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Abstract

Community and rich-club detection are a well-known method to extract functionally specialized 

subnetwork in brain connectivity analysis. They find densely connected subregions with large 

modularity or high degree in brain connectivity studies. However, densely connected nodes are not 

the only representation of network shape. In this study, we propose a new method to extract 

abnormal holes, which are another representation of network shape. While densely connected 

component characterizes network’s efficiency, abnormal holes characterize inefficiency. The 

proposed method differs from the existing hole detection in two respects. One is to use Hodge 

Laplacian to obtain a harmonic hole in the linear combination of edges, rather than a subset of 

edges. The other is to use the kernel density estimation of persistence diagram of random networks 

to determine the significance of a hole, rather than using the persistence of a hole. We applied the 

proposed method to find the abnormality of metabolic connectivity in the FDG PET data of ADNI. 

We found that, as AD severely progressed, the brain network had more abnormal holes. The 

localized holes showed how inefficient the structure of brain network became as the disease 

progressed.
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1. INTRODUCTION

Functional specialization has been often studied in brain imaging analysis. By introducing 

the concept of network, the research interest of brain imaging analysis has been extended 

from functional specialization of local regions to the functional integration in the whole 

brain connectivity [1]. Although the complex graph theoretic measures such as small-

worldness and modularity have been widely used for finding the global characteristics of 

brain connectivity, we still want to know which parts of brain are related to the specific 

cognitive function or neurodegenerative disease. In this sense, community and rich-club 

detection have been proposed to extract functionally specialized subnetwork [2, 3]. They 

find densely connected subregions with large modularity or high degree in the whole brain 

connectivity. Those regions are usually considered to be related with the specific cognitive 

function, and weakened by the disease progression. However, it is rarely mentioned how the 

shape of brain network is changed after the deterioration of connections in the regions.

In this paper, we propose a hole detection method to find the shape change during the 

disease progression. Hole is also a connected component, but there is a path that any node in 

the hole can return to itself, and the path consists of at least four consecutive edges. Like a 

connected component, a hole is also the fundamental shape descriptor defined in algebraic 

topology [4]. While densely connected component represents the network’s local efficiency, 

the hole with many consecutive edges characterizes the network’s inefficiency. The concept 

of hole defined in topological data analysis has been already used for brain network analysis 

[5, 6, 7]. In the topological data analysis, a persistent hole that lasts for a long threshold is 

considered as a signal of network and a hole with short duration of threshold is considered 

as a noise. In this sense, the existing hole detection methods find the significant hole using 

the persistence of the hole. However, we determine the significance of hole using the 

probability map of persistence diagram because not only the persistent hole, but also the 

hole that appears and disappears at abnormal thresholds are important to determine the shape 

of brain network. The kernel density estimation is used for obtaining the probability map of 

persistence diagram.

The proposed method finds a harmonic hole represented by the weighted sum of edges based 

on Hodge Laplacian [8, 5], while the existing method usually finds a hole in the binary 

representation of edges, i.e., a subset of edges [6, 7, 9]. The weights of the harmonic hole are 

proportional to the contribution of edges to the hole. Moreover, while the existing method 

can not find the unique representation of a hole, i.e., there are many other possible subsets of 

edges for representing a hole, the harmonic hole method finds the unique representation of a 

hole. In experiments, the proposed method was applied to FDG PET data of Alzheimer’s 

disease neuroimaging initiative (ADNI) and showed that the proposed method can find the 

abnormal shape of network as AD progressed.

2. METHODS

2.1. Network construction

The ADNI FDG-PET dataset consists of three groups, 181 normal controls (NC), 168 mild 

cognitive impairment (MCI), and 135 Alzheimer’s disease (AD) subjects (Age: 73.7 ± 5.9, 
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range 56.1 – 90.1). The MCI group was divided into two groups, 91 stable MCI (sMCI) and 

77 progressive MCI (pMCI), depending on whether a subject remained stable or progressed 

to AD after three years. Details of data sets and preprocessing are in [10]. The whole brain 

image was parcellated into 94 regions of interest (ROIs) based on automated anatomical 

labeling (AAL2) except for cerebellum [11]. Each ROI serves as a node and its measurement 

is obtained by averaging FDG uptakes in the ROI. The distance between two nodes was 

estimated by the diffusion distance on positive correlations between measurements of two 

ROIs. The diffusion distance considers an average distance of all direct and indirect paths 

between two nodes via random walk.

2.2. Hole

Suppose that a weighted network  (V, E, L) consists of p nodes in a set V and q edges in 

E, and an edge distance matrix L ∈ ℝp×p. The entry of L = [l(eij)] is the distance of the edge 

eij ∈ E connecting two nodes υi and υj (υi, υj ∈ V). Given a threshold ε > 0, Rips complex, 

denoted by ℛN (ε), is the collection of nodes V, edges satisfying l(e) < ε, e ∈ E and 

triangles satisfying l(eij), l(ejk), l(eki) < ε, eij, ejk, eki ∈ E, υi, υj, υk ∈ V. When the sequence 

of thresholds is given by ε0 = 0 ≤ ε1 ≤ ε2 ≤ ⋯, the sequence of Rips complexes is estimated 

by ℛN (ε0) ⊆ ℛN (ε1) ⊆ ℛN (ε2) ⊆ ⋯. This procedure is called the Rips filtration [4].

Definition 1—Holes in ℛN (ε) is a subset H ⊆ E where consecutive edges form a cycle, but 

are not a boundary of any consecutive triangles (See Fig. 1) [9]. The number of holes in ℛN 

(ε) is the first Betti number, denoted as β1.

Definition 2—If a hole appears at the threshold ξ and disappears at τ (0 ≤ ξ ≤ τ < ∞), it is 

encoded into a 2-dimensional point t = (ξ, τ) ∈ ℝ2. Given weighted network  (V, E, L), if 

m holes appear and disappear during the filtration of , they are represented by a set of m 
points P = {t1, …, tm}. The scatter plot of P is called a persistence diagram (PD) of  [9]. 

Because ξi ≥ τi for ∀i, the points are always in the upper regions of the diagonal line y = x 
in ℝ2.

2.3. Kernel density estimation of persistence diagram

Let u1, …, um ∈ ℝ2 be an independent, identically distributed random sample from an 

unknown density p. Kernel density estimation can be expressed as

pm(u) = 1
mh2 ∑

i = 1

m
K

u − ui
h ,

where K : ℝ2 → ℝ is a smooth kernel function and h > 0 is the smoothing bandwidth that 

controls the amount of smoothing. The kernel function should satisfy two requirements, 

normalization ∫ −∞
∞ K(u)du = 1 and symmetry K (−u) = K (u) for all u.

Since a point t = (ξ, τ) in a persistence diagram is bounded by ξ, τ > 0 and ξ < τ, we cannot 

directly apply the traditional kernel function. Thus, we transform t = (ξ, τ) to u(t) = (υ(t), 
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w(t)) = (− log(τ + ξ), − log(τ − ξ)) on the entire real plane. The function u is one-to-one 
transformation. The Jacobian of the transformation function u is

∂(υ, w)
∂(ξ, τ) =

∂υ
∂ξ

∂υ
∂τ

∂w
∂ξ

∂w
∂τ

=
− 1

τ + ξ − 1
τ + ξ

1
τ − ξ − 1

τ − ξ

= 2
(τ + ξ)(τ − ξ) .

Then, we can write the kernel density of persistence diagram

p(t) = pm(u) ∂(υ, w)
∂(ξ, τ) = 1

mh2 ∑
i = 1

m
K

u(t) − ui(t)
h

2
(τ + ξ)(τ − ξ) . (1)

We use the student’s t-distribution for the kernel K because it is more robust to errors with 

heavier trails than normal distributions

Definition 3—Given N random weighted networks, we can obtain N persistence diagrams, 

P1, …, PN, and the corresponding kernel density p̂1, …, p̂N in (1). Then, the probability 

density of persistence diagram is estimated by the average kernel density map 

p = 1
N ∑i = 1

N pi. If the birth and death of a hole is in the region of significance level < .05 in 

p̄, we call it an abnormal hole of which birth and death are rarely found in random networks.

2.4. Hodge Laplacian for hole localization

Since the boundary of an edge is two nodes, we denote an edge by ei = υ1
i − υ2

i . If two edges 

ei = υ1
i − υ2

i  and e j = υ1
j − υ2

j  have common node with the same orientation, i.e., υ1
i = υ1

j  or 

υ2
i = υ2

j , we say that ei and ej are lower adjacent with similar orientation, denoted as ei ⌢+ ej. 

If they have common node with different orientation, i.e., υ1
i = υ2

j  or υ2
i = υ1

j , we say that they 

are lower adjacent with dissimilar orientation, denoted as ei ⌢− ej. If two edges ei and ej 

belong to the same triangle, we say that they are upper adjacent, denoted as ei ⌣ ej. The 

number of triangles to which ei belongs is denoted as du (ei).

Definition 4—Suppose that Rips complex ℛN (ε) has the ordered edges, e1, …, eq. The 

first Hodge Laplacian H1 (ε) ∈ ℝq×q is defined by

[H1(ε)]
ij

=

du(ei) + 2 i = j,
1 i ≠ j, (ei ⌣ e j), ei ⌢+ e j,
−1 i ≠ j, (ei ⌣ e j), ei ⌢− e j,
0 otherwise,

(2)
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where ~ (·) is 1 if (·) is 0, and 0 if (·) is 1 [8, 5]. The number of zero eigenvalues of H1 is 

equal to the number of holes β1 in ℛN (ε). The corresponding null eigenvectors is called the 

harmonic holes.

Let a hole t = (ξ, τ) is abnormal. If we choose ε in [ξ, τ], the null eigenvectors of H1 (ε) 

include the harmonic hole of t. While t is a subset of edges, the harmonic hole is the 

weighted sum of edges (See Fig. 1). If H1 (ε) z = 0, the harmonic hole is represented by 

∑i = 1
q ziei, where z = [zi]. The absolute value |zi| is proportional to the contribution of ei to 

the hole. If it is large, the edge is an unique path on the hole. Otherwise, alternative paths 

exist on the hole. To find the harmonic hole of t, we estimate H1 (ε1), H1 (ε2), and H1 (ε3) 

for ξ = ε1 < ε2 < ε3 = τ and find their common null eigenvector.

3. RESULTS

We generated 5000 random networks in a group by permutations and estimated the kernel 

density of persistence diagram in Definition 3. The kernel density of persistence diagram of 

NC, sMCI, pMCI, and AD were shown in Fig. 2. 27, 26, 25, and 35 holes were found in NC, 

sMCI, pMCI, and AD, respectively. The blue and red dots represented holes and abnormal 

holes, respectively. Among them, only pMCI and AD had an abnormal hole (p < .05). t1 was 

an abnormal hole of pMCI and t2 and t3 were that of AD. The duration of the hole t3 was not 

persistent enough, however, it was selected as an abnormal hole by the proposed method. To 

see the hole structure of sMCI, we chose t4 in (b) which has the smallest p value in sMCI (p 
= 0.122). t1, …, t4 are shown in Fig. 3.

4. DISCUSSION AND CONCLUSIONS

The brain regions of NC and sMCI may be well-connected to each other because there was 

no abnormal hole in NC and sMCI. pMCI and AD had similar abnormal hole where the 

connections between two large modules, the frontosubcortical and parieto-occipital regions, 

were disturbed by right interior, middle, superior temporal gyrus (ITG, MTG, STG), right 

supplementary motor area (SMA), posterior cingulate cortex (PCC) and paracentral lobule 

(PCL). The results show that the abnormal hole was found in the functional connectivity 

when AD severely progressed. By the localization of abnormal holes, we can see how the 

shape of network after the deterioration of brain. However, further discussion is needed on 

the biological meaning of abnormal holes. We also need to investigate how the hole structure 

will vary with age, gender, apoE, and so on in a group in the future.
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Fig. 1. 
Example of Rips complex (a) without a hole and (b) with a hole, represented in two different 

binary representations. (c) Harmonic hole of (b), represented by the weighted sum of edges.
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Fig. 2. 
Kernel density of persistence diagram of (a) NC, (b) sMCI, (c) pMCI, and (d) AD. 27, 26, 

25, and 35 holes are plotted by blue dots in (a) NC, (b) sMCI, (c) pMCI, and (d) AD, 

respectively. Three holes t1, t2 and t3 in (c) pMCI and (d) AD were significant (p < .05). t4 is 

the hole with the smallest p value in sMCI. t4 and three abnormal holes are shown in Fig. 3.
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Fig. 3. 
(a) Hole t4 in Fig. 2 (b) sMCI, (b) abnormal hole t1 in Fig. 2 (c) pMCI, and (c,d) abnormal 

holes t2 and t3 in Fig. 2 (d) AD. The node color represents the lobe location (red: frontal, 

green: parietal, blue: temporal, purple: occipital, yellow: limbic, green: basal ganglia, circle: 

right, triangle: left hemisphere). The color of edge is determined by the corresponding |zi| in 

Sec. 2.4. As |zi| increases, the edge color is changed from gray through yellow to dark red.
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