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Abstract

Automatic and accurate parcellation of cortical surfaces into anatomically and functionally 

meaningful regions is of fundamental importance in brain mapping. In this paper, we propose a 

new method leveraging random forests and graph cuts methods to parcellate cortical surfaces into 

a set of gyral-based regions, using multiple surface atlases with manual labels by experts. 

Specifically, our method first takes advantage of random forests and auto-context methods to learn 

the optimal utilization of cortical features for rough parcellation and then the graph cuts method to 

further refine the parcellation for improved accuracy and spatial consistency. Particularly, to 

capitalize on random forests, we propose a novel definition of Haar-like features on cortical 

surfaces based on spherical mapping. The proposed method has been validated on cortical surfaces 

from 39 adult brain MR images, each with 35 regions manually labeled by a neuroanatomist, 

achieving the average Dice ratio of 0.902, higher than the-state-of-art methods.
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1. INTRODUCTION

Automatic and accurate parcellation of cortical surfaces into anatomically and functionally 

meaningful regions is of fundamental importance in human brain mapping [1]. The major 

challenge for accurate cortical surface parcellation is attributable to the fact that the human 

cerebral cortex is highly convoluted and extremely variable in shape across individuals [1]. 

In neuroimaging studies, several methods have been proposed for parcellation of cortical 

surfaces based on either concave sulci or convex gyri [1–8]. As sulci are typically bounded 

by gyral crests, the sulcal-based parcellation can be achieved by purely using the geometric 

features of cortical folding, such as the curvature and sulcal depth [2, 6]. In contrast, the 

gyral-based parcellation is a much more complicated task, because most gyri are connected 

together on the cortical surface and there is no clear boundary between these connected gyri 

[7]. Therefore, prior information is highly needed for assisting gyral-based parcellation of 

cortical surfaces. For example, FreeSurfer performs gyral-based parcellation of cortical 

surfaces based on a Bayesian model of position-specific prior statistics of geometric features 

of cortical folding and also class-conditional densities in the surface atlas space, which are 

learned from the manually labeled cortical surfaces by experts [1, 7]. However, one 
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limitation of this method is that it cannot learn to optimally utilize geometric features of the 

variable cortical folding for surface parcellation.

Recently, random forests draw great attention in image segmentation [9–11], due to its 

powerful capability of learning optimal image features. Therefore, in this paper, we are 

motivated to leverage this method for the challenging problem of cortical surface 

parcellation. However, these techniques cannot be directly applied to cortical surface 

parcellation. This is because pixel-comparison features in [10–12] rely on the relationships 

between local relative positions, which can be uniformly defined and used across the whole 

image, since all the pixels/voxels are in a regular grid. However, for the highly convoluted 

cortical surface manifold represented by triangular meshes, no such regular grid is available. 

Note that we use cortical surface to represent the cortex rather than using 3D image-based 

representation, because surface-based analysis respects the inherent topology of the cortex, 

and facilitates the normalization, analysis, measurement, and visualization of folded cortical 

regions [1, 2]. Since each cortical surface has its own triangular mesh configuration, it is 

difficult to uniformly define local relative positions. To deal with this issue, we propose a 

new method for defining Haar-like features on the cortical surface based on spherical 

mapping. Capitalizing on these Haar-like features of cortical geometric attributes, such as 

curvature and convexity, we propose to leverage random forests and auto-context methods 

to effectively parcellate cortical surfaces, using multiple surface atlases manually labeled by 

experts. However, because random forests classify each vertex independently, the 

parcellation result is inherently spatially-inconsistent, especially near the boundaries of 

different cortical regions, although adding auto-context features in random forests leads to 

improved accuracy and spatial consistency. To address this problem, we further integrate 

random forests with the graph cuts method [13] for further improving both the accuracy and 

spatial consistency of the parcellation. Specifically, we consider the parcellation as a 

Markov random field problem, and then define an energy function considering both the 

fitness of label probabilities derived from random forests and the spatial smoothness of 

boundaries. Our method has been validated on cortical surfaces from 39 adult brain MR 

images, each with 35 regions manually defined by a neuroanatomist, achieving a higher 

accuracy than the-state-of-the-art FreeSurfer and Spherical Demons methods [14].

2. METHOD

The proposed method for cortical surface parcellation consists of two main steps: rough 

parcellation using random forests and auto-context, and further refinement using graph cuts. 

Each step is detailed in the following sections.

2.1. Deriving Label Probability Maps by Random Forests

2.1.1 Random forests—A random forest consists of a number of binary decision trees, 

which are trained with randomness on features and corresponding thresholds [15]. Each tree 

is trained independently to learn a mapping from the feature space to a label probability 

distribution. The final result is the average over the label probability distributions of all 

individual trees. Compared to the case of using only one decision tree, a forest yields more 

accurate and robust results.
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2.1.2. Cortical features for parcellation—For cortical surface parcellation, Random 

forests need appropriate features. As mentioned, it is difficult to directly derive cortical 

features encoding relative positions on the original cortical surface. To deal with this issue, 

before computing cortical features, all individual cortical surfaces are mapped onto a 

spherical space and further registered onto a spherical surface atlas using Spherical Demons 

[14]. Then each cortical surface is resampled as a standard mesh tessellation based on the 

registration results, thus vertex-to-vertex cortical correspondences are established across all 

subjects. For each vertex on the cortical surface, we compute three types of features: 1) 

spatial positions in the aligned spherical space, 2) geometric features of cortical folding, and 

3) auto-context features of nearby labels. Specifically, spatial positions encode the spatial 

prior information. The geometric features of cortical folding are the Haar-like features 

extracted from the mean curvature map and the average convex map of the original cortical 

surface. Auto-context features are the Haar-like features extracted from the label probability 

maps derived from random forests. Note that auto-context features are not available in the 

first iteration of training or testing.

The Haar-like features are defined in a local circular neighborhood on the spherical surface, 

as shown in Fig. 1. Specifically, given a vertex vx on the standard spherical surface with v0 

as the origin, a local 2D coordinate system with the center as vx is built on its tangential 

plane. Assuming that the normal vector from v0 to vx is r⃗x, the direction of X′ axis is 

determined by Z⃗ × r⃗x, and the direction of Y′ axis is then determined by r⃗x × X⃗′. All N-ring 

neighboring vertices of vx are projected to the tangential plane along r⃗x. We further divide 

the circular neighborhood into 4 different ways to generate 4 types of Haar-like features, as 

shown in Fig. 2. The value of the feature in each case is computed as the summation of the 

cortical attribute values (i.e., mean curvature, average convexity, or label probability) of all 

vertices in the white region subtracting that in the black region. For features A and B, 

rotating around the center by an angle will produce different feature values, thus we 

calculate 8 feature values at 8 rotation angles at nπ/8, n=0,…,7. For feature C, 16 successive 

values are computed at 16 rotation angles at nπ/8, n=0,…,15. For features B and C, the 

width of the black region is defined as one-third of the diameter of the circle. Note that 

changing the size of the circle produces different feature values. In our implementation, for 

computing features A, B, and C, we use 4 different sizes of circles, including 7-ring, 11-ring, 

15-ring, and 19-ring neighborhoods, on the resampled spherical surface with 163,842 

vertices. For feature D, we use 7-ring as the inner circle and 15-ring as the outer circle, and 

also 11-ring as the inner circle and 19-ring as the outer circle.

2.1.3. Training and testing of random forests—In the first round of training, spatial 

positions and geometric features are used to train a forest. Then the training subjects are sent 

to the forest to obtain initial label probability maps, from which auto-context features are 

computed for further usage. In the next round of training, the auto-context features are used 

jointly with spatial positions and geometric features to train a new forest. Because geometric 

features of local cortical folding are quite similar, auto-context features can greatly help 

reduce the ambiguity and thus increase the accuracy of the parcellation. Sending the training 

subjects to this new forest, new label probability maps can be obtained accordingly, and new 

auto-context features can be computed consequently. By repeating the above process, the 
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gradually refined forests can be iteratively trained. The testing process follows the same way 

as the training process. Specifically, given a testing subject, the spatial positions and 

geometric features are sent to the first forest to obtain initial label probability maps. Then 

auto-context features are computed from the label probability maps, and sent with spatial 

positions and geometric features to the second forest for obtaining more accurate label 

probability maps. This process repeats until the final label probability maps are obtained 

from the last forest.

2.2. Integrating Label Probability Maps into Graph Cuts

By using random forests with auto-context features, each vertex x on the cortical surface is 

assigned a probability vector Px=[px,1,…,px,l,…,px,N], indicating the probability of each 

vertex belonging to a label l, l=1,…,N. An intuitive way to label a vertex is to assign it with 

a label l that has the maximum probability. However, because random forests classify each 

vertex independently, this will lead to spatially inconsistent parcellation, although adding 

auto-context features in random forests leads to improved accuracy and spatial consistency 

(Figs. 3(c)), comparing with the results without using auto-context features (Figs. 3(b)). To 

further improve the accuracy and spatial smoothness of the parcellation, we explicitly 

formulate it as a problem of minimizing a Markov random field energy function E:

(1)

where Ed is the data fitting term, Es is the spatial smoothness term, and λ is a weight. The 

data fitting term, which reflects the sum of the cost of labeling each individual vertex on the 

cortical surface, is defined as:

(2)

where px,l is the probability of assigning label l to a vertex x, obtained from random forests 

with auto-context features as described in Section 2.1. Intuitively, assigning a label with a 

higher probability to a vertex leads to a lower energy value of Ed. The spatial smoothness 

term, which reflects the sum of the cost of labeling the spatially neighboring vertices on the 

cortical surface, is defined as:

(3)

where Ns is a set of all one-ring neighboring vertex pairs on the cortical surface. Cx,y(lx,ly) 

indicates the cost of labeling vertex x as lx and labeling vertex y as ly. Of note, in the manual 

parcellations by experts, different cortical regions are usually divided at the highly bended 

areas (i.e., regions with high magnitudes of curvatures), such as sulcal fundi or gyral crests 

[7]. Therefore, in those highly bended areas, the cost of assigning two different labels to x 

and y should be low to encourage the dividing. On the other hand, in the flat areas, this cost 

should be high to prevent from dividing. Based on the above analysis, Cx,y(lx,ly) is designed 

adaptively to the cortical folding geometry as below:
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(4)

where n⃗x and Hx are the normal direction and mean curvature at vertex x, respectively. If 

lx≠ly, δ(lx,ly)=1; otherwise, δ(lx,ly)=0. Of note, the value of Cx,y(lx,ly) is in the interval of [0, 

1]. If x and y are in the flat cortical areas, their normal directions are similar and their 

magnitudes of mean curvature are close to 0, thus the cost value will be close to 1. On the 

other hand, if x and y are in the highly bended cortical areas, their magnitudes of mean 

curvatures are large, thus the second term in Eq. (4) is small. Therefore, if x and y belong to 

different cortical regions, their normal directions will have large difference, and thus the first 

term in Eq. (4) is also small, leading to a small cost when assigning x and y with different 

labels. However, when x and y belong to the same cortical region, their normal directions 

tend to be similar, thus the first term in Eq. (4) is large, leading to a large cost when 

assigning x and y with different labels. This energy function is effectively minimized by the 

alpha-expansion graph cuts method, which guarantees to achieve a strong local minimum 

[13].

3. RESULTS

The proposed method has been applied to the NAMIC cortical surface dataset [8], which 

includes the cortical surfaces reconstructed from 39 adult brain MR images by FreeSurfer 

[16]. Each cortical surface was manually labeled into 35 gyral-based regions by a 

neuroanatomist, based on the mean curvature map of the cortical folding [7]. In all our 

experiments, 10 trees (each with 15 layers) were used in random forests, and the weight λ in 

graph cuts was set as 1.0 experimentally. 4-fold cross-validation of the proposed method 

was performed, in order to directly compare with the results in [14], where the same dataset 

and same validation strategy were used. In each iteration of cross-validation, 10 subjects 

were used as testing data and the remaining subjects were used as training dataset.

Fig. 3 provides an illustration of different stages in the proposed method. As we can see, the 

surface parcellation results were gradually improved by adding auto-context features into 

random forests, and by using graph cuts. Fig. 4 displays the parcellation results of four 

randomly selected subjects. For better inspection of the surface parcellation accuracy of the 

whole dataset, an inflated cortical surface was color-coded by the average Dice ratio of each 

structure in Fig. 5(a). Dice ratios were relatively low in small regions, such as frontal and 

temporal poles, due to lacking of reliable cortical geometries in those regions. The 

improvement of Dice ratio with auto-context feature is shown in Fig. 5(b), and the 

improvement of Dice ratio by integration of random forests with graph cuts is shown in Fig. 

5(c), compared with the sole use of random forests. These results further demonstrated the 

effectiveness of using auto-context features and graph cuts.

In summary, the average Dice ratio was 0.896±0.014 by using random forests without auto-

context features, 0.900±0.015 by using random forests with auto-context features, and 

0.902±0.015 by integration of random forests with graph cuts. Of note, our results were 

higher than the reported average Dice ratio of 0.889 by FreeSurfer and 0.896 by Spherical 

Demons in [14]. Fig. 6 further showed the mean and standard error of the Dice ratio for each 
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of the 35 cortical structures in the left hemisphere by using FreeSurfer, Spherical Demons, 

and the proposed method, demonstrating the superior performance of the proposed method. 

Note that the proposed method shows much improvement especially in small cortical 

regions without clear boundaries, such as rostral anterior cingulate (region 27, 4.6%), 

fusiform gyrus (region 8, 3.1%), corpus callosum (region 5, 3.0%), entorhinal cortex (region 

7, 2.3%), isthmus cingulate (region 11, 1.4%), frontal pole (region 33, 1.3%), and bank of 

the superior temporal sulcus (region 2, 1.3%).

4. CONCLUSION

The major contributions of this paper are: 1) we propose a novel method for computing 

Haar-like features on the cortical surface; 2) we propose to jointly use auto-context features 

and geometric features in random forests for surface parcellation; 3) we integrate label 

probability maps derived from random forests with graph cuts for accurate and spatially 

consistent surface parcellation. In future work, we will validate our method on more subjects 

and also explore other useful features for parcellation.
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Fig. 1. 
Illustration of projecting N-ring neighboring vertices on the spherical space of vx onto its 

tangential plane for computing Haar-like features on the cortical surface.
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Fig. 2. 
Illustration of Haar-like features used for cortical surface parcellation. Each circle represents 

an N-ring neighborhood of a given center vertex. Features A, B, and C can capture ridges 

and valleys, and feature D can capture concave and convex peaks.
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Fig. 3. 
An illustration of different stages in the proposed method for cortical surface parcellation. 

(a) Ground truth. (b) Parcellation by using random forests without auto-context features. (c) 

Parcellation by using random forests with auto-context features. (d) Final parcellation by 

integration of random forests with graph cuts.

Meng et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The parcellation results of four individual subjects.
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Fig. 5. 
(a) Average Dice ratio by integration of random forests with graph cuts. (b) Dice ratio 

improvement between random forests with and without auto-context features. (c) Dice ratio 

improvement before and after integration of random forests with graph cuts.
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Fig. 6. 
Mean and standard error of Dice ratio of each of 35 cortical structures on the left hemisphere 

by using FreeSurfer, Spherical Demons, and the proposed method.
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