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ABSTRACT

Precise Tooth Cone Beam Computed Tomography (CBCT)
image segmentation is crucial for orthodontic treatment plan-
ning. In this paper, we propose FDNet, a Feature Decoupled
Segmentation Network, to excel in the face of the variable
dental conditions encountered in CBCT scans, such as com-
plex artifacts and indistinct tooth boundaries. The Low-
Frequency Wavelet Transform (LF-Wavelet) is employed
to enrich the semantic content by emphasizing the global
structural integrity of the teeth, while the SAM encoder is
leveraged to refine the boundary delineation, thus improv-
ing the contrast between adjacent dental structures. By in-
tegrating these dual aspects, FDNet adeptly addresses the
semantic gap, providing a detailed and accurate segmen-
tation. The framework’s effectiveness is validated through
rigorous benchmarks, achieving the top Dice and IoU scores
of 85.28% and 75.23%, respectively. This innovative decou-
pling of semantic and boundary features capitalizes on the
unique strengths of each element to elevate the quality of
segmentation performance.

Index Terms— CBCT, Tooth Segmentation, Wavelet
Transform, SAM Encoder, Feature Decoupling

1. INTRODUCTION

Tooth segmentation from Cone Beam Computed Tomography
(CBCT) scans forms the crux of dental diagnostics, orthodon-
tic treatment planning, and dental restoration procedures un-
dertaken by stomatologists and dentists. The creation of pre-
cise tooth models depends on accurate segmentation, which
has been traditionally a manual and tedious endeavor. The
prevalence of low-quality images in CBCT scans, character-
ized by complex artifacts and blurred boundaries, complicates
the task of segmentation, often leading to unclear demarca-
tions and challenges in extracting accurate semantic informa-
tion. The need for a robust, automated segmentation system
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capable of effectively managing common image quality prob-
lems and accurately outlining teeth is clearly evident.

Existing segmentation methodologies, notably U-Net [1]
and its derivatives [2, 3], have shown effectiveness across
various medical imaging domains. However, when applied
to CBCT tooth segmentation, especially in 2D scenarios, a
significant semantic gap between the encoder and decoder
stages emerges, detrimentally impacting the segmentation
performance [4, 5]. Furthermore, the inadequate fusion of
semantic and boundary information, essential for precisely
distinguishing adjacent dental structures, compounds the
challenge citemea. This highlights the pressing need for a
bespoke solution designed to navigate the distinct hurdles
associated with CBCT tooth imaging.

Addressing the outlined challenges, we introduce FDNet,
a pioneering triple-branch network that effectively decouples
and processes semantic and boundary features to overcome
the challenges of CBCT tooth imaging. At its core are the
LF-Wavelet and the SAM encoder [6], tailored for semantic
enrichment and boundary delineation in images, respectively.
LF-Wavelet operates within the Low-frequency and Image
Fusion (LIF) module, focusing on semantic information am-
plification, while the SAM encoder, a pre-trained Vision
Transformer, excels at boundary feature extraction. Their
synergistic operation mitigates the semantic gap between
encoder and decoder stages and enhances resilience against
common image defects. Through FDNet, we aim to mend
the semantic gap and bolster the framework against typical
image defects, advancing segmentation accuracy in CBCT
tooth imaging.

The core contributions of our study are as follows:

* We introduce FDNet, a distinctive triple-branch network
that improves segmentation outcome by effectively decou-
pling and integrating semantic and boundary information.

* FDNet utilizes LIF to lessen the semantic gap between the
encoder and decoder stages, which is a common drawback
in preceding models.

* FDNet achieves superior performance on DICE and IoU
over existing state-of-the-art models, providing a potential
new baseline for tooth CBCT image segmentation.



| I, Feature map
Fusion

Original

Input

Segmentation
Output

I I, I Iy

Feature map
Fusion

Feature maps
from Uy,

Feature maps
from U,

LF-Wavelet
Transform

@ Concatenation

Pretrained models

| D,

1 —
: Conv

| —’éo—llh’
|

1 [ coa |

I

1 | Upsample |

I Es

|

I

I f

I

I

L RDS Decoder

Fig. 1. The architecture of the proposed FDNet segmentation model. Specifically, the LIF module fuses features from the U,

and U, encoders before passing them to the CTB module.

2. METHODS

2.1. Architecture Overview

Our FDNet is a triple-branch model engineered for preci-
sion in tooth CBCT image segmentation, as shown in Fig. 1,
epitomizes our innovative approach to feature decoupling,
specifically targeting the nuanced intricacies of tooth CBCT
images. It harnesses the LF-Wavelet and original image data,
channeling these into the encoder before proceeding through
the LIF’s Channel-wise Cross-attention Transformer Block
(CTB) module for enhanced feature integration, capturing
varied scale information effectively (R;,j € {1,2,3,4}).
Subsequently, the refined features are seamlessly combined
with the SAM encoder’s output, feeding into the RDS decoder
to accomplish superior segmentation accuracy and boundary
clarity.

2.2. LF-Wavelet Transform

In the initial phase of our FDNet framework, we adopt an LF-
Wavelet to address the semantic segmentation needs in CBCT
tooth imaging. Accurate segmentation hinges on the inclu-
sion of low-frequency (LF) semantics, such as overall shape
and color consistency, which are crucial for understanding the
global context of dental structures. To remedy this, we apply a
wavelet decomposition to isolate and fuse the low-frequency

details back into the original image, enriching the data fed
into our deep-learning model. This process imbues the model
with a fused representation of intricate semantic and structural
information. Figure 2 displays this process, allowing for a vi-
sual appreciation of how LF-Wavelet Transform prioritizes.

low-frequency
transformed image

original image

Fig. 2. Comparison of low-frequency transformed and orig-
inal images, with each low-frequency counterpart on the top
and its original image at the bottom.

The mathematical expression for this LF enhancement is
articulated as follows:
Xj =W (LF (W (X)) (1)

Here, X; is the original input image, W represents the
wavelet transform, W ! is its inverse, and LF is the extrac-
tion of low-frequency components. The enhanced image X



Ground Truth U-NET U-NET++

Original Image

Att U-Net

MedT Swin-Unet UCTransNet Ours

Fig. 3. The results of segmentation using different methods. It shows our model’s adept performance in achieving precise
segmentation across four dental conditions, including scenarios with complex artifacts and blurred tooth boundaries.

is thus a composite, fortified with low-frequency information,
enhancing the segmentation process. By concatenating these
low-frequency embeddings with the original image data, we
construct a composite input that capitalizes on the strengths of
both spectral domains in the first stage. Through this method-
ology, we mitigate the potential loss of contextual semantics
and augment the model’s proficiency in translating global fea-
tures into precise local patterns, which is pivotal for refined
and robust segmentation outcomes.

Moreover, the uniformity offered by the low-frequency
details helps address segmentation challenges, such as small
data interruptions - gaps or holes caused by high-frequency
noise. Without this focus on low frequencies, such disruption
could lead to fragmented segmentation, adversely affecting
dental diagnostics and treatment planning.

2.3. SAM Encoder

After the low-frequency wavelet transformation, our FDNet
framework incorporates the SAM Encoder to enhance feature
representation for precise CBCT tooth segmentation. Pre-
trained on the vast SA-1B segmentation dataset, the SAM
Encoder is adept at general feature extraction, a capability es-
sential for diverse imaging conditions.

The SAM Encoder’s edge lies in its ability to highlight
boundary features, which is critical for the clear delineation
of adjacent dental structures within CBCT images. While the
SAM Encoder is a powerful tool for feature extraction, its us-
age is optimized when guided by specific prompts, as it does

not inherently understand the segmentation goals or the se-
mantics involved.

We address this by employing a channel-wise cross at-
tention (CCA) module [7] that synergistically combines the
SAM Encoder’s boundary-focused embeddings with the fea-
ture maps R; from the LIF module. The revised formula that
depicts this integration is:

R; = CCA(CODCHt(SAM(XJ, Rj), Dj+1), i {2 3}
D’; = Conv(Concat(R;, Dj1)). I

2
R, = CCA(Concat(SAM (X;), R4), Es5), 3
E5 = Concat(SAM (X;), Ls).

Here, the enhanced feature map R’ is produced by the
CCA module, which integrates the boundary embeddings of
the SAM Encoder with the output features from the CTB
module and decoder features D,;,j € {2,3}. For R4/, a
unique process is employed: S2 and R4 are concatenated,
then combined with I5 and X5 to produce E5, which is subse-
quently processed by the CCA. Notably, X5 itself is derived
from concatenating the SAM-processed image result with the
output L5 from preceding UNet encoder operations.

This sophisticated concatenation and integration process
ensures that each R;’ map is a comprehensive representa-
tion of both global and local contextual details, crucial for
accurate dental anatomy segmentation. By fusing the SAM
Encoder’s boundary embeddings with the deep semantic and



structural insights provided by the LF-Wavelet and the de-
coder feature map, our FDNet generates a feature map rich
in detail and context. This integrated feature landscape em-
powers the RDS module, serving as the decoder, to effectively
discern and segment complex dental structures in CBCT im-
ages with enhanced precision.

3. EXPERIMENT

3.1. Dataset

Given the advancements in three-dimensional dental CBCT
technology and the escalating importance of dentistry driven
by economic upturn and an aging population, the task of tooth
segmentation has gained prominence. In light of this, we
leveraged a dataset provided by Hangzhou Dental Hospital,
encompassing 9,000 labeled CBCT images, to accomplish
our segmentation objectives. From this dataset, a subset of
288 images was randomly selected to constitute our training
set, while a distinct set of 400 images was earmarked for test-
ing purposes.

Table 1. Evaluation comparison on multiple tooth segmenta-
tion models.

Dice (%) ToU (%) Recall Precision
U-Net [1] 81.69+10.66  69.45 +13.32 82.14 +10.06 82.20 4+ 14.20
U-Net++ [8] 81.44+10.75 69.93+13.69  82.30+ 10.41 82.47+14.31
Attention U-Net [9] | 81.45+10.66  69.91 £ 13.58 83.10 +9.49 81.79+14.78
MedT [10] 723741597 5885+17.20 61.66 +£17.98 92.19 +13.51
Swin-Unet [11] 75.23+14.51  62.19 +16.43 75.90 + 16.39 77.44 +14.59
UCTransNet [7] 83.46+9.60 73.88+13.21 90.15+10.86 81.02+13.03
FDNet (Ours) 8528 £9.78 75.23+13.08 89.77 £10.99 82.67 +12.47

3.2. Main Results

To evaluate the performance of our proposed FDNet frame-
work, we conducted a comparative analysis against several
advanced and robust models, including U-Net [1], U-Net++
[8], Attention U-Net [9], MedT [10], Swin-Uet [11], and UC-
TransNet [7] on our tooth CBCT image dataset. All models
were meticulously trained and tested based on their official
source code and preset parameters. We used a test set com-
prising 400 patient tooth samples. The comparative visual re-
sults are illustrated in Fig. 3, while the quantitative evaluation
is in Table 1.

To highlight our model’s consistent performance across
various patient cases and imaging conditions, we computed
the average and standard deviation from multiple experi-
ments. Our analysis revealed that FDNet achieved superior
segmentation accuracy, surpassing the second-ranked model,
UCTransNet, in both Dice and IoU metrics—indicators of
segmentation correctness and the overlap between predicted
and actual segmentation, respectively. While FDNet’s av-
erage recall is marginally lower than that of UCTransNet,

it showcases superior precision, with only MedT having a
slightly higher value. However, it is essential to note that
MedT’s higher precision is countered by its lower recall,
suggesting a trade-off between these metrics. Our model’s
balanced performance in both metrics means it maintains a
harmonious balance between identifying relevant tooth struc-
tures (recall) and minimizing false positives (precision). This
balance is critical in dental CBCT segmentation, where both
over-segmentation and under-segmentation can have detri-
mental implications for subsequent dental treatment planning.

3.3. Ablation Study

An ablation study was orchestrated to dissect the individ-
ual contributions of our core modules: SAM encoder, LIF
and LW-Wavelet, in the realm of tooth segmentation. As
illustrated in Table 2, this study illuminated the pivotal roles
of each module in augmenting the segmentation quality.
It underscored that the confluence of semantic information
through LW-Wavelet, the robust feature extraction by the
SAM encoder, and the fusion functionality of the LIF module
synergistically drive superior segmentation outcomes.

Table 2. Ablation Study Outlining the Impact of SAM En-
coder, LIF, and LF-Wavelet on Segmentation Performance.

Methods Dice (%) IoU (%) Recall Precision
FDNet (w/o SAM) 85.24 75.14 87.56 84.77
FDNet (w/o LIF) 83.94 74.01 87.43 82.31
FDNet (w/o LW) 84.33 74.12 86.47 83.98
FDNet (Ours) 85.64 75.72 88.86 84.38

4. CONCLUSION

In this work, we introduce FDNet, an innovative approach for
tooth segmentation in CBCT imaging, addressing the inherent
challenges presented by diverse dental conditions, indistinct
tooth boundaries, and semantic paucity in CBCT images. FD-
Net’s architectural ingenuity lies in its unique feature decou-
pling strategy. By incorporating the Low-Frequency Wavelet
Transform within our framework, we enhance the semantic
richness by capturing the global structural details from low-
frequency components. Concurrently, the SAM encoder ex-
tracts boundary features critical for distinguishing adjacent
dental structures. This strategic fusion of components facil-
itates a semantic bridge between the encoding and decoding
phases, markedly elevating the segmentation accuracy, par-
ticularly in the face of complex dental scenarios. Our exten-
sive testing underscores FDNet’s superior performance over
leading-edge models, highlighting its capacity to revolution-
ize automated tooth segmentation across various patient den-
tal conditions and positioning it as a versatile and reliable
framework in the realm of dental diagnostics and orthodon-
tic treatment planning.
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