietal, left temporal, left occipital, right frontal, right 

parietal, right temporal, and right occipital lobes are 15%, 9%, 9%, 6%, 15%, 6%, 27%, and 

12%, respectively. It is apparent that the frontal and temporal lobes exhibit substantially 

more functional connection alterations in SZ, while the occipital and parietal lobes have 

much less functional connection alterations. In addition, we obtained the top five brain 

networks of increased connectivities including attention, speech language, emotion, 

execution, cognition, and their altered connection percentages among all decreased 

connections are 12%, 9%, 9%, 6%, 6%, respectively. Again, the attention network is the 

most affected one in terms of increased connectivities. Similar to that in MCI subject, the 

attention network exhibits the most altered functional connectivities in SZ.
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4. CONLUSION

Our novel computational framework identified informative functional connectomics 

signatures that can distinctively characterize and successfully classify MCI and SZ from 

their healthy controls. In comparison with other methods for brain connectivity mapping that 

rely on the Brodmann map [1], our functional connectomes offered much finer granularity, 

much better functional homogeneity, much more accurate functional localization, and 

automatically-established cross-subjects correspondence. These large-scale functional 

connectivities provided novel insights into the organization of human brain function. In 

comparison with current understanding of brain connectivity within small sub-networks in 

the literature, the proposed method for representing human brain connectomes can 

systematically and comprehensively characterize large-scale connectivities over the whole 

brain. In particular, it is able to reveal how connectome-scale connectivities are altered with 

different patterns in brain conditions such as MCI and SZ. We envision that the novel 

methodologies presented in this paper can be potentially applied to other brain disorders 

with altered functional connectivities, and can be possibly used to derive informative 

biomarkers for disease diagnosis, staging, follow-up, and prognosis in the future.
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Fig. 1. 
The flowchart of our proposed framework.
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Fig. 2. 
The illustration of functional connectome. (a) The initialized 358 structure-derived ROIs 

(green bubbles). (b) Functional connectivity matrix based on the ROIs in (a). (c) Functional 

connectome is projected onto a 2D plane.
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Fig. 3. 
The illustration of feature selection. (b), (c) are binary images and the white dots represent 

the preserved features. (a) The original features. (b) Features after the first-stage selection (t-

test). (c) Features after the second-stage selection (CFS).
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Fig. 4. 
The functional connectomics signatures of MCI and SZ. (a) MCI’s connectomics signatures 

after CFS. Two distinctive patterns are highlighted by blue and yellow circles and extracted 

via K-means clustering (k=2) as shown in (b) and (c). (d) SZ’s connectomics signatures after 

CFS. All the functional connectivities in the signatures show higher correlations for SZ 

patients than normal controls.

Zhu et al. Page 10

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. 
The neuroscience interpretation of the functional connectomics signatures. (a) and (b) 

Visualization of the hyper- and hypo- connectivities in MCI on a cerebral cortical surface 

which are corresponding to that in Fig. 4b and 4c. (c) Visualization of functional signatures 

of SZ on a cerebral cortical surface. All the functional connectivities in the signature show 

higher correlation for SZ patients than normal controls. (d)–(f) Result interpretation of 

connectomics signatures of MCI (d–e) and SZ (f). 358 structure-derived ROIs are 

represented by an inner ring of color-coded nodes, connections (corresponding to those in 

(a–c) and Figs. 4b–d) are represented by colored edges, and 22 functional networks are 

represented by 22 outer rings of colored nodes. All of the colored nodes in each ring of 358 

nodes stand for a functional network. The names and colors for 22 networks and their 

corresponding rings are shown in the bottom.
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