Systematic configuration and automatic tuning of
neuromorphic systems

Sadique Sheik, Fabio Stefanini, Emre Neftci, Elisabetta Chicca, Giacomo Indiveri
Institute of Neuroinformatics
University of Zurich and ETH Zurich, Switzerland
Email: sadique @ini.phys.ethz.ch

Abstract—1In the past recent years several research groups
have proposed neuromorphic Very Large Scale Integration
(VLSI) devices that implement event-based sensors or bio-
physically realistic networks of spiking neurons. It has been
argued that these devices can be used to build event-based
systems, for solving real-world applications in real-time, with
efficiencies and robustness that cannot be achieved with conven-
tional computing technologies.

In order to implement complex event-based neuromorphic
systems it is necessary to interface the neuromorphic VLSI
sensors and devices among each other, to robotic platforms,
and to workstations (e.g. for data-logging and analysis). This
apparently simple goal requires painstaking work that spans
multiple levels of complexity and disciplines: from the custom
layout of microelectronic circuits and asynchronous printed
circuit boards, to the development of object oriented classes and
methods in software; from electrical engineering and physics for
analog/digital circuit design to neuroscience and computer science
for neural computation and spike-based learning methods.

Within this context, we present a framework we developed
to simplify the configuration of multi-chip neuromorphic VLSI
systems, and automate the mapping of neural network model
parameters to neuromorphic circuit bias values.

I. INTRODUCTION

While computational neuroscience models simulate neurons
and synapses using parameters directly related to their biolog-
ical characteristics (such as leak conductance, time constants,
etc.), neuromorphic VLSI systems emulate them using circuits
that can be configured by setting bias voltages and currents.
The biases in these circuits are often only indirectly related to
the parameters of computational neuroscience models. More
generally, the relationship between parameters in theoretical
models, software simulations, and hardware emulations of
spiking neural networks is highly non-linear, and no systematic
methodology exists for establishing it automatically.

Current automated methods for mapping the VLSI circuits
bias voltages to neural network type parameters are based
on heuristics and result in ad-hoc custom made calibration
routines. For example, in [1] the authors perform an exhaustive
search of the parameter space to calibrate their hardware
neural networks, using the simulator-independent description
language “PyNN” [2]. This type of brute-force approach is
possible because of the accelerated nature of the hardware
used, but it becomes intractable for real-time hardware or
for very large systems, due to the massive amount of data
that must be measured and analyzed to carry out the cal-
ibration procedure. An alternative model-based approach is
proposed in [3], where the authors fit data from experimental
measurements with equations from transistors, circuit models,

978-1-4244-9474-3/11/$26.00 ©2011 IEEE

and computational models to map the bias voltages of VLSI
spiking neuron circuits to the parameters of the corresponding
software neural network. This approach does not require the
extensive parameter space search techniques, but new models
and mappings need to be formulated every time a new circuit
or chip is used, making it’s application quite laborious.

In this article, we propose a systematic and modular frame-
work for the tuning of parameters on multi-chip neuromorphic
systems that combines and extends the approaches described
above. On the one hand the modularity of the framework al-
lows the definition of a wide range of generic (network, neural,
synapse, circuit) models that can be used in the parameter
translation routines; on the other hand, the framework does not
require detailed knowledge of the hardware/circuit properties,
and can optimize the search and evaluate the effectiveness
of the parameter translations by measuring experimentally the
behavior of the hardware neural network. We implemented
this framework using the Python programming language, and
making strong use of its object-oriented features. Indeed,
Python’s recent popularity in the neuroscience community [4],
combined with its platform independence and the ease of
extending it with other programming languages, makes it the
natural choice for this framework.

The framework consists of two software modules: pyNCS
and pyTune (see Fig. 1). The pyNCS tool-set allows the user to
interface the hardware to a workstation, to access and modify
the VLSI chip bias settings, and to define the functional
circuit blocks of the hardware system as abstract software
modules. The abstracted components represent computational
neuroscience relevant entities (e.g. synapses, neurons, popu-
lations of neurons, etc.) which do not depend directly on the
chip’s specific circuit details, and provide a framework that
is independent of the hardware used. The pyTune tool-set
allows users to define abstract high-level parameters of these
computational neuroscience relevant entities, as functions of
other high- or low-level parameters (such as circuit bias set-
tings). This tool-set can then be used to automatically calibrate
the properties of the corresponding hardware components
(neurons, synapses, conductances, efc.), or to determine the
optimal set of high- and low-level parameters that minimize
arbitrary defined cost-functions.

Using this framework, neuromorphic hardware systems can
be automatically configured to reach a desired configuration
or state, and parameters can be tuned to maintain the system
in the optimal state.

873



pyTune

b
—— plugins parameters
annealing e
history
pyNCS /
Population neural
ush soma \ network
VLSI

Fig. 1. Neuromorphic system configuration framework. Low-level drivers
interface custom chips to workstations (e.g., using USB connections). The
pyNCS tool-set abstracts the chip specific characteristics, defines the setup,
and the chip’s functional blocks (e.g., populations of neurons). The pyTune
tool-set performs the calibration of high-level parameters and optimization of
cost functions, using the optimization algorithms in the base sub-module.

II. THE PYNCS TOOL-SET

The pyNCS tool-set acts on neuromorphic chips interfaced
to workstations. At the lowest level dedicated drivers are
required to interface custom neuromorphic chips to computers.
Although custom drivers must be developed for each specific
hardware, they can be cast as Python modules and integrated
as plug-ins in the pyNCS tool-set. Once the drivers are
implemented, pyNCS creates an abstraction layer to sim-
plify the configuration of the hardware and its integration
with other software modules. The experimental setup is then
defined using information provided by the designer on the
circuit functional blocks, their configuration biases, and the
chip’s analog and digital input/output channels. The setup,
the circuits, and their biases are encapsulated into abstract
components controllable via a Graphical User Interface (GUI)
or an Application Programming Interface (API).

Experiments (equivalent to software simulation runs) can
be defined, set-up, and carried out, using methods and com-
mands analogous to those present in software modern neural
simulators such as Brian [5] or PCSIM [6].

pyNCS uses a server-client architecture, thereby allowing
multi-client support, load sharing, and remote access to the
multi-chip setups. Thanks to this server-client architecture
multiple clients can control the hardware remotely, regardless
of the operating system used.

III. THE PYTUNE TOOL-SET

The pyTune tool-set is a Python module which auto-
matically calibrates user defined high-level parameters, and
optimizes user defined cost-functions. The parameters are
defined using a dependency tree that specifies lower-level sub-
parameters in a recursive hearachical way. An example of such
type of dependency tree is shown in Fig. 2.

This hierarchical scheme allows the definition of arbitrarily
complex parameters and related cost-functions. For example,

-getValue()
Parameter -setValue()
Sub par. 1 bias 5)
j—) Sub par. 2
oies Y T) level of
Sub sub par. 1 abstraction
DS 2 bias 4

bias 3

Fig. 2. Example of parameter definition. A hierarchical dependency tree
specifies which lower-level parameters affect the parameter being defined.
The bias parameters directly change the biase voltages on the chip(s). Each
parameter contains a definition of a get Value and (optionally) a setValue
function. These functions specify how to measure and set the chip signals that
define the parameter. If the setValue function is not defined, the system
travels the tree following the specified optimization algorithm until it finds
the lowest-level parameters that affect the chip biases.

synaptic efficacies in neural network models can be related
to the bias voltages in neuromorphic chips which control the
gain of synaptic circuits. In the DPI synapse [7], there are three
bias voltages that simultaneously affect the synaptic gain in a
non-linear fashion. Using the pyTune tool-set it is possible to
automatically search the space of these bias voltages and set a
desired synaptic efficacy by measuring the neuron’s response
properties (e.g. mean output rate) from the chip.

The automated parameter search can be applied to more
complex scenarios to optimize high-level parameters related
to network properties. For example, the user can specify the
mapping between low-level parameters and the gain of a
winner-take-all network [8], or the error of a learning algo-
rithm [9]. Furthermore, the pyTune tool-set is not restricted
to neuromorphic chip setups: it can be used in pure software
simulation scenarios in which it is necessary to optimize cost-
functions that involve complex or abstract parameters, as a
function of direct or low-level model parameters. In every
case, the mappings from low-level parameters to high-level
parameters can be arbitrarily defined.

IV. METHODS

Here we describe the steps required to integrate, config-
ure, and calibrate a custom neuromorphic system using the
pyNCS and pyTune tool-sets. They involve the creation of files
describing the chip’s functional blocks (excitatory synapses,
inhibitory synapses, neurons, efc.), the experimental setup
(e.g., how many chips and what measurement instruments are
used), and the topology of the neural network to be emulated.
In addition it is necessary to define low- and high-level
parameters that characterize the network, using the hierarchical
scheme described in Fig. 2.

A. Chip functional blocks

All the details of the chip are collected in a single file
in which its functional blocks are defined and the chip’s
pins are related to their parameters. The file specifies how

874



to change the biases of the functional blocks (e.g. via Digital-
to-Analog (DAC)s). In addition, input and output signals are
defined according to the Address Event Representation (AER)
protocol [10].

The chip is represented in pyNCS as a Chip object. Once
this object is instantiated, chip bias voltages are treated as
ordinary variables and any operation that uses these variables
actually reads the signals from the pins, while any operation
that modifies these variables actually sets the corresponding
DAC value.

B. Multi-chip experimental setup

A full experimental setup, typically comprising several
chips, different types of measurement instruments, and dif-
ferent boards for interfacing the chips to workstations, is
described in a separate specification file.

The chips send and receive spikes to/from other chips
using the AER protocol. The setup specification file contains
information about the correspondence between chips and their
relative AER address space.

The experimental setup specification file provides a means
for creating populations and networks as easily as it is done
on modern software simulators, sparing the user from dealing
directly with the hardware details. This abstraction is done by
the NeuroSetup class in pyNCS (see Listing 1).

C. Neural network topology

The topology of the neural-network is described in terms of
populations of neurons (Population) and inter-connections
thereof (Mapping). The properties of the connections are
defined by the synapses used to make these connections (e.g.
excitatory, inhibitory or plastic). pyNCS provides convenient
methods to build such topologies on the neuromorphic setups.
Listing 1 demonstrates how this works.

#lnitialize setup

setup = pyNCS.NeuroSetup(’setup.xml’)

# Populate 5 LIF neurons from ’chipl’

popl = pyNCS.Population(id="pop’, description="Pop 1)

popl.populate_by_number (setup , chip="chipl’, type="IF_leaky
>, N=5)

# Populate 10 LIF neurons from ’chip2’

pop2 = pyNCS. Population(id="pop’, description="Pop 2")

pop2.populate_by_number (setup , chip="chip2’, type='IF_leaky
>, N=10)

# Connect popl to pop2

mapping = pyNCS.Mapping (’network’)

mapping.connect_one2one (popl, pop2, type=’excitatory’)

Listing 1. A code snippet demonstrating how to use the pyNCS tool-set. In
this example we define two populations of neurons on two chips (’chipl’ and
"chip2’) that are part of setup. Both popl and pop2 are first defined as
neural populations and then populated with I&F neurons on the two chips.
This operation sets the actual communication between the software abstraction
layer and the hardware. Finally, a mapping instance is created and finally
popl is connected to pop2 in a one-to-one fashion (excitatory connection).

D. Automatically tuning system parameters

The pyTune tool-set relies on the translation of the problem
into parameter dependencies. The user defines each parameter
by its measurement routine (getValue function) and its sub-
parameters dependencies. At the lowest level, the parameters
are defined only by their interaction with the hardware, i.e.
they represent biases of the circuits. The user can choose a
minimization algorithm from those available in the package

or can define custom methods, to do the optimization that sets
the parameters value. Optionally one can also define a specific
cost function, that needs to be minimized. By default, the cost
function is computed as (p — pgesired) Where p is the current
measured value of the parameter and pgesireq 1S the desired
value. Explicit options (such as maximum tolerance for the
desired value, maximum number of iteration steps, etc.) can
also be passed as arguments to the optimization function.

Finally, the sub-parameters’ methods are mapped by the
appropriate plug-in onto the corresponding driver-calls, in the
case of an hardware system, or onto method calls and variables
in the case of a system simulated in software. Each mapping
specific to a system has to be separately implemented and
included in pyTune as a plug-in.

V. RESULTS

In this section we demonstrate how pyTune is used in
conjunction with pyNCS to set the mean firing rate of a
population of neurons on a multi-neuron chip.

The setup comprises a multi-neuron chip which is a 10 mm?
prototype VLSI device implemented in a standard 0.35pum
CMOS technology. The chip comprises an array of 128
integrate-and-fire neurons and 4096 adaptive synapses with
biologically plausible temporal dynamics [7]. Each of the
128 neurons receive input from 32 synaptic circuits which
are subdivided into sets of excitatory non-plastic synapses,
inhibitory non-plastic synapses, and excitatory plastic ones,
with on-chip learning capabilities [11]. The multi-neuron chip
biases can be modified by a board comprising a series of DACs
and interfaced via USB to the workstation. Input and output
spikes are sent to/from the chip using the AER protocol.

In this example, we created a population of 5 neurons and
defined a Rate parameter corresponding to the mean firing
rate of the population. The parameter uses built-in functions of
pyNCS to stimulate the neurons, monitor their output spiking
activity and compute the population mean firing rate.

In principle the population’s mean firing rate can depend on
several parameters (e.g. injected currents, recurrent connectiv-
ity, external inputs, time-constants). In order to simply illus-
trate how pyTune handles the dependencies we define the pa-
rameter as dependent on two sub-parameters, the Injection
current to the neurons and the Leak current of the membrane.
These are in fact biases of the chip, i.e. voltages to the gate
transistors generating the injection current (p-type transistor)
and the leak current (n-type) [12].

To visualize the dependence of Rate on its two sub-
parameters, we carry out a two-dimensional sweep across
the parameter space. The points in the 3D plot of Fig. 3
represent the values of Rate, which lie on a non-linear surface
because of the exponential relationship between the biases
and their respective currents. The default cost function is
(r — Tdesired)®, Where 7 is the value of Rate measured from
the hardware system and 7gesireq = D0 Hz is the target value.
In this example, pyTune minimizes the cost function using an
implementation of the Truncated Newton (TN) algorithm [13]
provided by SciPy’s optimization module [14]. The blue path
shown in Fig. 3 connects the points measured by pyTune while
setting the Rate.

875



5l Rate (Hz)

2.75 0.16
0.15 Leak (V)

Injection (V) 0.14
Fig. 3. A 3D wire-frame plot of the parameter space for the experiment
described in Sec. V. Each dot on the wire-frame nodes is a measure of
the Rate value. The surface represents the non-linear dependence of the
parameter to be optimized (Rate) on the two sub-parameters (Leak and
Injection). The sub-parameters are voltages on the gate of the n/p-
transistor which controls the current of the leak/injection to the neuron
circuit [12]. The blue line shows the algorithm’s path during the optimization
process (the red star represents the final point at 48.3 Hz). The error-bars on
each point show the standard deviation on the rate measurement computed
over the population, mainly due to transistors mismatch.

Cost [1e+04]

Iterations

Fig. 4. The cost function is minimized to set the Rate parameter to a
desired value of 50Hz on the example experiment of Sec. V. Error bars
represent standard deviations. The final value of the population rate is 48.3Hz,
with a deviation from the desired value below the tolerance we passed to the
algorithm. See text for details.

Fig. 4 shows the progress of the optimization algorithm
(cost versus iteration step). After 10 iterations, the algorithm
converges to a mean rate of 48.3 Hz, which is compatible with
the target rate of 50 Hz and the tolerance of 3 Hz declared as
argument of the algorithm.

The code used to produce this data is available
online (http://ncs.ethz.ch/publications/
examples—iscas—-2011).

VI. CONCLUSIONS

We presented a modular and expandable platform-
independent Python-based framework to control, calibrate and
tune custom neuromorphic systems. We showed how these
Python software tools can be used to automatically con-
figure neuromorphic hardware for emulating spiking neural
networks. The framework is open, and modular in order to
easily integrate a wide range of additional modules. These
modules range from drivers (for interfacing the tools to
custom VLSI chip), to programs for controlling measurement

instruments (and acquiring data from the hardware setups), and
optimization routines (for finding the optimal set of parameters
that produce a desired behavior in the hardware setup). In
this respect, the strengths of the work proposed are not in
the specific methods used to solve the parameter mapping
and calibration problems, but in providing an easy-to-extend,
modular interface. It allows a high-level formal description and
automation of the parameter optimization problem in which
existing methods can be easily integrated and adapted, for use
in conjunction with the hardware. The package is, in principle,
completely compatible with other existing Python tool-sets
such as pyNN [2]. It extends their capabilities in terms of
systems that can be controlled, and can be considered as an
additional extremely useful tool that can be included in the
increasing number of Python applications developed for the
neuroscience and neuromorphic engineering community.

ACKNOWLEDGMENT

This work was supported by the European FP7 grant
#231168 — “SCANDLE” and the Swiss National Science
Foundation grants #119973 — “SoundRec”. The authors would
like to thank the NCS group (http://ncs.ethz.ch/) for
contributing to the development of the AER and multi-chip
experimental setups.

REFERENCES

[1] D. Briiderle, E. Miiller, A. Davison, E. Muller, J. Schemmel, and
K. Meier, “Establishing a novel modeling tool: a python-based interface
for a neuromorphic hardware system,” Frontiers in Neuroinformatics,
vol. 4, 2009.

[2] A. Davison, D. Briiderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski,
L. Perrinet, and P. Yger, “Pynn: a common interface for neuronal
network simulators.” Frontiers in Neuroinformatics, vol. 2, p. 11, 2008.

[3] E. Neftci, E. Chicca, G. Indiveri, and R. J. Douglas, “A systematic
method for configuring visi networks of spiking neurons,” Neural
Computation (submitted), 2010.

[4] “Special topic: Python in neuroscience,” 2009. [Online]. Avail-
able: http://www.frontiersin.org/neuroinformatics/specialtopics/python_
in_neuroscience/8

[5] D. Goodman and R. Brette, “Brian: a simulator for spiking neural
networks in Python,” Frontiers in Neuroinformatics, vol. 2, 2008.

[6] D. Pecevski, T. Natschldger, and K. Schuch, “PCSIM: a parallel sim-
ulation environment for neural circuits fully integrated with python,”
Frontiers in Neuroinformatics, vol. 3, no. 11, 2009.

[7]1 C. Bartolozzi and G. Indiveri, “Synaptic dynamics in analog VLSL”
Neural Computation, vol. 19, no. 10, pp. 2581-2603, Oct 2007.

[8]1 A. L. Yuille and D. Geiger, Winner-Take-All Networks. The MIT Press,
Cambridge, Massachussets, 2003, ch. Part III: Articles, pp. 1228-1231.

[9] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of

Neural Computation. Reading, MA: Addison-Wesley, 1991.

K. Boahen, “Communicating neuronal ensembles between neuromor-

phic chips,” in Neuromorphic Systems Engineering, T. S. Lande, Ed.

Norwell, MA: Kluwer Academic, 1998, pp. 229-259.

S. Mitra, S. Fusi, and G. Indiveri, “Real-time classification of complex

patterns using spike-based learning in neuromorphic VLSI,” [EEE

Transactions on Biomedical Circuits and Systems, vol. 3, no. 1, pp.

32-42, Feb. 2009.

G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power

spiking neurons and bistable synapses with spike-timing dependent

plasticity,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp.

211-221, Jan 2006.

S. G. Nash, “A survey of truncated-newton methods,” Journal of

Computational and Applied Mathematics, vol. 124, no. 1-2, pp. 45

— 59, 2000. [Online]. Available: http://www.sciencedirect.com/science/

article/B6TYH-41MJORK-4/2/e9e5a91a3219fd5d4bdce9ac15¢92dd5

E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific

tools for Python,” 2001—. [Online]. Available: http://www.scipy.org/

(10]

(11]

[12]

[13]

[14]

876



