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Abstract

Emphysema has distinct and well-defined visually apparent CT patterns called centrilobular and 

panlobular emphysema. Existing studies concentrated on the classification of these patterns but 

they have not looked at the complete evolution of this disease as the destruction of lung 

parenchyma progresses from normal lung tissue to mild, moderate, and severe disease with 

complete effacement of the lung architecture. In this paper, we discretize this continuous process 

into five classes of increasing disease severity and construct a training set of 1161 CT patches. We 

exploit three solutions to this monotonic multi-class classification problem: a global rankSVM for 

ranking, hierarchical SVM for classification and a combination of these two, which we call a 

hierarchical rankSVM. Results showed that both hierarchical approaches were computationally 

efficient. The classification accuracies were slightly better for hierarchical SVM. However, in 

addition to classification, ranking approaches also provided a ranking of patterns, which can be 

utilized as a continuous disease progression score. In terms of the classification accuracy and ratio 

of pair-wise constraints satisfied, hierarchical rankSVM outperformed the global rankSVM.

Keywords

emphysema; COPD; multi-class classification; rankSVM

1. INTRODUCTION

Emphysema is the progressive destruction of the lung leading to a permanent dilation of the 

distal airspaces. A common CT based quantification technique of emphysema is 

dichotomization of lung parenchyma into emphysema and non-emphysema regions with a 

threshold in Hounsfield units. Despite the wide acceptance of this approach due to 

correlation with histopathology and clinical outcomes, it has multiple drawbacks like 

sensitivity to noise and imaging parameters.

The smallest physiologic subunit of the lung is the secondary pulmonary lobule (SPL) that 

includes airways, arteries, veins, lymphatics, and the lung interstitium. The pattern of tissue 

damage apparent in this structure is used by radiologists to classify disease type and rate its 

severity [1]. Emphysema has two visually apparent patterns called centrilobular and 

panlobular emphysema. While panlobular disease can be described as complete effacement 

of the lung architecture, centrilobular emphysema is characterized by varying degrees of 

preservation of the structure of the SPL [1]. Existing techniques classify emphysema into 

one of these patterns often with a K Nearest Neighbor (KNN) or a Support Vector Machine 
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(SVM) classifier. They use features such as vectors [2] or histograms [3, 4] of intensities, 

local binary patterns [5], wavelet transform [6], or texton signatures [7]. However, existing 

works have not studied the complete evolution of disease as it progresses from normal 

parenchyma to mild, moderate, severe centrilobular and severe panlobular emphysema. (Fig. 

1). An automated approach for both emphysema classification and gradation will therefore 

be of great interest.

This problem differs from a standard classification problem because of the inherent natural 

ordering of not only the classes, but also the patterns within a single class. It differs from a 

regression problem because it is difficult to assign a continuous score of disease severity for 

each pattern by visual evaluation. Clinician only assigns class labels to patterns. We 

therefore exploit three solutions: 1) A ranking approach (RankSVM [8, 9]) where the 

intrinsic class orderings of pairs of patterns are included as constraints into the SVM 

objective function, 2) hierarchical multi-class classification with binary SVM (H-SVM), 3) 

combination of 1) and 2), which we call hierarchical RankSVM (H-RankSVM). In the first 

approach, rankSVM provides a single global ordering of the patterns, while in the second 

approach, a hierarchical multi-class SVM classification is employed. The hierarchical 

approach considers the inherent class orderings when grouping the classes into two subsets 

at each level. This reduces the number of possible tree combinations and makes it 

computationally more efficient to select the optimal tree. The third approach combines the 

advantages of first two approaches. Compared to the global rankSVM, it provides a more 

accurate inter-class ranking, since it works more locally concentrating on the boundary 

between two groups of classes at a time at each level of the hierarchy. Compared to H-SVM, 

it provides extra information: it provides both a classification and also a continuous ranking 

of patterns that can be utilized as a disease progression score. In this paper, we compare 

these three approaches.

We perform nested cross-validation experiments in a data set of 1161 emphysema image 

patches with the size of a secondary pulmonary lobule obtained from 267 COPD subjects. 

We compare the results of suggested approaches with each other and with standard multi-

class classification techniques.

2. METHODS

We first describe the global rankSVM approach that provides not only a classification but 

also an ordering of the disease patterns. We then explain the hierarchical multi-class 

classification solution. We describe how we efficiently build the optimal binary classifier 

tree and how we train each binary SVM classifier in this tree while optimizing for the 

parameters with a nested cross validation approach. We finally explain our hierarchical 

rankSVM approach where binary SVMs at each node are replaced with rankSVMs.

2.1. RankSVM

Ranking was first used in literature to solve information retrieval tasks that requires ranking 

the relevancy of documents for a query [10]. Unlike classification, ranking requires classes 

(or rankings) to have an ordering. RankSVM defines a function f(x) = w·x, such that f(xi) > 

f(xj) ⇔ ci > cj. Combining these equations, we get w · xi > w · xj. This is equivalent to 
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standard classification where difference of pairs of data points (xi − xj) and the sign of 

difference of the labels of those points are fed into the classifier as data points and labels 

respectively. The vector w is then learned using a standard SVM learning method. Since the 

inputs are pairs of data points, the problem size increases quadratically with the size of the 

training set. Efficient algorithms have recently been proposed to solve this problem [11].

We apply this efficient rankSVM formulation [11] to our problem in order to obtain a global 

ranking of patterns. We use the inherent ordering of classes from increasing severity levels 

as constraints when we train the ranking function f(x). This function is then used to rank the 

test patterns. One approach to evaluate the performance is to calculate the ratio of the 

constraints satisfied in the test set. Another approach is converting the rankings to class 

labels and computing the classification error. We compute four thresholds over the ranking 

function to separate the ranked patterns into five classes. Thresholds are selected to 

minimize the classification error over the validation set.

2.2. Hierarchical Multi-Class Classification for Monotonic Classes

The binary classifiers such as SVM [12] can be extended to multi-class classification 

problems using techniques like one-against-rest, one-against-one and hierarchical 

classification [13]. Hierarchical classification is b efficient in terms of number of binary 

classifiers needed. Moreover, our problem has a special structure with monotonic classes 

from progressing disease levels (see Fig. 2(b)). This structure can be utilized to learn the 

optimal binary classification tree very efficiently. The binary classification tree (Fig. 2(a)) 

subdivides the set of classes into two subsets at each node. The division stops at the leaf 

nodes where each subset contains a single class. To classify a new pattern, a path is followed 

from the parent node to one of the leaf nodes of the tree according to the binary classifier 

decision at each node.

To build the optimal tree, it is necessary to decide how to partition the classes into two 

subsets at each node. This can be performed by comparing all the possible trees and 

choosing the optimal one according to a criterion. However, this approach is 

computationally expensive. A greedy approach that computes the best subsets at each node 

based solely on the criterion evaluated at that node can be used. This approach requires a 

small number of comparisons to build the tree, however it is not optimal. Instead, we use the 

special structure of the emphysema classification problem with monotonic class 

distributions to reduce the comparison at each node from 2ki−1 − 1 to ki−1 where ki is the 

number of classes at that node i. For instance, at the first node there are five classes (1, 2.., 

5) and 4 possible ways to subdivide these classes into two subsets. The location of these cut 

points can be only between class k−1 and k ({{1}, {2, 3, 4, 5}}, {{1, 2}, {3, 4, 5}}, {{1, 2, 

3}}, {4, 5}}, {{1, 2, 3, 4}, {5}}). With this approach, we limit the number of comparisons at 

each node. Therefore it is possible to evaluate all possible combinations of trees and select 

the optimal tree. For our problem with five classes, there are 14 possible trees. We train each 

possible classifier tree and select the optimal one based on the maximum accuracy criterion 

computed over the validation set.
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2.3. Classification at Each Node

Previous work on emphysema classification mostly used KNN classifier, however, KNN 

only provides a local decision irrespective of the global information in the training set. 

Instead we use either a rankSVM or a binary SVM classifier at each tree node.

Binary SVM—Binary SVM uses the training samples to learn the optimal separating 

hyperplane (f(x) = w · x) with the orientation that maximizes the classifier margin ( ). 

For samples that are not linearly separable, kernel SVMs are used. We use kernel SVM with 

Radial Basis Function kernel (k(xi, xj) = exp(−γ∥xi − xj∥
2)) since it works well in our 

application and compare the results with linear SVM.

RankSVM—The alternative approach we propose to standard hierarchical SVM is 

hierarchical rank SVM where a binary rankSVM is applied at each node to rank the patterns. 

Unlike global rankSVM, hierarchical rankSVM provides a local ranking at each node. We 

then combine these piecewise linear local rankings into a final global ranking as illustrated 

in Fig. 3. To do so, we define a piecewise linear map between the median values of the 

rankings for each class computed over the training set.

2.4. Features

The classifiers work on features extracted from image patches of size 31 × 31 pixels (24.18 

× 24.18 mm2). The size of patches are selected as the average size of a secondary pulmonary 

lobule. Our feature set is the kernel density estimate (KDE) of intensity pdfs [4]. For KDE, a 

standard Gaussian kernel with bandwidth parameter σ was used and the parameter was 

estimated using the method in Botev et al. [14]. We extracted d = 601 features: The first 600 

density values in the range [−1050; −450] and the last feature computed as the sum of the 

density over all HU values larger than −450.

2.5. Experimental Results

Data set—We utilized 1161 image patches labeled by an expert clinician in our 

experiments. The samples were selected from a group of 267 subjects. The number of 

samples for each class in the order of increasing progression levels was: NT=370, C1=287, 

C2=178, C3=178, P=148. The expert labeled four to six samples per patient at random based 

on prototypic expression of disease and without any prior spatial correlation.

Cross Validation—We used nested cross validation experiments. The data was first 

divided into training and test sets using 10-fold cross validation such that all patches from a 

single subject fell in either training or test set, but not both. The training set was then further 

divided into validation and training sets using 5-fold cross validation. The training, test and 

validation sets were all independent. We used a grid search over the validation set to find the 

optimal parameters that gave the best classification performance. F-score [15] was used to 

measure classification performance since it balances the classification errors from negative 

and positive classes.
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In our experiments we computed the optimal tree hierarchy for the hierarchical binary SVM 

and rankSVM using training set success rate criterion. We used a brute-force search over all 

possible trees (14 trees).We obtained the same optimal tree for both H-SVM and H-

RankSVM. For the rest of the experiments, we used the tree shown in Fig. 2 (c). Note that in 

the 10 fold cross validation experiments, most folds of the training set resulted in the same 

tree, which we use in the results we report.

We evaluated the performance of global rankSVM classifier, H-SVM classifier and H-

RankSVM classifier and compared them against standard one-against-one, one-against-rest 

SVM, Naive Bayes and KNN classifiers that were used in previous work [4, 5]. In the KNN 

classifier, the number of nearest neighbors was set to the optimal value 5 reported in the 

previous work. For H-SVM classifiers, the results of both linear and kernel versions are 

reported in Table 1. The proposed kernel H-SVM method outperformed all classifiers and 

achieved comparable performance with one-against-one classifier. However, during testing, 

in one-against-one SVM, n(n − 1)/2 binary classifiers are applied to each sample and the 

decision is made by majority voting. In hierarchical SVM, the number of classifiers that are 

needed to be applied to a sample is fewer. In our case, with five classes, one-against-one 

classifier applied 10 binary SVMs, while the hierarchical version only applied 4 while 

achieving the same performance. As expected, H-SVM achieved slightly better 

classification accuracy compared to H-RankSVM. However, H-RankSVM additionally 

provides an intra class ranking of the patterns and a continuous disease progression map. We 

also computed the ratio of correct inter-class pair-wise orderings, and H-RankSVM 

outperformed global rankSVM, with values of 0.86 and 0.72 respectively.

Fig. 3 compares the results of all three methods on CT images of two smokers, one with 

mild and the other with severe disease. H-SVM approach provides only discrete class labels 

from 1 (normal) to 5 (severe panlobular) for each patch. RankSVM and H-RankSVM 

provides a continuous map in the same range, which can be utilized as a disease progression 

score. Moreover, the expert visual evaluation of these slices agreed well with H-RankSVM 

results.

3. DISCUSSIONS AND CONCLUSIONS

In this paper, we presented one global ranking approach and two hierarchical approaches, 

one for classification, and one for ranking. These approaches took advantage of the 

progressive nature of the disease. RankSVM learned a global ranking function that satisfied 

the pairwise constraints from the training set, while H-RankSVM learned a local ranking 

function for each node of the hierarchy, which were later combined to provide a global 

ranking. H-SVM provided multi-class hierarchical classification. We used the monotonic 

relation between patterns that reflects the disease progression to limit the number of 

comparisons carried out when constructing the optimal trees. We compared the performance 

of these approaches with standard one-against-one and one-against-rest SVM approaches as 

well as with KNN classifier.

The H-SVM approach outperformed KNN and the other multi-class SVM approaches and 

had the same accuracy with one-against-one approach. However, the one-against-one 
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approach required 14 binary classifications while the H-SVM required only 4 reducing the 

computational complexity.

H-SVM achieved slightly higher accuracies compared to both rankSVM and H-RankSVM 

as expected since it optimizes this criterion. However, the ranking approaches additionally 

provides an intra class ranking for each pattern. The H-RankSVM approach outperformed 

global rankSVM in terms of both classification accuracy and the ratio of inter-class pairwise 

constraints satisfied. It also agreed well with visual expert evaluation.

Acknowledgments

This work was funded by 1R01HL116931-01 and the COPDGene study NHLBI grants 2R01HL089897-06A1 and 
2R01HL089856-06A1. Additional support provided by NIH grants K25 HL104085-04.

REFERENCES

[1]. Hansell DM, et al. Fleischner society: Glossary of terms for thoracic imaging. Radiology. 2008; 
246:697–722. [PubMed: 18195376] 

[2]. Zulueta-Coarasa, T.; Kurugol, S.; Ross, JC.; Washko, G.; Estepar, R San Jose. Emphysema 
classification based on embedded probabilistic PCA; EMBC, 2013; 2013; 

[3]. Uppaluri R, et al. Quantification of pulmonary emphysema from lung CT images. American 
journal of respiratory and critical care medicine. 1997; 156(1):248–254. [PubMed: 9230756] 

[4]. Mendoza, CS.; Washko, GR.; Ross, JC.; Diaz, AA.; Lynch, DA.; Crapo, JD.; Silverman, EK.; 
Acha, B.; Serrano, C.; Estepar, R San José. Emphysema quantification in a multi-scanner HRCT 
cohort using local intensity distributions; ISBI; 2012; 

[5]. Sorensen L, Shaker SB, De Bruijne M. Quantitative analysis of pulmonary emphysema using local 
binary patterns. IEEE Trans. on Med. Imag. 2010; 29(2):559–569.

[6]. Depeursinge, A.; Foncubierta-Rodriguez, A.; Van de Ville, D.; Müller, H. Multiscale lung texture 
signature learning using the riesz transform; MICCAI; 2012; p. 517-524.

[7]. Gangeh M, Sørensen L, Shaker S, Kamel M, de Bruijne M. Multiple classifier systems in texton-
based approach for the classification of CT images of lung. Medical Computer Vision. 
2011:153–163.

[8]. Joachims T. Optimizing search engines using clickthrough data. Proc. of ACM SIGKDD. 
2002:133–142.

[9]. Pedregosa F, Gramfort A, Varoquaux G, Cauvet E, Pallier C, Thirion B. Learning to rank from 
medical imaging data. Machine Learning in Medical Imaging. 2012:234–241.

[10]. Cao, Y.; Xu, J.; Liu, TY.; Li, H.; Huang, Y.; Hon, HW. Adapting ranking SVM to document 
retrieval; Proc. of the ACM SIGIR conference; 2006; 

[11]. Chapelle O, Keerthi SS. Efficient algorithms for ranking with SVMs. Info. Retrieval. 2010; 
13:201–215.

[12]. Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20(3):273–297.

[13]. Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Trans. 
on Neural Networks. 2002; 13(2):415–425.

[14]. Botev ZI, Grotowski JF, Kroese DP. Kernel density estimation via diffusion. The Annals of 
Statistics. 2010; 38(5):2916–2957.

[15]. Sokolova M, Japkowicz N, Szpakowicz S. Beyond accuracy, f-score and roc: a family of 
discriminant measures for performance evaluation. Advances in Artificial Intelligence. 
2006:1015–1021.

Kurugol et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Two sample patches per class are shown. The patch sizes are 24.18×24.18 mm2, the size of 

an SPL. CT intensity window was set to [−1000; −500]. Severity increases from (a) to (e) 

with increasing size of low attenuating regions.
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Fig. 2. 
(a) Multi-Class Hierachical Classification Tree. (b) Regression plot showing the 

monotonicity of classes with increasing disease progression levels from 1 to 5, Normal to 

Panlobular. Blue line is the true class labels and the pink line is the output when we fitted a 

regression line to the features and the true class labels. (c) Optimal Multi-Class Hierachical 

Classification Tree. The experiments resulted in the same optimal tree for H-RankSVM and 

H-SVM.

Kurugol et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
First row shows two CT slices from two subjects. Left one has mild disease and right one 

has severe disease. Second and third rows show the results of the methods for mild and 

severe disease slices respectively. The columns show the results of H-SVM, RankSVM and 

H-RankSVM respectively. While H-SVM only provides discrete class labels from 1 

(normal) to 5 (severe panlobular), rankSVM and H-rankSVM provides a continous map in 

the same range.
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Table 1

Mean sensitivity and specificity metrics derived from the confusion matrices and averaged over five classes 

and classification success rates.

Method
Mean Classification

Success RateSens. Spec.

RankSVM 0.598 0.874 0.64

H-RankSVM 0.665 0.896 0.69

H-SVM 0.669 0.905 0.70

H-SVM + Kernel 0.694 0.914 0.71

1-against-all 0.610 0.904 0.67

1-against-all + Kernel 0.650 0.904 0.68

1-against-1 0.646 0.898 0.68

1-against-1 + Kernel 0.694 0.916 0.71

N. Bayes 0.602 0.834 0.55

KNN 0.656 0.892 0.69
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