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Abstract—Resistive Random Access Memory (RRAM)-based

artificial Neural Networks (NNs) have been shown to be intrin-

sically robust to RRAM variability but no study has been done

to clearly explain and quantify this robustness. In this paper,

we fully characterize a 4kbit RRAM array under different pro-

gramming conditions. The impact of the electrical characteristics

of RRAM (resistance variability, memory window, endurance

performance) on the detection rate of a NN designed for object

tracking and trained with a stochastic Spike-Timing Dependent

Plasticity (STDP) rule is studied. We introduce a new parameter

called the Synaptic Window (SW), defined as the ratio between

the arithmetic mean conductance values of the low and high

resistance distributions. The network performance was found

only to be sensitive to the value of the SW (a SW>100 is

required to achieve the maximum NN performance). Moreover,

we demonstrate that a high resistance variability increases the

SW for a given window margin.

I. INTRODUCTION

Synapses play a central role in two principal tasks of the

brain; information processing and information storage. Of

many important synaptic properties, it has been proven that

synapses are noisy devices [1], [2]. In biology, variability has

been observed in the postsynaptic response (if a presynaptic

cell is driven repeatedly with identical stimuli, there is trial-

to-trial variability in the postsynaptic response). While the

purpose of such variability is not completely understood,

it is generally accepted that variability might offer distinct

advantages (e.g. energy-saving [3] or enhance sensitivity to

weak signals [4]).

Resistive memory devices (RRAM) or RRAM-based circuits

are promising candidates to emulate the behaviour of synapses

in artificial Neural Networks (NN), and in particular to re-

produce their capability to learn. The synaptic connections

(RRAM devices) among neurons are created, modified, and

preserved accordingly to a learning model. As a result of a

learning process it is possible to perform pattern detection

and classification. In recent years, a variety of approaches

have been considered to implement learning, such as the

bio-inspired Spike-Timing Dependent Plasticity (STDP [5]–

[7]). STDP facilities the NN to learn the synaptic weights in

an unsupervised way - without a labeled dataset or external

teacher. It has been demonstrated that RRAM-based NNs are

robust to synaptic variability [5], [8]. However, a clear study

explaining the origin of this robustness is still missing.

In this work, a visual pattern extraction application based

on a fully-connected network of Leaky-Integrate and Fire

(LIF) neurons and RRAM-based synapses implementing the

STDP learning rule is adopted to demonstrate the impact of

RRAM electrical characteristics (variability, Memory Window,

Fig. 1. (Left) SEM cross section of an integrated TiN/HfO2/Ti/TiN RRAM
cell between M4 and M5. (Right) Schematic view of the 1T-1R cell config-
uration.

endurance) on network performance. We demonstrated that

RRAM technologies with a large Memory Window (MW),

defined as the ratio between the high and low resistance at

3σ of the resistance distribution, allow for improvement of

the network performance. However, an increase of MW is

challenging to realise with state of the art RRAM due to the

large variability. Synaptic variability is beneficial in the case

of NNs since it increases the dynamic range of resistance,

thus reducing the constraints on the MW. The results obtained

from the experimental characterization of a 4kbit RRAM array

have been exploited to give general guidelines for the design

of hardware-oriented neuromorphic circuits.

II. 4KBIT RRAM ARRAY FABRICATION AND ELECTRICAL

CHARACTERIZATION

A 4kbit RRAM array was fabricated using a 130 nm CMOS

front-end process [9]. The RRAM devices are composed of a

TiN/HfO2/Ti/TiN stack, where both HfO2 and Ti layers are

10 nm thick and are integrated on the top of the fourth metal

layer. The cross section of a 300nm diameter RRAM device

is shown in Fig. 1 (Left). The cell configuration is the 1T-1R

presented in Fig. 1 (Right). RRAM devices switch between

two distinct resistance states, a Low Resistance State (LRS)

and a High Resistance State (HRS), when Forming/Set and

Reset conditions are applied respectively. Forming and Set

operations are performed by applying a voltage pulse on the

RRAM top electrode (VSet), whereas Reset is performed by

applying a voltage pulse on the drain of the NMOS transistor

(VReset). The compliance current (Icc) is fixed by the voltage

applied on the gate of the transistor (Vg).

Fig. 2 (a) shows the Cumulative Distribution Function (CDF)

of LRS and HRS measured on the 4kbit array after 104

Set/Reset operations, whereas Fig. 2 (b) shows the evolution

of LRS and HRS during 106 Set/Reset cycles. In memory

applications RRAMs are used to store one bit of informa-



(a) (b)

Fig. 2. (a) CDF of the LRS and HRS measured on the 4kbit array after 104

switching cycles and (b) endurance with programming condition A in Fig. 3
(a). Variability is defined as: σR = std[log10(R)]. No smart algorithm is
applied.

tion; therefore the most important parameter is the Mem-

ory Window (MW). The variability in the high resistance

state reduces the MW, hindering the use of this technology

for large memory arrays. In neuromorphic applications the

RRAM devices define the weight of the connection between

two neurons. Therefore they have different requirements than

standard memory applications. In the following section, we

will study the impact of RRAM electrical characteristics on

the performance of a NN for object tracking. We introduce

a new parameter, the Synaptic Window (SW), defined as the

ratio between the arithmetic mean conductance values of LRS

(GLRS) and HRS (GHRS). The resistance variability in both

LRS and HRS is estimated as the standard deviation of the

log10 of the resistance distribution [10].

MW, SW, endurance performance and variability of both

LRS and HRS depend on the programming conditions and

they cannot be decoupled (see Fig. 3 (a)). Fig. 3 (b) shows

the link between resistance variability and median resistance

values obtained with different programming conditions. Vari-

ability increases with median resistance value and saturates

for resistance values higher than 13 kΩ [9]. Moreover, it has

been demonstrated that a tradeoff exists between MW and

endurance performance: higher MW implies lower endurance

[11]. Fig. 3 (a) summarizes the programming conditions

used in the following section to study the impact of RRAM

performance on a NN by means of simulation:

• A: best compromise between endurance and MW (the

most suited condition for standard memory applications);

• B1 and B2: low power consumption, high variability in

both LRS and HRS and low MW (cannot be used for

memory applications due to the low MW);

• C: highest MW among the 4 conditions, high power

consumption and low endurance.

III. IMPACT OF RRAM PROGRAMMING CONDITIONS ON A

NEURAL NETWORK FOR OBJECT TRACKING

A. Network Topology

We performed full system-level simulations of a visual

pattern extraction application with our special purpose event-

based N2D2 simulator tool [12]. The neuron circuits are mod-

eled with behavioral equations as in [13]. The effects of both

(a) (b)

Fig. 3. (a) Programming conditions used in this work, with tpulse=100 ns. (b)
Variability as a function of median resistance value for different programming
conditions. Experimental measurements used in this work are highlighted.

(a)

(b)

(c)

Fig. 4. (a) FCNN topology for cars tracking application, with stochastic STDP
learning rule. (b) Synapses are implemented with n binary RRAMs in parallel
to achieve n+1 synaptic levels. (c) Definition of F1-score to assess network
performance.

device-to-device and cycle-to-cycle variations are captured

in the RRAM-based synapse model. Fig. 4 (a) presents the

simulated two-layer Fully-Connected Neural Network (FCNN)

topology. A video of cars passing on a six-lane wide motorway

is recorded in Address Event Representation (AER) format

by a Dynamic Vision Sensor (DVS) and it represents the

input data [14]. The FCNN is composed of an input layer,

corresponding to the DVS with 128*128 spiking pixels and

an output layer of 60 neurons [13]. An input pixel generates

a spike each time there is a change of luminosity of the

input video. Each input pixel is connected with 2 synapses

to every output neuron to denote an increase and decrease

in illumination respectively. The total number of synapses is

128*128*2*60 = 1966080. A similar network has been imple-

mented in [15] and [16] exploiting multi-level Phase-Change

Memory and binary Conductive Bridge RRAM synapses,

respectively. In this work, we adopted the RRAM technology

presented in Section II. The training is unsupervised with a

stochastic STDP rule [16]: for each LTP (LTD) event every



synaptic device has a probability pLTP (pLTD) to be set in the

LRS (reset in the HRS). After training every output neuron

becomes sensitive to a specific lane and spikes whenever a

car passes on this lane. The network can then be used for the

detection of cars.

Fig. 4 (c) sketches the spiking activity of one output neuron

(red) and the actual traffic (a grey spike corresponds to a car

passing on the lane). If the neuron detects a car, we have a

True Positive (TP) event. If it spikes with no car passing, we

have a False Positive (FP) event. If it misses a car, we have

a False Negative (FN) event. We use the F1-score as a metric

to assess network performance:

F1 =
2TP

2TP + FN + FP
(1)

F1 ranges from 0 to 1, with F1 = 1 being the best performance.

Each output neuron becomes sensitive to one lane. Since

there are 60 output neurons and only 6 lanes, several neurons

become sensitive to the same lane. As more cars pass on

the lanes 4 and 5, more neurons are sensitive to these lanes

than to the lane 6, the least active lane. To assess network

performance, only the most sensitive neuron for each lane is

considered.

The RRAM cells presented in Section II are intrinsically

binary devices: they switch between two distinct states, LRS

and HRS. The use of only two resistance levels per synapse,

with respect to the multi-level approach, can be insufficient to

achieve good performance in neuromorphic systems designed

for complex applications [17]. In [10] we proposed n binary

RRAMs operating in parallel as artificial synapse (Fig. 4 (b)).

Since parallel conductances add up, the equivalent synaptic

weight spreads from the sum of n condutances in HRS to n

conductances in LRS, with n+1 distinct conductance levels.

This allows for the implementation of an analog synapse with

binary devices: when we have an LTP (LTD) event, every de-

vice has a probability pLTP (pLTD) to switch to the LRS (HRS).

The switching probability can be governed by the RRAM itself

(internal switching probability): Set and Reset conditions can

be tuned to control the probability to switch the memory as

shown in [18]. Another possibility, that allows finer tuning

of the switching probability, at the expense of increasing the

circuit complexity, consists of using stronger programming

conditions (i.e. internal switching probability is equal to one)

and extrinsic stochasticity. Extrinsic stochasticity is obtained

using an external Pseudo Random Number Generator circuit

block, which provides tunable switching probabilities. We used

extrinsic stochasticity, with pLTP = 0.13 and pLTD = 0.2.

In the following, we will present the impact of the char-

acteristics of RRAM-based synapses (number of synaptic

levels, memory window, variability, endurance) on the network

performance. In order to account for the RRAM variability,

each point has been averaged over 20 simulations.

B. Impact of the RRAM-based synapse characteristics (num-

ber of synaptic levels, MW, variability) on the NN performance

First, we investigated the impact of the number of synaptic

levels and the RRAM memory window on the NN perfor-

(a) (b)

Fig. 5. (a) NN performance (F1) as a function of the MW for different number
of RRAMs per synapse. (b) Minimal MW required to achieve the maximum
NN performance (F1 = 0.96) as a function of LRS and HRS variability.

mance. Fig. 5 (a) shows F1-score as a function of the MW at

3σ for different number of RRAMs per synapse. We used an

artificial log normal LRS and HRS distributions with σR,LRS

= σR,HRS = 0.05, and different LRS median values to vary

the MW. The NN performance is independent of the number

of devices per synapse. The same result was achieved with

different resistance variability values (not shown). Therefore,

in the following simulations we implemented every synapse

with one binary RRAM. The essential parameter to improve

the network performance is the MW. F1 increases with the

MW and it saturates at F1≈0.96 for MW larger than 50.

Second, we studied the impact of the synaptic variability.

We simulated the proposed application with nine different

combinations of LRS and HRS variability. Fig. 5 (b) plots the

minimal MW required to reach the maximum NN performance

(F1≈0.96) for the nine different cases. A smaller MW is

required for the highest LRS and HRS variability values.

Improving the RRAM synaptic variability is a way to relax

the constraints on the minimal MW required. A high resistance

variability increases the synaptic dynamic range, i.e. the range

of synaptic values that can be reached during the training

phase. The improvement of the NN performance for a large

synaptic dynamic range is due to the fact that, in order to

achieve high performance after the training phase, the majority

of the synaptic weights have to be weak (RRAM in HRS), with

a tail of stronger connections (RRAM in LRS). In order to

reach the maximum NN performance (F1≈0.96), the number

of RRAM cells with resistance higher than 50 kΩ, nOFF, has

to be 50 times more numerous than the number of synapses

with resistance lower than 10 kΩ, nON.

To quantify this result we studied the impact of the SW,

defined in Section II as the ratio between the arithmetic mean

conductance values of LRS and HRS, on the NN performance.

SW increases with both MW and variability. Fig. 6 (a) reports

F1 as a function of the SW for the nine combinations of

resistance variability presented in Fig. 5 (b). For the sake of

clarity, only three combinations are shown, the result is the

same with the nine combinations. The network performance

is independent of the synaptic variability, F1 is defined by the

SW. As expected, F1 increases with the dynamic range and

saturates at 0.96 for SW higher than 100. For a given MW=10,

an increase in both LRS and HRS variability (red curve in Fig.



(a) (b)

Fig. 6. (a) NN performance (F1) as a function of the SW for 3 different
LRS and HRS variability combinations of Fig. 5 (b). Sim. 1: σR,LRS,1 =
σR,HRS,1 = 0.05 ; Sim. 2: σR,LRS,2 = σR,HRS,2 = 0.3 ; Sim. 3: σR,LRS,3 =
0.05 and σR,HRS,3 = 0.3. F1 only depends on the SW. (b) CDF of LRS and
HRS used for the lowest (Sim. 1, blue) and highest (Sim. 2, red) resistance
variability combinations, for MW=10. Variability increases the SW and the
corresponding NN performance (F1).

6 (b)) allows to increase the SW and consequently the F1-score

of about 10%, with respect to the case with low variability

(blue curve in Fig. 6 (b)).

Finally, we linked the experimental data measured on the

4kbit array in Section I with the simulation results. Fig. 7

(Top) reports F1 for the four studied programming conditions

(Fig. 3). It is worth noting that even with weak programming

conditions (B1, F1=0.953) we have a score as good as with

strong ones (C, F1=0.959). Condition B1 works well for

neuromorphic applications whereas it cannot be used in a

memory application due to its high LRS variability. However,

for condition B2, RRAM works neither for memory nor

neuromorphic applications. A decrease in F1 is observed with

standard programming conditions (A) but is still acceptable

(F1=0.946) if we can tolerate a loss of performance with an

increase in endurance. These results confirm that the most

important requirement for the RRAM-based synapses is a large

dynamic range while resistance variability is less critical.

C. Impact of the RRAM-based synapse characteristics on the

learning time

We studied the impact of the RRAM programming condi-

tions on the learning time. The learning time has been defined

as the time at which F1 reaches its maximal value ±1% for a

given RRAM programming condition. Fig. 7 (Bottom) reports

the learning time for the four studied programming conditions.

Learning time is degraded only for the condition B2 with

reduced SW.

D. Impact of the RRAM aging with endurance on the NN

performance

We extracted from the simulations the number of switching

events during the learning phase. For A, B1 and C a synapse

undergoes a maximum of 20 Set and 40 Reset pulses in the

worst case. With an endurance ranging from 102 cycles (C) up

to 106 (A) we could truly consider using these programming

conditions for a real hardware neural network.

Another potential problem is the evolution of the MW and

Fig. 7. (Top) F1 and (Bottom) learning speed as a function of the SW for
the four programming conditions of Fig. 3.

Fig. 8. Impact of the RRAM aging during endurance on F1. Simulations
have been calibrated using the data of Fig. 2 (b).

variability during endurance. We extracted the resistance dis-

tribution during cycling for the condition A (Fig. 2 (b)) and we

used these data to evaluate the impact of RRAM aging on F1.

The results are shown in Fig. 8. We can maintain a constant

F1-score of 0.95 until 105 cycles after which F1 plummets.

The degradation of F1 at 106 cycles is not due to the increase

in resistance variability and decrease of MW but to the dead

cells (broken cells stuck in LRS).

IV. CONCLUSION

In this paper we provide guidelines to program RRAM-

based synapses in a NN for object tracking applications. Mul-

tilevel conductance is not necessary, i.e. binary synapses are

sufficient. We clarified the role played by synaptic variability

and the robustness to variability. To achieve high performance

after the training phase, the majority of the synaptic weights

have to be weak (RRAM in a HRS), with a tail of stronger

connections (RRAM in LRS). Consequently, a large RRAM

dynamic range is required. Resistance variability increases

the dynamic range for a given MW. We introduced a new

parameter, the Synaptic Window, which takes into account

both MW and variability. The network performance was found

only to be sensitive to the value of the SW. A SW > 100 is

required to achieve the maximum NN performance.
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