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? Escuela de Ingenierı́a de Sistemas y Escuela de Fı́sica, Universidad Industrial de Santander,
680002 Bucaramanga, Colombia

† CNRS, Laboratoire I3S, UMR 7271, Université Nice Sophia Antipolis,
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ABSTRACT

We present a gradient-based optimization method for the es-
timation of a specimen’s phase function from polychromatic
DIC images. The method minimizes the sum of a nonlinear
least-squares discrepancy measure and a smooth approxima-
tion of the total variation. A new formulation of the gradient
and a recent updating rule for the choice of the step size are
both exploited to reduce computational time. Numerical sim-
ulations on two computer-generated objects show significant
improvements, both in efficiency and accuracy, with respect
to a more standard choice of the step size.

Index Terms— DIC microscopy, phase estimation, in-
verse problems, gradient-descent method

1. INTRODUCTION

Differential-interference-contrast (DIC) microscopy is an op-
tical microscopy technique designed mainly for biological
purposes, to observe unstained transparent specimens under a
transmitted-light configuration. Among its advantages are the
ability to produce high contrast images and to achieve high
lateral resolution since it is possible to use full numerical
apertures in the objective [1]. DIC imaging is accomplished
from the interference of two waves that have a lateral dif-
ferential displacement (shear) and are phase shifted relative
one to each other. The resulting intensity image is given by
a nonlinear function of approximately the spatial gradient of
a specimen’s optical path length along the direction of shear
[2]; this provides a shadow-cast effect in the acquired image
which indicates the sign and slope of phase gradients in the
specimen [3].

In order to retrieve information hidden in the phase gra-
dients, it is necessary to solve the nonlinear, ill-posed inverse
problem of phase estimation from the DIC intensity images.
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Different approaches have been followed in previous work,
such as the Phase Shifting algorithm used by Lin et al. in [4]
and the method based on the transport-of-intensity equation
exploited by Bostan et al. in [5]. In this paper we have fol-
lowed the approach of rotational-diversity proposed by Preza
in [6], which provides information about the specimen-phase
function derivative in multiple directions and, by exploiting
a least-squares approach, gives the phase estimation as a reg-
ularized solution of a smooth nonconvex optimization prob-
lem. We propose to regularize the least-squares optimization
problem by using a smooth total variation term and we intro-
duce an efficient gradient-descent method for solving the reg-
ularized problem. We have added the polychromatic acqui-
sition in order to further increase phase diversity. Our main
contributions consist in: i) the extension of the model from
grayscale to color images; ii) a novel formulation of the gra-
dient which allows faster computations at each iteration; iii)
a clever choice of the step size parameter for the gradient-
descent method to improve the speed of convergence [7].

The paper is organized as follows: in section 2 the
rotational-diversity polychromatic image formation model
and the gradient-based phase estimation method are de-
scribed. In section 3 the results obtained from simulations of
synthetic objects are discussed. Conclusions and future work
are presented in section 4.

2. MODEL AND METHOD

2.1. Polychromatic rotational-diversity model

In the rotational-diversity model [6], the specimen rotation is
modeled as a rotation of the PSF by an angle τk, the angle
that the shear direction makes with the horizontal axis. Using
a discrete version of the continuous model presented in [6],
the k−th diversity intensity image ik,λ(x) is described by

ik,λ(x) = a1

∣∣∣∣∣∑
x0∈χ

f(x0)hk,λ(x− x0)

∣∣∣∣∣
2

, (1)



where a1 is a constant which corresponds to closing the con-
denser aperture down to a single point; k ∈ {0, . . . ,K − 1};
λ ∈ {λ1 = 0.65, λ2 = 0.55, λ3 = 0.45} are the values for
the RGB wavelengths; x and x0 take values on the set
χ = {0, 1, . . . , N − 1}2, being N the number of ele-
ments in each dimension of the object and image space;
f(x0) = e−j

φ(x0)
λ is the specimen’s transmission function,

being φ(x0) the specimen’s phase function we want to re-
trieve; hk,λ is the k−th rotation of the polychromatic DIC
amplitude point spread function

hk,λ(x) =
1

2

[
e−j∆θpk,λ(x− ∆x, y) − ej∆θpk,λ(x+ ∆x, y)

]
,

(2)
expressed in terms of the coherent PSF of the microscope’s
objectives lens pk,λ(x) at angle τk and for the wavelength λ,
where 2∆θ is the DIC bias retardation and 2∆x is the shear.

2.2. Gradient-based phase estimation

In order to estimate the phase function φ(x), we propose to
solve the following regularized least-squares problem

min
φ∈RN2

J(φ) ≡
λ3∑

λ=λ1

K−1∑
k=0

∑
x∈χ

[ok,λ(x)− ik,λ(x)]
2
+µJTV (φ),

(3)
where ok,λ is the k−th observed polychromatic image, ik,λ is
the k−th theoretical polychromatic image, JTV is a smooth
approximation of the total variation, also known in litera-
ture as the hypersurface potential [8] and µ is the regulariza-
tion parameter. Problem (3) has been approached by using a
gradient-descent method defined as

φ(m+1) = φ(m) − αm∇J(φ(m)), (4)

where αm is the step size and the components of the gradient
are given by

∂J(φ)

∂φ(x0)
=

λ3∑
λ=λ1

K−1∑
k=0

− 4

λ
· I {ξ(φ, x0, hk,λ)} +µ

∂JTV (φ)

∂φ(x0)
;

(5)
here

ξ(φ, x0, hk,λ) =
[(
rk,λ ∗

(
hk,λ ~ e−j

φ
λ

))
~ h?k,λ

]
(x0)·ej

φ(x0)
λ ,

I(·) denotes the operator that takes the imaginary part of its
argument, rk,λ = ik,λ − ok,λ, h?k,λ(x0) = hk,λ(−x0), ∗ is
the componentwise product and ~ is the convolution opera-
tor. Equation (5) has been obtained from [6, Equation 7] by
simply exploiting the linearity of the operator I(·). This novel
formulation is much more compact and faster to compute: in
fact, for an image of size N × N , the gradient has now time
complexityO

(
N2log

(
N2
))

, instead ofO
(
N4
)

exhibited in
[6].

2.3. Choice of the step size parameter

The stationarity of the limit points of the sequence generated
by (4) is guaranteed by choosing the step size αm = α

(0)
m γ`m ,

where γ ∈ (0, 1) and `m is the smallest natural number satis-
fying the Armijo condition

J(φ(m) − αm∇J(φ(m))) ≤ J(φ(m))− βαm‖∇J(φ(m))‖2,
(6)

being β ∈ (0, 1). The initial guess α(0)
m ∈ [αmin, αmax],

with 0 < αmin ≤ αmax, is typically chosen by seeking for
some second-order information of the objective function J in
order to improve the convergence rate of the scheme (see e.g.
[9, 10]). In our approach we used a rule recently proposed by
Fletcher [7] in the case of quadratic objective functions and
based on the approximation of the eigenvalues of the Hessian
matrix by means of certain Ritz values related to the Lanczos
process. The approach has been extended by Fletcher to non-
quadratic objective functions and is based on the storage of q
consecutive gradients and steplengths in the matrices

G =
[
∇J(φ(m−q)) . . . ∇J(φ(m−2))∇J(φ(m−1))

]
;

Γ =



α−1m−q

−α−1m−q
. . .
. . . α−1m−2

−α−1m−2 α−1m−1
−α−1m−1

 .

If G = QR is the thin QR factorization of G [11], r =
QT∇J(φ(m)) and Ξ = [R r]ΓR−1, then the Ritz-like ap-
proximations are computed as the eigenvalues of a symmetric
and tridiagonal approximation Ξ̃ of Ξ defined as

Ξ̃ = diag(Ξ) + tril(Ξ,−1) + tril(Ξ,−1)T , (7)

where diag(·) and tril(·,−1) denote the diagonal and the
strictly lower triangular parts of a matrix. We only remark
that the matrix Ξ can be obtained without the explicit com-
putation of Q by exploiting the partially extended Cholesky
factorization

GT [G ∇J(φ(m))] = RT [R r].

Once the q values θ1, . . . , θq have been obtained, their recip-
rocal θ−11 , . . . , θ−1q are used as step sizes for the following q
iterations, in which new gradients and step sizes will be col-
lected to generate new matrices G and Γ and the successive
group of q Ritz-like values.

3. NUMERICAL TESTS

The proposed method has been tested on two computer-
generated objects which represent the phase functions of
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Fig. 1. Data and results for the cone object. From left to right: true object, noisy DIC color image taken at angle τ0 = 0◦ and
SNR = 4.5, reconstructed phase and the relative error versus the number of iterations.
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Fig. 2. Data and results for the cross object. From left to right: true object, noisy DIC color image taken at angle τ0 = 0◦ and
SNR = 4.5, reconstructed phase with and the relative error versus the number of iterations.

two phantom specimens. Both objects were computed,
with respect to a zero-phase background, by using relation
φ(x) = 2π(n1 − n2)t(x), where n1 and n2 are the refractive
indices of the object structure and the surrounding medium,
respectively, and t(x) is the thickness of the object at point x.
The first phantom is a truncated cone of radius r = 3.2 µm
with n1 = 1.33, n2 = 1, t(x) = tmax − (tmax|x|)/r with
tmax = 0.7572 and maximum value φmax = 1.57 rad (Figure
1(a)). The second one consists of two crossing bars, each one
of width 5 µm, with n1 = 1.5039, n2 = 1.4858, t(x) ≡ 1 µm
and maximum value φmax = 0.114 rad (Figure 2(a)).
The datasets have been generated as follows. Both the two
objects described above were discretized as 64 × 64 images,
with pixel size 0.30 µm × 0.30 µm and an overall size of
19.2 µm × 19.2 µm. For every illumination wavelength, a
DIC PSF for a 10 × 0.3 N.A. lens was computed as in (2),
by setting 2∆θ = 1.57 rad and ∆x = 0.68 µm. Two or-
thogonal DIC color images were generated with model (1) by
rotating the three PSFs from τ0 = 0◦ to τ1 = 90◦. Finally,
these images were corrupted with white Gaussian noise at a
signal-to-noise (SNR) ratio equal to 9 dB and 4.5 dB (Figure
1(b) and 2(b)) respectively, being the SNR value computed
from SNR = 10 log10(φ∗/σ), where φ∗ is the mean value of

the true object and σ is the standard deviation of noise.
The reconstruction algorithm (4) was initialized with a con-
stant image φ(0) = 0 and was then stopped when the norm
between two successive iterates was lower than the prefixed
tolerance 10−5. The step sizes were computed as described
in section 2.3 every q = 4 iterations, whereas the line-search
parameters were set to γ = 0.5 and β = 10−4. Finally,
the regularization parameter and the TV smoothing param-
eter were manually set both equal to 10−2 for the cone and
4 · 10−2 and 10−3 for the cross.
In Figure 1(c) and 2(c), we show the reconstructed phase im-
ages provided by our method with SNR = 4.5. Moreover, we
compare the proposed approach to another gradient-descent
method in which, at each iteration, the step size is initialized
by means of the first Barzilai-Borwein (BB1) rule [9]

αBB1
m =

(φ(m) − φ(m−1))T (φ(m) − φ(m−1))
(φ(m) − φ(m−1))T (∇J(φ(m))−∇J(φ(m−1)))

,

and then successively reduced by performing a nonmonotone
linesearch, achieved by substituting the term J(φ(m)) at the
r.h.s. of (6) with the maximum value of the objective func-
tion J in the previous M iterations (in our tests we chose
M = 10). In Figure 1(d) and 2(d), we report the recon-



struction errors of both methods with respect to the number
of iterations. In particular, the error has been computed as
‖φ(m) − φ∗ − c̄1‖/‖φ∗‖, where φ∗ is the true object, 1 is the
vector of all ones and c̄ =

∑
x∈χ[φ(m)(x) − φ∗(x)]/N . Un-

like the usual root mean square error, this error measure takes
into account the fact that, because of model (1), the true phase
might be recovered only up to a real constant.
As it can be drawn from Figure 1, the reconstruction for the
cone is very satisfactory even for the most noisy case, for
which the relative error is below 6%. Good reconstructions
are also obtained for the cross: in fact, even if the estimate
in Figure 2(c) is visually less satisfactory than the one for the
cone, the shape is well-recovered, as well as the phase differ-
ence. In both cases, the proposed approach seems to be quite
robust to noise.
Furthermore, Figure 1(d) and 2(d) show that the proposed
choice for the step size outperforms significantly the standard
BB1 approach, in terms of efficiency, accuracy and robust-
ness to noise. This is particularly evident for the cross object
in which, for both the considered levels of noise, BB1 recov-
ers a coarse estimate in 500 iterations, while our approach
provides an error below 10% in roughly 300 iterations. In
average, the number of iterations required to achieve the esti-
mate is reduced of nearly 50%.

4. CONCLUSIONS AND FUTURE WORK

We presented the performance of a gradient-based optimiza-
tion method applied to the problem of phase estimation from
DIC images, extending the rotational-diversity approach to
include the presence of polychromatic images. Numerical ex-
perience showed that: i) the method is robust with respect
to the presence of high rates of noise; ii) it overcomes the as-
sumption of no previous knowledge of the initial guess, which
increases the ill-posedness of the problem; iii) it provides very
good estimations in less iterations than a standard gradient-
descent method; iv) the computational time is significantly
reduced thanks to our convolution-based formulation.

Future work will include the analysis of the proposed
method on real experimental images, where there is a lim-
ited number of observations and the sampling frequency is
reduced. It is also contemplated to consider another for-
mulation of the model by doing change of variables and
designing suitable optimization methods, possibly exploiting
the Fletcher step size adapted to the constrained case [12, 13].
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