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Abstract

Accurate segmentation of pelvic organs from magnetic resonance (MR) images plays an important 

role in image-guided radiotherapy. However, it is a challenging task due to inconsistent organ 

appearances and large shape variations. Fully convolutional network (FCN) has recently achieved 

state-of-the-art performance in medical image segmentation, but it requires a large amount of 

labeled data for training, which is usually difficult to obtain in real situation. To address these 

challenges, we propose a deep learning based semi-supervised learning framework. Specifically, 

we first train an initial multi-task residual fully convolutional network (FCN) based on a limited 

number of labeled MRI data. Based on the initially trained FCN, those unlabeled new data can be 

automatically segmented and some reasonable segmentations (after manual/automatic checking) 

can be included into the training data to fine-tune the network. This step can be repeated to 

progressively improve the training of our network, until no reasonable segmentations of new data 

can be included. Experimental results demonstrate the effectiveness of our proposed progressive 

semi-supervised learning fashion as well as its advantage in terms of accuracy.

Index Terms

Semi-supervised learning; neural network; fully convolutional network; multi-task learning; pelvic 
MRI segmentation

1. INTRODUCTION

Prostate cancer is one of the leading causes of cancer-related death among American males. 

As magnetic resonance imaging (MRI) can provide better soft-tissue contrast than CT as 

well as in a radiation-free and non-invasive way, it plays an increasing role in prostate cancer 

diagnosis and treatment planning. Accurate segmentation of prostate and neighboring organs 

(bladder and rectum) from MRI is a critical step for image-guided radiotherapy. Currently, 

manual segmentation of these organs is often adopted in the clinic, which is subjective, time-
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consuming and tedious. Thus, it is desired for developing an accurate and automatic 

segmentation method.

The previous methods for automatic pelvic organ segmentation can be roughly categorized 

into three types: 1) multi-atlas based segmentation [1], 2) deformable model based 

segmentation [2] and 3) learning-based segmentation [3, 4]. Multi-atlas based segmentation 

methods are commonly adopted in medical image analysis field. In these methods, the 

intensity images and their corresponding segmentations, namely atlases, are first registered 

to a target image. Then, the aligned atlas segmentation maps are fused to obtain a 

segmentation result for the target image. Therefore, the performance of multi-atlas based 

methods is constrained by registration accuracy. For deformable model based methods, it is 

important to initialize the statistical shape models in the target image. These methods rely on 

discriminative features to separate the target organs from the background [5]. For learning 

based methods (i.e., using random forest [3] and sparse representation), their performance 

highly depends on the features used for classification. With the rapid development of deep 

learning, neural network based methods provide a better way of learning data-specific 

features, thus popularly used in the computer vision and medical imaging[6, 7]. For 

example, Guo et al.[6] proposed a deep feature learning method with stacked auto-encoder 

to learn features from MR images. However, their method separates feature learning stage 

from segmentation stage. As a result, the learned features are not necessarily the best to final 

segmentation.

Fully convolutional network (FCN) [8] achieves great success in semantic segmentation for 

natural images, which can train a neural network in an end-to-end fashion and learn features 

from multi-resolution feature maps through convolutions and pooling operations. However, 

deep neural networks contain millions of parameters, and thus require a large amount of 

labeled data (which is difficult in practice) to learn these parameters.

To address the above-mentioned challenges, we propose a semi-supervised learning 

algorithm based on the multi-task residual FCN. First, convolution layers in the FCN are 

replaced by the residual learning blocks, which can learn the residual functions [9]. Second, 

in order to better use low-level feature maps in the FCN, we use concatenation based skip 

connection to combine low-level feature maps with high-level feature maps. Third, inspired 

by multi-task learning [10], three regression tasks are employed to provide more information 

for helping optimize the segmentation task. Finally, we design a semi-supervised learning 

framework by progressively including reasonable segmentation results of unlabeled data to 

refine the trained networks. Our algorithm can take advantage of a large set of unlabeled 

data to help train the model.

2. METHOD

2.1. Multi-task residual FCN

2.1.1. Architecture—FCN has been applied for semantic segmentation in computer vision 

and has achieved promising results. FCN trains the end-to-end neural networks for pixel- or 

voxel-wise segmentation. In the FCN architecture, the feature learning stage and the 

segmentation (or classification) stage are combined into the same network, and their network 
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parameters can be optimized at the same time. However, it is often difficult to optimize a 

large number of parameters, because of gradient vanishing problem caused by the deep 

architecture. In this paper, we use the idea from residual learning, which can effectively 

alleviate the gradient vanishing problem and make the training faster. The residual learning 

block is shown in Fig. 1(b), and the residual function to be learned can be formulated as 

follows:

y = F(x, W) + x (1)

where x and y are the input and output of residual learning block, and W denotes parameters 

in the block.

In the FCN architecture, segmentation maps are obtained by upsampling the low-resolution 

feature maps. Thus, some low-level information does not involve in the final segmentation. 

In order to use low-level information effectively, concatenation-based skip connection is 

employed to connect low-level feature maps with the same-sized high-level feature maps, as 

shown in Fig. 1(a). After concatenation, a series of convolution operations and upsampling 

operation are applied to generate higher-level feature maps. And the obtained feature maps 

are concatenated with lower-level feature maps as well.

After feature learning with residual FCN, the feature maps are sent to four tasks, which 

include three regression tasks (for estimating the intensity maps of bladder, prostate and 

rectum, respectively) and one segmentation task (for segmenting the bladder, prostate and 

rectum jointly). The parameters in feature learning are optimized by all four tasks. This 

multi-task learning strategy is explained in detail below.

2.1.2. Multi-task learning—In the single task situation, segmentation task usually applies 

a softmax function to activate the top layer and to output four probability maps (for 

segmenting bladder, rectum, prostate and background). However, the segmentation results 

are sometimes inaccurate on the boundary of organs with low contrast. To address this 

problem, three regression tasks with their respective sigmoid activated top layers are also 

employed to predict foreground and boundary for each of three organs (bladder, rectum and 

prostate). Information learned from the regression tasks can guide the segmentation in the 

low contrast regions. It is worth noting that each regression task includes two target maps, 

i.e., the original intensity and boundary maps of an organ, as shown in Fig. 2(c)(d) by using 

prostate as example.

2.1.3. Loss function—The size of each organ under segmentation is quite different, 

which could make small organs less focused during segmentation. To overcome this 

problem, we provide different weights to different organs in the definition of the overall loss 

function. Specifically, for the segmentation task, we used a weighted cross-entropy loss as 

below:
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Ls(θs) = − ∑
j

∑
i = 0

3
w(i)Y j

(i) log y j
(i) (2)

where s denotes segmentation task, w(i) is the weight for organ i (0 for background), Yj and 

yj are the label and the probability (predicted by network parameters θs) at voxel j. For each 

of three regression tasks, the square error loss function is adopted:

Lri(θ f , θb) = − ∑
j

(Z f , j
(i) − z f , j

(i) )2 + λ(i)(Zb, j
(i) − zb, j

(i) )2
(3)

where r denotes regression tasks, Z and z are the target and predicted intensities, λ is the 

weight of organ for boundary target map, f and b denote foreground and boundary 

regression, respectively. Note that the weight of boundary λ is inversely proportional to the 

number of voxels in the target map.

Finally, the overall loss function of the networks can be described as Eq. (4):

L(θ) = Ls + ∑
i = 1

3
ρiLri (4)

where Ls is the segmentation loss, and Lri is the regression loss of organ i. Similar with the 

definition of segmentation loss, different weights ρ are also given to the three regression 

tasks for three organs. In this work, we set ρ1 = 0.15 (for bladder), ρ2 = 0.5 (for prostate), ρ3 

= 0.35 (for rectum).

2.2. Semi-supervised learning

In the supervised learning stage, we train the network θ on the training set L = {I,S}, which 

consists of N MR images I = {I1, I2, …, IN} and their corresponding segmentation maps S = 

{S1, S2, …, SN}. In the semi-supervised stage, we have an unlabeled data set U = {IU}, and 

then build a semi-supervised learning algorithm, with the inputs of θ, L, U and the output of 

updated θ, to progressively train the network with unlabeled data. The basic steps of our 

proposed semi-supervised learning algorithm are provided in Algorithm 1, where the best k 
pairs of unlabeled data with reasonable segmentations are included into the training set at 

each progressive refinement iteration.

As shown in Algorithm 1, the training set is enlarged by including some reasonable 

segmentations of unlabeled data in each iterative step. The expansion of the training set L 
and also the update of parameters θ alternately proceed. Note that, given the updated 

training set, the training of the networks is the same as in the supervised stage.
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Algorithm 1

Progressive Semi-supervised Learning

Input: θ, L, U

Output: updated θ

1: while len(U) > 0 do

2:  Estimate SU by θ

3:  Move k best pairs (IU, SU) from U to L

4:  Optimize θ by training on L

5: return θ

2.3. Training

Our proposed method is implemented using keras1. The network parameters are initialized 

by Xavier algorithm [11], which determines the scale of initialization based on the numbers 

of neurons. The network parameters are updated by the back-propagation algorithm using 

Adam optimizer [12], and the parameters are lr = 0.0001, β1 = 0.9, β2 = 0.999. The 

intensities of all images are normalized to the range of [0,1] and further cropped to the size 

of 168×112×5 as the input of the network. GTX1080 Ti GPU is used to train the networks.

3. EXPERIMENTS AND RESULTS

In the experiments, we adopt Dice ratio as a metric to evaluate the segmentation 

performance of the three organs (bladder, prostate and rectum) by using 30 subjects for 

training and 10 subjects for testing. In addition, other 30 unlabeled data are also used for 

semi-supervised learning. The three organs for all MR images in the training and testing sets 

have been manually labeled by a physician, which are used as the ground truth for validating 

our segmentation method. The original image size is mostly 256×256×X(120 ~ 176), with 

image resolution 1.0 × 1.0 × 1.0 mm3.

3.1. Impact of multi-task learning

As mentioned in Sec. 2.1.2, the networks are optimized by the four tasks. To investigate the 

impact of multi-task learning, we train our networks with different task settings: 1) with only 

one task (i.e., segmentation), 2) with two tasks (i.e., segmentation and prostate/bladder/

rectum regression), and 3) with all four tasks (i.e., segmentation, prostate regression, 

bladder regression and rectum regression). Note that the segmentation results by our 

networks are refined by morphological operations [13]. The Dice ratios of segmentation for 

the above three different cases are shown in Table 1. It can be seen that, by including a 

regression task, the second case of using two tasks can segment each organ better than the 

first case of using one task. And, our proposed networks (i.e., the third case of using four 

tasks) work the best on segmentation of all three organs. The segmentation maps of different 

task settings are also shown in Fig. 3.

1https://github.com/fchollet/keras

Feng et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/fchollet/keras


3.2. Impact of semi-supervised learning

In Sec. 2.2, we have introduced a progressive semi-supervised learning algorithm. In order 

to evaluate its impact, we have compared it with the supervised learning as well as the 

conventional semi-supervised algorithm, which iteratively fine-tunes the networks with all 
predicted segmentation maps of all unlabeled data.

The network parameters are similarly initialized by the same training set with 30 labeled 

MR images, and then refined by other 30 unlabeled MR images with different semi-

supervised learning methods. The parameter k in Algorithm 1 is set to 5, and the alternate 

updating in the conventional semi-supervised learning algorithm is performed for 6 

iterations. The performances of three algorithms are shown in Table 2. The results show that, 

using our proposed semi-supervised learning to enlarge the training data could better 

improve the segmentation performance. Also, progressively including the unlabeled data 

into the training set for updating the network parameters can perform better than the 

conventional semi-supervised learning.

4. CONCLUSION

In this paper, we proposed a multi-task residual FCN based semi-supervised framework to 

segment pelvic organs from MR images. The network was trained in an end-to-end and 

voxel-to-voxel fashion to achieve segmentation map. The multi-task design was able to 

effectively provide information from regression tasks to improve the segmentation 

performance. Also, experimental results showed that the proposed progressive semi-

supervised learning strategy could effectively use unlabeled data to help train the networks.
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Fig. 1. 
(a) Architecture of proposed networks; (b) residual learning block.
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Fig. 2. 
(a)(b) A pelvic MR image and its corresponding labels of the manually-segmented bladder 

(green), prostate (yellow), rectum (red). (c)(d) Target maps (normalized to the range of [0,1]) 

in a regression task for the prostate.
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Fig. 3. 
Comparison of the segmentation results of single-task networks and multi-task networks.
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Table 1

Comparison of single- and multi-task learning networks. The bold denotes the best performance for each 

organ, in terms of Dice ratio (standard deviation).

Bladder Prostate Rectum

one task .935(.015) .877(.031) .868(.034)

two tasks .938(.016) .889(.021) .869(.033)

four tasks .952(.007) .891(.019) .884(.027)
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Table 2

Comparison of supervised learning, conventional learning, and proposed semi-supervised learning. The bold 

denotes the best performance for each organ.

Bladder Prostate Rectum

Supervised .952(.007) .891(.019) .884(.027)

Conventional learning .960(.006) .895(.024) .884(.031)

Proposed learning .963(.007) .903(.022) .890(.029)
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