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Abstract

Comparative characterization of early brain development between human and macaque using 

neuroimaging data is crucial to understand the mechanisms of brain development and evolution. 

To this end, joint cortical parcellation maps of human and macaque infant brains with 

corresponding regions are highly desirable, since they provide basic cortical parcels for both 

region-based and network-based studies of two closely-related species. To address this issue, we 

propose to leverage developmental patterns of cortical properties of both human and macaque 

infants for creating joint parcellation maps with inter-species comparability. The motivation is that 

the developmental patterns of cortical properties indicate underlying rapid changes of 

microstructures, which determine the molecular and functional principles of the cortex. Thus, 

developmental patterns are well suitable for defining distinct cortical regions in both structures and 

functions. To comprehensively capture the similarities of developmental patterns of vertices on 

cortical surfaces, for each species, we first construct two complementary similarity matrices: a 

low-order matrix and a high-order matrix. Then, we non-linearly fuse these four matrices together 

as a single matrix in a hierarchical manner, thus capturing the common and complementary 

information of both human and macaque infants. Finally, based on the fused similarity matrix, we 

apply the spectral clustering to derive the joint parcellation maps. By applying our method to 210 

longitudinal human infant MRI scans and 140 longitudinal macaque infant MRI scans, we 

generate the first biologically-meaningful joint parcellation maps of human and macaque infants.
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1. INTRODUCTION

Nonhuman primates, especially the macaque monkeys with close phylogenetic relationship 

to human, are a widely used animal model for human neuroscience studies [1]. Comparative 

characterization of early postnatal brain development [2, 3] between human and macaque 
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using neuroimaging data plays an important role in understanding the underlying 

mechanisms of brain development, evolution, and neurodevelopmental disorders [1, 4, 5]. In 

neuroimaging studies, cortical parcellation aims to partition the cerebral cortex into a series 

of regions/parcels, where each parcel has homogeneous territories that share similar 

microstructural or functional organization. Hence, a cortical parcellation map is an essential 

dimensionality reduction tool for region-based and network-based neuroimaging analyses. 

Accordingly, the joint parcellation maps of human and macaque infant brains can provide 

common cortical basic parcels of the two closely-related primate species, thus enabling 

region-based and network-based comparisons in revealing mechanisms in brain evolution 

and development.

Due to huge differences in brain size and anatomical structure (e.g., cortical folding patterns) 

across species and age (Fig. 1), conventional anatomical landmarks based parcellations are 

not suitable for defining the joint parcellation maps. Considering the dynamic development 

of both human and macaque infant brains, it is more meaningful to create joint cortical 

parcellation maps based on the developmental pattern of cortical properties (e.g., surface 

area). This is because the dynamic developmental patterns of cortical properties in both 

human and macaque infant brains implicitly reflect the underlying changes of their cortical 

microstructures (e.g., dendritic and synaptic architecture), which essentially determine the 

molecular and functional principles of the cerebral cortex [2]. Hence, developmental patterns 

of cortical properties during infancy are well suitable for defining distinct cortical regions in 

structures and functions. However, we still lack methods for joint parcellation of human and 

macaque infant cortical surfaces.

To address this issue, we propose a novel method to jointly parcellate human and macaque 

infant cortical surfaces based on their developmental patterns of cortical surface area. 

Indeed, there is a remarkable similarity of cortical surface areal expansion patterns between 

brain development and evolution [4]. To comprehensively characterize developmental 

patterns of cortical vertices, we define two feature vectors at each vertex, i.e., 1) growth 

trajectory and 2) growth correlation profile. Based on these two features, we construct two 

similarity matrices for each species. To effectively leverage both common and 

complementary information of human and macaque infants, we hierarchically non-linearly 

fuse these four similarity matrices into a single matrix for joint parcellation using spectral 

clustering [6]. Based on 210 longitudinal MRI scans of 36 human infants and 140 

longitudinal MRI scans of 30 macaque infants, we create the first biologically-meaningful 

joint parcellation maps of human and macaque infants.

2. METHOD

2.1. Datasets and Cortical Surface Mapping

Longitudinal T1w and T2w human brain MRI scans were acquired from 36 normal infants 

(18 males) during the first two postnatal years. Each infant has 4 to 7 longitudinal scans 

using a Siemens 3T scanner, with the imaging acquisition parameters as in [7]. Longitudinal 

T1w and T2w macaque brain MRI scans were from a public neurodevelopment dataset with 

30 infant rhesus macaques (15 males) from 0 to 24 months [8]. Each macaque has 4 to 5 

longitudinal scans with acquisition parameters detailed in [8].
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Each T2w image was rigidly aligned onto the corresponding T1w image and further 

resampled to be isotropic. Skull stripping and tissue segmentation were performed using a 

learning-based method [9]. Cortical surfaces were reconstructed and mapped onto a 

spherical space following an infant-specific pipeline [7]. To establish intra-subject cortical 

correspondences, all longitudinal spherical surfaces were group-wisely aligned and the intra-

subject mean cortical folding map was generated [10]. To define within-species inter-subject 

cortical correspondences, intra-subject mean cortical folding maps of all subjects were 

group-wisely aligned and then two within-species mean cortical folding maps were 

generated accordingly. To further establish inter-species (human-macaque) correspondences, 

these two within-species mean cortical folding maps were further respectively aligned onto 

PALS-B12 human atlas and F99 macaque atlas, where inter-species correspondences were 

established using 23 functional landmarks [11]. Finally, each surface was resampled based 

on the alignment and the cortical properties (e.g., surface area, cortical thickness, and sulcal 

depth) were computed for each vertex.

2.2. Construction of Similarity Matrices of Cortical Developmental Patterns

We adopt surface area as an example for constructing cortical developmental patterns, since 

surface area expands more rapidly during infancy compared to other cortical properties. To 

comprehensively characterize the developmental patterns, for each vertex i of each subject n, 

we first defined two feature vectors, i.e., 1) growth trajectory of surface area F1
n(i) and 2) 

growth correlation profile of surface area F2
n(i). Specifically, for each vertex, its growth 

correlation profile was defined as the Pearson’s correlation coefficient between its growth 

trajectory of surface area and that of each of the 160 reference points uniformly sampled on 

the cortical surface. Using these two feature vectors F1
n and F2

n, we constructed two 

complementary subject-specific similarity matrices S1
n and S2

n, respectively.

Specifically, for each subject, between each pair of vertices i and j, we computed the 

Pearson’s correlation coefficient p(·,·) of their feature vectors, thus obtaining their subject-

specific similarity Sm
n , m ∈ {1, 2}, as:

Sm
n (i, j) =

1 + p Fm
n (i), Fm

n ( j)
2 , i, j ∈ N, (1)

where N was the total number of vertices on the cortical surface. Intuitively, in both 

similarity matrices S1
n and S2

n, high correlations of feature vectors indicate high similarities of 

developmental patterns. Of note, as each subject had a different number and temporal 

distribution of time points, owing to missing scans or subject dropout, the subject-specific 

similarity matrices naturally solved this issue. The similarity matrix S1
n captured the “low-

order” similarity of developmental patterns. Complementarily, the similarity matrix S2
n, 

which is based on correlations of “correlations”, captured more complex “high-order” 

similarity of developmental patterns. To generate population-level similarity matrices, in 
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each species, we averaged the low-order similarity matrices across all subjects, and also did 

similarly for the high-order similarity matrices. Thus, we obtained the population-level low-

order similarity matrices, S1
H for human infants and S1

M for macaque infants, as well as the 

population-level high-order similarity matrices, S2
H for human infants and S2

M for macaque 

infants.

2.3. Joint Parcellation by Fusion of Similarity Matrices

Based on four complementary similarity matrices S1
H, S1

M, S2
H and S2

M, one intuitive method 

to generate the joint cortical parcellation maps of the human and macaque infants is to first 

simply average them and then perform clustering based on the averaged matrix. However, 

this method cannot fully capture common and complementary information of these four 

matrices, thus leading to less meaningful results. To address this issue, we hierarchically 
non-linearly fused these four similarity matrices together as a single matrix S. The central 

idea of this similarity matrix fusion strategy was to iteratively update every matrix by 

diffusing reliable information across matrices, thus making them more similar to each other 

until convergence [12]. In particular, to fuse two similarity matrices X1 and X2 into a single 

matrix X (where X1 and X2 represent the matrices to be fused, e.g., S1
H, S1

M, S2
H or S2

M), for 

each Xm, m ∈ {1, 2}, we computed a full kernel matrix Pm and a sparse kernel matrix Qm 

as:

Pm(i, j) =

Xm(i, j)
2∑k ≠ i Xm(i, k) , j ≠ i

1
2, j = i

, (2)

Qm(i, j) =
Xm(i, j)

∑k ∈ Ni
Xm(i, k) , j ∈ 𝒩i

0,  otherwise 
, m ∈ 1, 2 . (3)

Note that, P1 and P2 encoded full similarity information among all vertices, while Q1 and Q2 

only captured reliable sparse high-similarity neighbors for each vertex. 𝒩i represented the K 

nearest neighbors of vertex i in terms of similarity. At iteration t, P1
t  and P2

t  were then 

updated as: P1
t = Q1 × P2

t−1 × Q1
T; P2

t = Q2 × P1
t−1 × Q2

T.

Herein T indicated matrix transpose. In this way, during the iterations, the isolated weak 

similarities were gradually removed, while the strong similarities were preserved. 

Meanwhile, the weak similarities supported by both matrices were retained, depending on 

their neighborhood connections across these two similarity matrices. After t* iterations, the 

fused matrix X was computed as the average of P1
t* and P2

t*. By using this fusion method, we 
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first fused S1
H and S1

M as the joint low-order similarity matrix S1. Then, we fused S2
H and S2

M

as the joint high-order similarity matrix S2. Next, we normalized these two joint similarity 

matrices S1 and S2 and further fused them as a single matrix S. A last, we performed 

spectral clustering [6] on S to derive the joint parcellation maps of human and macaque 

infants. The cluster numbers were determined using both the widely-used silhouette 

coefficient and existing neuroscience knowledge.

3. RESULTS

3.1. Visual Inspection of Joint Parcellation Maps

Fig. 2 (a) and (b) show the parcellation results with different numbers of clusters from 2 to 

15, by using the proposed fusion-based method and the simple averaging-based method, 

respectively. Generally, the proposed method led to biologically much more meaningful 

parcellations, as shown in Fig. 2 (a). Specifically, at 2-cluster parcellation, both methods 

identified an anterior-posterior division, separating the frontal, insula and anterior temporal 

regions (the anterior cluster) from the parietal, posterior temporal and occipital regions (the 

posterior cluster). However, when increasing the number of clusters, the proposed method 

revealed new clusters which tend to respect the boundaries of preceding clusters, thus 

indicating a meaningful hierarchical organization of the developmental patterning of surface 

area. For example, the boundaries between the frontal and parietal regions were well 

preserved from 2-clusters to 15-clusters by our proposed method (as indicated by black 

arrows). The boundaries between the dorsal prefrontal and ventral prefrontal regions 

appeared in 3-clusters, and were well preserved to 15-clusters by our method (as indicated 

by red arrows). In contrast, the corresponding boundaries by the averaging method relatively 

shifted across different numbers of clusters, indicating unstableness of these clusters.

3.2. Determining Cluster Numbers

To determine the appropriate numbers of clusters, we used the silhouette coefficient to 

evaluate our joint parcellation results. Silhouette coefficient describes the intra-cluster 

dissimilarity and the inter-cluster dissimilarity, computed by: sc(i) = (b(i) − a(i))/max(a(i), 
b(i)), where sc(i) is the silhouette coefficient for the vertex i, and a(i) is the average 

dissimilarity between the vertex i and all other vertices in the same cluster; b(i) is the 

minimum average dissimilarity of vertex i to any other clusters that the vertex i does not 

belong to. Herein, the dissimilarity between two vertices i and j is computed as 1 −S(i, j). 
Therefore, we searched for the appropriate numbers of clusters with high and stable 

silhouette coefficients. Fig. 3 shows the silhouette coefficients of the joint parcellations by 

our method, when setting the cluster number from 2 to 18. The highest silhouette coefficient 

corresponds to 8-clusters. After that, the coefficient decreases and then reaches a relative 

stable plateau from 13-clusters to 15-clusters, and then decreases significantly after 15-

clusters. To capture both the relatively coarse- and fine-scaled parcellations of 

developmental patterns, we adopted parcellations of 8-clusters and 15-clusters as our final 

results. As shown in Fig. 4, all clusters largely correspond to structurally and functionally 

meaningful specializations, with their approximated names shown in columns below the 

parcellation results.
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To further verify our parcellation, we performed seed-based analyses [13] at 15 clusters for 

inspecting the correlation patterns of growth trajectories of surface areas of human and 

macaque, respectively. Herein, we used 16 relatively uniformly distributed seeds on the 

human and macaque infant cortical surfaces, respectively, as indicated by the centers of 

small surfaces in Fig. 5. In each species, the correlations between seeds and other vertices in 

the same cluster are always high, while the correlations between seeds and vertices in 

different clusters are always low. Moreover, seeds across the boundaries of clusters led to 

quite different patterns, indicating the meaningfulness of our parcellation.

4. CONCLUSION

This paper has two key contributions. First, we proposed a novel method for joint 

parcellation of human and macaque infant cortical surfaces based on their developmental 

patterns of cortical properties. For each species, we constructed two similarity matrices to 

comprehensively capture both low-order and high-order similarities of developmental 

patterns of vertices. To effectively leverage the information of human and macaque, we 

hierarchically non-linearly fused the four similarity matrices into a single matrix. Second, by 

applying our method, we charted the first development-based joint cortical parcellation maps 

of human and macaque infants.
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Fig. 1. 
Longitudinally dynamic development of human and macaque cortical surfaces (color-coded 

by sulcal depth (mm)) during infancy.
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Fig. 2. 
Joint cortical parcellation maps based on developmental patterns of surface areas of human 

and macaque infants, via (a) our proposed method by hierarchical fusion of similarity 

matrices and (b) a method by simply averaging all similarity matrices. C represents the 

number of clusters.
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Fig. 3. 
Average silhouette coefficients of the joint parcellations with different number of clusters.
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Fig. 4. 
Joint parcellation results with 8-clusters and 15-clusters.

Xia et al. Page 11

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Seed-based analyses of the correlation maps of human and macaque infant developmental 

patterns of surface area.
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