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Abstract

In this paper, we propose a novel segmentation method for cells in histopathologic images based 

on a sparse shape prior guided variational level set framework. We automate the cell contour 

initialization by detecting seeds and deform contours by minimizing a new energy functional that 

incorporates a shape term involving sparse shape priors, an adaptive contour occlusion penalty 

term, and a boundary term encouraging contours to converge to strong edges. As a result, our 

approach is able to accommodate mutual occlusions and detect contours of multiple intersected 

cells. We apply our algorithm to a set of whole-slide histopathologic images of brain tumor 

sections. The proposed method is compared with other popular methods, and demonstrates good 

accuracy for cell segmentation by quantitative measures, suggesting its promise to support 

biomedical image-based investigations.
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1. INTRODUCTION

Image segmentation is a fundamental problem in computer vision and image analysis. In this 

community, level set-based approaches are important tools, because they are able to handle 

cell shapes with complex topological variations [1, 2, 3, 4]. However, this set of methods 

still faces several challenges. 1) It is difficult to segment cells without appropriate cell 

initializations. 2) Methods using shape prior models take as a reference a predefined set 

including shape priors insufficient to represent shape variations in most cases. 3) 

Segmentation of mutually occluded cells remains challenging. To address these problems, 

we propose a variational level set model to segment multiple cells with mutual occlusion and 

demonstrate its efficacy with application to pathologic images of brain tumor tissues. 

Although overlapped cells may take a small fraction of the cell population of interest, the 

absolute number is large in a whole-slide microscopy image where the total cell number is 

HHS Public Access
Author manuscript
Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 October 
01.

Published in final edited form as:
Proc IEEE Int Symp Biomed Imaging. 2017 April ; 2017: 718–722. doi:10.1109/ISBI.2017.7950620.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



commonly on the scale of million [5]. Additionally, some tumor regions tend to have very 

high tumor cell density, presenting much more overlapped cells of interest than other 

regions. Thus, it would lead to too much information loss if we excluded such overlapped 

cells from clinically meaningful tissue areas for morphometry analysis [6]. The main 

contributions of this work are summarized as follows: 1) We propose a two-stage framework 

to effectively detect seeds and segment cells. 2) A sparse representation based shape term is 

introduced to better incorporate shape prior information. 3) We introduce a dynamic cell 

occlusion term to deal with occlusion events involving a variable number of cells. 4) Our 

approach is successfully applied to brain histopathological images for cell segmentation 

task. Our framework, as shown in Figure 1, consists of a seed detection algorithm for cell 

contour initialization and an integrated contour deformable model that incorporates region, 

shape and boundary information.

2. METHOD

2.1. Shape representation

We locate cells and initialize cell contours by a previously developed seed detection 

algorithm that utilizes joint information of spatial connectivity, distance constraint, image 

edge map, and a shape-based voting map derived from eigenvalue analysis of Hessian matrix 

across multiple scales [7]. Given an image with detected seeds of N cells , , …, , we 

initialize each cell  as a small circle centered at a seed. Each cell contour is a closed and 

bounded shape contour  in image domain . The level set framework implicitly 

represents  as a zero level set of a Lipschitz function  where ϕi(x) has positive 

and negative value when x is inside and outside , respectively. A distance map function 

Γ(ϕi(x)) represents the shortest distance  from a current pixel x in the image 

domain Ω to a given cell contour . In this way, we can represent 

N cells in a image as N distance map functions. Instead of partitioning an image into disjoint 

regions, we allow an image pixel to be associated with multiple cells with intersecting 

contours.

We use a set of 27,000 shape priors to cover the complex shape variation observed in most 

histopathology images. Shape priors are annotated manually and aligned by the generalized 

Procrustes analysis first [8]. Next, they are clustered with spectral clustering algorithm into 

M clusters and the average shape of each resulting cluster is computed [9]. We denote Ψ = 

{ψ1, ψ2, …, ψM} as the set of two-dimensional distance maps derived from average shape 

priors with unit Frobenius norm. We align the cell contour  to shape priors Ψ by the 

similarity transformation: , where x = [x1, x2]T and  are a pixel location 

before and after alignment; {si}, {θi}, and {ti = [ti1, ti2]T} are scale, rotation and translation 

coefficient, respectively. As our shape priors Ψ have nearly same scales, we set si = 1, ∀i to 

achieve better computational efficiency.

After mapping the i-th cell to the shape prior set, we assume that a cell  with the 

associated distance map function Γ(ϕi(x)) can be approximately represented as a linear 

composition of aligned sparse shape priors in . We vectorize two dimensional distance 

maps and denote vectorized distance map of  as . Additionally, we compose the 
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mapped shape prior matrix with vectorized shape prior distance maps by column and denote 

it as . Note that each column has a unit  norm. By the linearity assumption, we have 

, where αi is a coefficient vector representing the weights of shape 

priors in shape reconstruction and ei is the error vector.

Given a large enough training set, a test shape can be sufficiently represented by a small 

number of shape priors [10][11]. Dissimilar prior shapes are suppressed due to large penalty 

measured by the reconstruction error. To ensure sparsity and solvability, we apply the 

relaxed  norm regularization in the formulation [12]. Moreover, we reduce 

dimensionality to accommodate computational cost using a non-zero projection matrix R ∈ 
ℝd×m, d ≪ m with entries randomly generated from standard Gaussian distribution and 

subject to unit length for all rows. Note the choice of matrix R does not critically affect the 

ability to find the optimal sparse solution by -minimization [10]. The resulting sparse 

representation problem is formulated as:

(1)

where , , , , and  is an 

identity matrix.

2.2. Level set functional formulation

Distance map Γ(ϕi) can be encoded as a sparse linear superposition of shape priors, with 

coefficients  obtained by optimizing equation (1). Thus, we define a shape term for the 

fitting shape error between individual deformable contours and linear combination of 

sparsely selected shape priors:

(2)

where  is the j-th entry of . With minimization of this term, the distance map function 

Γ(ϕi) best fits to the feature space defined by the shape priors. Note when λ is sufficiently 

large, the sparse shape term is determined by a single shape prior and our model is, 

therefore, degenerated to a single shape prior segmentation.

In two dimensional (2D) histopathologic images, it is common to have mutually occluded 

cells since 2D images represent projections of objects in 3D space. It is a challenging task to 

segment mutually occluded cells and identify separating boundaries. To address this 

problem, we introduce an adaptive occlusion penalty term to dynamically suppress cell 

intersection events. This occlusion penalty is designed to depend on the number of cells that 

are overlapped:
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(3)

where H(·) is the Heaviside function. The first term in E2 is a superposition of the Heaviside 

functions of all cells and the second term is a binary function indicating inside of any cell/

outside of all cells. This term represents a dynamic occlusion penalty adaptive to the number 

of intersecting cells.

We solve cell segmentation problem by minimizing the following functional within a 

variational level set framework:

(4)

where ci and cb are scalars that define the average pixel intensities in cell regions and 

background, respectively.  is an exponential function 

monotonously decreasing as the magnitude of gradient of x increases. R(·) is defined as a 

double-well potential function [13]. |∇H(ϕi)| is non-zero only on cell boundaries. We denote 

Φ = {ϕi}, C = {ci, cb}, Θ = {θi} and T = {ti1, ti2}, i = 1, 2, …, N as sets of variables of the 

energy functional. Parameters {λo, λb, μ, ξ, ω, ν} are weights of different terms. The last 

two terms in equation (4) are used to encourage contours to converge to strong boundaries 

and retain signed distance property for stable level set function computation respectively.

2.3. Numerical computations

We optimize the established functional iteratively by updating functions Φ and variables {C, 

Θ, T} alternatively. Parameterizing iteration as an artificial time variable t > 0, we minimize 

the functional by solving Euler-Lagrange equation:
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(5)

where δ(·) denotes the Dirac delta function.

Next, we fix Φ and update transformation parameters. We derive updating equations for 

transformation parameters by computing gradient descent of functional E(Θ, T):

(6)

(7)

where k = 1, 2. Finally, we fix Φ, and {Θ, T}, and update ci and cb.

(8)
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(9)

3. EXPERIMENTAL RESULTS

We verify our algorithm with whole-slide histopathologic images of brain tumors. For 

computational efficiency, 512×512 pixel image patches are used for test, containing 1857 

cells in aggregation. We set parameters empirically as follows: λo = λb = 1, μ = 5000, ξ = 2, 

ω = 2000, ν = 3000.

We cluster the shape priors into 100 groups by spectral clustering and use group mean 

shapes to construct the shape prior dictionary. Next, we apply the seed detection algorithm to 

search for seed points [7]. We present a typical cell seed detection result in Figure 2(a), 

where cyan circles are used to represent detected cell seeds. We solve the cell segmentation 

problem by the variational level set framework. The level set functions do not stop evolving 

until they either reach convergence or exceed iteration number limit. We present the 

evolution results of zero level sets at iteration 10, 20, and 30 in Figure 2 where the detected 

cell shapes are well defined. Notably, those overlapping cells are also correctly segmented, 

with occluded boundaries recovered. It is also observed that most zero level sets can rapidly 

converge to true cell boundaries within 10 iterations. After that, zero level sets fine tune 

themselves to better fit to cell contour details. This is especially noticeable for those 

overlapped cells.

We also investigate the segmentation contribution from distinct terms in our variational 

model by comparing their associated segmentation results. The segmentation result with our 

default parameter setting is shown in Figure 3(a). When ν = 0, the shape prior fitting term 

E1 does not take effect in the contour deformation process. The resulting segmentation 

outcome is presented in Figure 3(b), where finalized cell contours are less regulated. 

Similarly, we can remove the occlusion penalty term E2 from the variational model by 

setting ω = 0. The associated result is illustrated in Figure 3(c). Under this setting, the 

detected cells present a strong inclination to overlap with each other. When the shape prior 

fitting term E1, the dynamic occlusion penalty term E2, and the evolutionary stability term 

are all removed (ν = ω = ξ = 0), the resulting cell contours become significantly degraded as 

shown in Figure 3(d). Note that shapes appear to be less regulated in Figure 3(b–d) without 

one or more terms in the variational model. In addition to the final results with only a subset 

of terms in Figure 3(b–d), we also investigate the sensitivity of parameters to final results. 

Our investigations with parameter deviation from our proposed value set suggest that results 

remain similar even when we change μ by 22% (μ = 3900), 10% (μ = 4500), and ν by 67% 

(ν = 5000), as presented in Figure 3(e–g). Figure 3(h) presents results when μ and ν are 

simultaneously changed by 22% and 67%. Overall, a larger μ leads to a better contour 

convergence to true cell boundary; A larger ν forces contours to look more similar to the 

reconstructed sparse shape priors by E1; A larger ω tends to prevent cells more from 

overlapping with each other by E2. The other three parameters, i.e. λo = λb = 1, ξ = 2, do 

Zhang et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not need to be tuned in general. As a result, this method can be applied to other datasets 

without much parameter tuning.

To assess our method quantitatively, we collect human expert annotations on testing images 

and use human annotations as ground truth. By comparing the experimental result B with 

ground truth annotation A, we evaluate our method with multiple metrics[17, 18]: Jaccard 

coefficient J(A, B), precision rate P(A, B), recall rate R(A, B), F1 score F1(A, B) and 

Hausdorff distance H(A, B). We present in Table 1 performances of the proposed method 

and three other popular methods, including MS [14], ISO [15], and SBGFRLS [16]. A 

qualitative method performance comparison is shown in Figure 4. Note our proposed 

method is able to capture cell boundaries better. In particular, only our method can recover 

boundaries of overlapped cells by comparisons. This property makes our method superior to 

the other methods when analytics of occluded cells is crucial in investigations.

4. CONCLUSION

We propose a new cell segmentation method based on the level set framework, aiming to 

identify contours of multiple cells with mutual occlusion in histopathologic images. For cell 

contour deformation, we construct a shape dictionary including typical cell prior shapes by 

spectral clustering. An adaptive cell occlusion penalty term is designed to dynamically 

penalize cell contour occlusion based on the number of overlapped cells. Experiments on 

brain tumor images produce promising results as compared with other methods, suggesting 

the effectiveness of our approach on cell segmentation for histopathologic images.
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Fig. 1. 
Schema of our developed cell segmentation method applied to histopathologic images.
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Fig. 2. 
Cell contour deformation: initial zero level set and that after 10, 20, 30 evolving iterations, 

respectively. Overlapping cells are well separated, as shown in close-up views.
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Fig. 3. 
Segmented cells with distinct parameter settings: (a) μ = 5000, ξ = 2, ω = 2000, ν = 3000; 

(b) same as (a) except ν = 0; (c) same as (a) except ω = 0; (d) same as (a) except ξ = 0, ω = 

0, ν = 0; (e) same as (a) except μ = 3900; (f) same as (a) except μ = 4500; (g) same as (a) 

except ν = 5000; (h) same as (a) except μ = 3900 and ν = 5000.
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Fig. 4. 
Segmentation results obtained by (a) ground truth; (b) MS; (c) ISO; (d) SBGFRLS; and (e) 

our proposed method.
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