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TOWARDS EFFICIENT FMRI DATA RE-USE: CAN WE RUN BETWEEN-GROUP ANALYSES
WITH DATASETS PROCESSED DIFFERENTLY WITH SPM?

Xavier Rolland⋆ Pierre Maurel⋆ Camille Maumet⋆

⋆ Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U 1228, F-35000 Rennes, France

ABSTRACT

The increased amount of shared data creates an opportunity
to reuse existing data to reach larger sample sizes and hence
increase statistical power in neuroimaging studies. However,
doing so may require to perform analyses using subject data
processed differently. Here, we performed between-group
analyses under the null hypothesis (making any detection
a false positive), with data from the Human Connectome
Project (HCP) (n=1080) processed with different pipelines.
We compared the estimated false positive rates obtained to
the theoretical false positive rate, to assess whether the vari-
ability in processing pipelines (called analytical variability)
impacts the validity of the analyses. We found that some
differences in parameter values caused invalidity, suggesting
that analytical variability has to be taken into account before
combining subject data processed with different pipelines.

Index Terms— Brain Imaging, Analytical Variability,
Reproducibility, Validity, Null Hypothesis, Pipeline

1. INTRODUCTION

Task-based functional Magnetic Resonance Imaging (fMRI)
studies the activation of brain regions while a task is per-
formed. Blood-Oxygen Level Dependent (BOLD) fMRI uses
MRI to measure a BOLD signal (whose variations in time are
related to brain activity), at each position of the brain. Multi-
ple steps of processing are performed on the data: preprocess-
ing, subject-level (first-level) and group-level (second-level)
analysis. Series of steps performed for a complete analysis,
or parts of it, are called pipelines (e.g. subject-level pipelines
cover preprocessing and first-level analysis).

Many concerns have been raised over the last few years
regarding the lack of reproducibility of fMRI studies [1, 2, 3].
One important cause of this issue is the overall low statistical
power of fMRI studies induced by low sample sizes, which
increases the likelihood that any positive result is false [4].
Larger sample sizes may be achieved by taking advantage
of shared neuroimaging datasets, and combining subject data
from multiple different sources for new studies. However,
these datasets may include already processed subject data,
and combining them may require to perform analyses using
data processed differently. Multiple choices are possible at

each processing step (different orders of operations, different
parameter values, different software packages).

Multiple studies have explored how this variability in pro-
cessing and analysis protocol (called analytical variability)
may impact the reproducibility of neuroimaging results. For
example, in fMRI, [5] showed substantial differences in re-
sults obtained across teams when completing a similar anal-
ysis with a different pipeline. Other studies have explored
the variability resulting from specific processing and anal-
ysis parameters [6, 2, 1]. Frameworks for the optimization
of pipelines by estimation of performance metrics associated
with reproducibility have also been developed [7].

Here, we focused on how analytical variability in subject-
level pipelines can impact the compatibility of subject data in
between-group studies. If researchers want to use processed
subject data coming from different sources, they must ensure
that subject-level processing differences will not increase the
probability of obtaining false positive results.

In order to assess the validity of between-group studies
combining subject data processed differently, we processed
raw data from the Human Connectome Project [8] with var-
ious pipelines which differed on a set of predefined parame-
ters. After subject-level processing, we carried out a series
of between-group analyses under the null hypothesis, with
different pairs of subject-level pipelines. False positive rates
were then used to assess the validity of these between-group
analyses (with inflated false positive rates indicating the inva-
lidity of the combination of pipelines).

2. MATERIAL

This study was performed using data from the HCP [8]. We
used unprocessed fMRI data associated with the motor task
and structural data for all available subjects (n = 1080). Mul-
tiple preprocessing and first-level analyses were performed
(see section 3.2).

3. METHODS

In order to test the validity of between-group analyses using
subject data processed differently, we performed analyses un-
der null hypothesis assuming no difference in means across
pipelines. We used the detection rate as an estimate of the



Fig. 1. Steps performed for the analysis: subject-level anal-
ysis on subject data with different pipelines, between-group
analyses with subject data processed differently for multiple
pairs of pipelines, and repetitions of each analysis 1000 times
to estimate the false positive rates.

false positive rate and compared it to the expected false pos-
itive rate under the null hypothesis (Fig. 1). Analyses were
performed with SPM12 r7771 (RRID: SCR 007037, [9]) with
Octave 5.1.0 (RRID: SCR 014398), under Debian 10.6.

3.1. Subject-Level Pipelines

All subject data were processed through multiple pipelines,
which carried out preprocessing and first-level analysis. The
preprocessing steps were: spatial realignment of the func-
tional data, coregistration of realigned data towards the struc-
tural data, segmentation of the structural data, nonlinear regis-
tration of the structural and realigned functional data towards
a common space and smoothing of the normalized functional
data. For each pipeline, we selected the first-level contrast
corresponding to the right hand in the motor task.

Our pipelines varied on the following parameters:
• Smoothing kernel: Full-Width at Half-Maximum (FWHM)

was 5mm or 8mm.
• Number of motion regressors in the General Linear Model

(GLM) for the first-level analysis: 0, 6 (3 rotations + 3
translations) or 24 (3 rotations + 3 translations, 6 deriva-
tives and the 12 corresponding squares of regressors).

• Presence or absence of the temporal derivatives of the
Haemodynamic Response Function (HRF) in the GLM.
Apart from these parameters, each pipeline used the de-

fault settings. In total, those combinations provided a set of 12
different subject-level pipelines ( 2 FWHM × 3 numbers of
motion regressors × 2 HRF). The steps performed and param-
eter values were chosen so as to represent typical pipelines
found in the literature [1].

3.2. Between-group Analyses and False Positive Rates Es-
timation

In the remainder of the text, we will refer to as the “default
pipeline”, the subject-level pipeline with the following param-
eter values: 5mm FWHM for smoothing kernel, 24 motion
regressors and no temporal derivatives for the HRF. We per-
formed between-group analysis to compare two groups of 50
subjects, with each group processed respectively by the de-
fault pipeline and by one of the 11 alternative pipelines. The
100 subjects from the pair of groups were randomly sampled
without replacement, uniformly among the 1080 subjects. For
this reason, our analyses are under the null hypothesis of no
difference between groups. In addition to comparisons with
the default pipeline against the 11 different pipelines (referred
to as “different pipeline analyses” in the following), to assess
the compatibility between pipelines, we performed analysis
with the default pipeline for both groups (referred to as “same
pipeline analysis” in the following), as a sanity check.

We looked at the between-group difference in means
for the right hand contrast. We performed two one-tailed
t-test (for the comparisons default > alternative and alter-
native > default) with unequal variance using a voxelwise
p < 0.05 FWE-corrected threshold. For conciseness, the
results are presented below as one two-tailed t-test with a
p < 0.1 FWE-corrected threshold.

For each pair of pipelines, the between-group analyses
were repeated 1000 times with different groups of subjects
to estimate the empirical false positive rate, which was the
proportion of analyses over the 1000 repetitions with at least
one significant voxel between both groups. This false positive
rate is expected to be equal to 0.1 under the null hypothesis.
The set of 1000 pairs of 50-subject groups used to estimate
the empirical false positive rate was identical for all pairs of
pipelines.

For same pipeline analysis, and for comparisons with the
alternative pipeline varying from default on one or two pa-
rameter values, we also created variants of P-P plots to ob-
serve the behavior of the distribution of second-level statis-
tical values. For each comparison, we created a subset of
1,000,000 statistical values chosen randomly over our 1,000
second-level analysis statistical maps. We obtained and sorted
the p-values associated with these statistical values for the
expected distribution under the null hypothesis (Student dis-
tribution with n=98 degrees of freedom). We made variants
of P-P plots plotting the difference between obtained and ex-
pected -log(p-values), against the expected -log(p-values).

4. RESULTS

4.1. False positive rates

False positive rates for comparisons between the default
pipeline and each of the 11 alternative pipelines are presented
in Table 1. Same pipeline analysis (using the default pipeline



Smoothing, 5 mm Smoothing, 8 mm
No der. Der. No der. Der.

0 motion reg. 0.109 0.097 0.237 0.245
6 motion reg. 0.044 0.046 0.139 0.145

24 motion reg. 0.035 0.113 0.131

Table 1. Empirical false positive rates for analyses com-
paring the 11 alternative pipelines to the default pipeline
(smoothing=5mm, no der. and 24 motion reg.) at FWE-
corrected p < 0.1 two-tailed. Invalid results (> 0.1) are in
bold. The false positive rate obtained for same pipeline analy-
sis (default pipeline in both groups, corresponding to the grey
cell) was equal to 0.040. reg.= regressors, der.=derivatives.

0 1 2 3 4 5 6

expected -log10(p-values)

−0.5

0.0

0.5

1.0

1.5

d
iff

er
en

ce
b

et
w

ee
n

ob
se

rv
ed

an
d

ex
p

ec
te

d
-l

og
10

(p
-v

al
u

es
)

Default

Presence of derivatives

8mm for smoothing

no motion regressors

0 1 2 3 4 5 6

expected -log10(p-values)

−0.5

0.0

0.5

1.0

1.5

d
iff

er
en

ce
b

et
w

ee
n

ob
se

rv
ed

an
d

ex
p

ec
te

d
-l

og
10

(p
-v

al
u

es
)

Default

8mm for smoothing, presence of derivatives

8mm for smoothing, no motion regressors

Fig. 2. Variants of P-P plots for distributions obtained with
various analyses between the default pipeline and pipelines
with one (top) or two (bottom) varying parameter values (in-
dicated in legend), against the expected distribution, with 0.95
confidence interval (in grey). The curve for same pipeline
analysis (alternative pipeline equal to default) is plotted in red.

in both groups) led to conservative results with a false positive
rate of 0.040, which is consistent with the literature [10].

For analyses combining pipelines with a single varying
factor, the temporal derivatives of the HRF was the least im-
pacting of all three factors (temporal derivative, smoothing or

motion regressors) with a false positive rate of 0.035 (third
row, second column). Smoothing was the most impacting
factor with a false positive rate of 0.113 (third row, third col-
umn). For motion regressors, the two possible alternative val-
ues led to false positive rates of 0.044 (motion reg = 6, second
row, first column) and 0.109 (motion reg=0, first row, first col-
umn).

For analyses combining pipelines with multiple vary-
ing factors, all comparisons with different smoothing kernel
(FWHM 8mm in the alternative pipeline, third and fourth
column) led to invalid results, with false positive rates above
0.1. Other parameters being equal, comparisons with same
smoothing always led to smaller false positive rates (column
2 versus 4 and column 1 versus 3). Similarly, comparisons
with different numbers of motion regressors (especially with
no motion regressors in the alternative pipeline) gave higher
false positive rates than comparisons with the same number
of motion regressors (line 1 versus line 3). More generally,
multiple varying factors always led to higher false positive
rates, suggesting that the combination of differences between
pipelines leads to a combination of effects.

4.2. P-P plots

P-P plots are shown on Figure 2. Positive differences out-
side the confidence interval indicate invalidity (-log(p-values)
higher than expected) whereas negative differences indicate
conservativeness.

For same pipeline analysis (using the default pipeline for
both groups), the results observed were conservative. The ef-
fects of parameter differences on P-P plots are similar to those
observed on false positive rates: no clear effect of the model-
ing of the HRF, effect of differences in smoothing and num-
bers of motion regressors, and combination of effects with
combination of differences. The P-P plots show that the re-
sults observed with a specific thresholding in Table 1, regard-
ing the effect of parameter differences, are representative of
general tendencies for statistical values overall.

5. DISCUSSIONS

We observed that differences between subject-level pipelines
on specific parameters (smoothing, number of motion re-
gressors) had an effect which caused invalid results when
combined in between-group analyses. Therefore, pairs of
pipelines with different values for these parameters cannot
be combined for analyses with differences between groups:
it would be impossible to know if the between-group dif-
ferences have an effect, as it would be confounded with the
effect of pipeline differences.

Our results suggest that some combinations of pipelines
should be avoided, while other could be used. Differences
in modeling of the HRF had no observable effect in our ex-
periments. This is not the case for smoothing and motion



regressors, which gave invalid results.
We performed analyses with different subject-level pro-

cessing pipelines, where the pipelines are confounded with
the groups. This situation may happen in practice if we want
to do group comparisons where each group is associated with
a specific dataset, which is itself associated with a specific
subject-level pipeline. Other situations may also happen in
which there are multiple pipelines used on the subjects within
each group. Such situations may be investigated in future
work.

Since there are many more parameters which may vary
between subject-level pipelines in practice (different models
for the HRF, performing or not specific substeps such as slice-
timing correction, software packages, etc), effects of pipeline
differences would likely be more important in real conditions.

Here, we focused our investigations on measuring devi-
ations from the theoretical false positive rate under the null.
While this is important in order to assess the validity of the
statistical approaches, the lack of sensibility is also an impor-
tant methodological issue that will require further investiga-
tions in future work.

5.1. Conclusion

Our study shows that processing applied to data must be taken
into consideration when combining them, due to the poten-
tial invalidity of the results. The framework that we defined
may be used with other variations of parameters or other
paradigms in future work, and also using different software
packages, to assess the generalizability of our results. Also,
we may try to create methods to model and correct the effect
of analytical variability, which would allow us to combine
data without having to consider the differences in terms of
processing.

6. COMPLIANCE WITH ETHICAL STANDARDS

This study was performed using data from the Human Con-
nectome Project (HCP). Written informed consent was ob-
tained from participants and the original study was approved
by the Washington University Institutional Review Board. We
agreed to the HCP Open Access Data Use Terms.

7. ACKNOWLEDGEMENTS

Data were provided by the Human Connectome Project, WU-
Minn Consortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH
Institutes and Centers that support the NIH Blueprint for Neu-
roscience Research; and by the McDonnell Center for Sys-
tems Neuroscience at Washington University.

Xavier Rolland was supported by Region Bretagne (ARED
Varanasi) and by EU H2020 project OpenAIRE-Connect
(Grant agreement ID: 731011).

8. REFERENCES

[1] J. Carp, “On the plurality of (methodological) worlds:
estimating the analytic flexibility of fmri experiments,”
Frontiers in neuroscience, vol. 6, pp. 149, 2012.

[2] A. Bowring, C. Maumet, and T. E. Nichols, “Explor-
ing the impact of analysis software on task fmri results,”
Human brain mapping, vol. 40, no. 11, pp. 3362–3384,
2019.

[3] S. C. Strother, “Evaluating fmri preprocessing
pipelines,” IEEE Engineering in Medicine and Biology
Magazine, vol. 25, no. 2, pp. 27–41, 2006.

[4] K. S. Button, J. P. A. Ioannidis, C. Mokrysz, B. A.
Nosek, J. Flint, E. S. J. Robinson, and M. R. Mu-
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