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Abstract—Recently, Multipath TCP (MPTCP) has been pro-
posed as an alternative transport approach for datacenter
networks. MPTCP provides the ability to split a flow into mul-
tiple paths thus providing better performance and resilierce to
failures. Usually, MPTCP is combined with flow-based Equal-
Cost Multi-Path Routing (ECMP), which uses random hashing
to split the MPTCP subflows over different paths. However,
random hashing can be suboptimal as distinct subflows may
end up using the same paths, while other available paths renra
unutilized.

In this paper, we explore an MPTCP-aware SDN con-
troller that facilitates an alternative routing mechanism for
the MPTCP subflows. The controller uses packet inspection
to provide deterministic subflow assignment to paths. Using
the controller, we show that MPTCP can deliver significantly
improved performance when connections are not limited by
the access links of hosts. To lessen the effect of throughput
limitation due to access links, we also investigate the usag
of multiple interfaces at the hosts. We demonstrate, using

However, random hashing works suboptimally as subflows
may end up using the same paths, while available paths
remain unutilized. For example, with two subflows and two
available paths, there is#% probability to assign the two
subflows to the same path. Another limitation is that the
available path diversity may not be well-exploited as only
shortest paths are considered.

In this paper, we explore an MPTCP-aware Software-
Defined Networking (SDN) controller for routing the
MPTCP subflows. The use of an SDN controller provides an
ideal environment for implementing more efficient routing
mechanisms for the subflows, as the controller maintains
a global view of the network [9]. The controller can cal-
culate various sets of paths between two hosts, such as
shortest pathsk-shortest pathsi-edge-disjoint paths, etc.,
thus better exploiting the available path diversity in aegiv

our modification of the MPTCP Linux Kernel, that using
multiple subflows per pair of IP addresses can yield improved
performance in multi-interface settings.

Keywords-Datacenters, Multipath-TCP, MPTCP-aware SDN.

datacenter topology.

It is tempting to have more subflows per MPTCP connec-
tion to better exploit path diversity. However, the creatio
and maintenance of a large number of subflows imposes
extra overheads to the end hosts, which require largerisuffe
to cope with reordering, and higher CPU utilization due to
the increased usage of the MPTCP scheduler. More impor-

Modern datacenters are responsible for executing datantly however, in an SDN environment a larger number
and computation intensive applications that often geeeratof subflows imposes extra overheads to the network, by
large flows. Providing high throughput to such applicationsrequiring a larger number of rules to be installed at the
and avoiding performance degradation due to bottleneckswitches and by increasing the load at the SDN controller
created inside the network is of paramount importance. Tgsee discussion in Secti¢n]VI). It is thus desirable to have
this end, earlier studies have proposed different datacentas few subflows as possible without sacrificing performance.
topologies such as FatTree [1], BCubé [2], VL2 [3] and Jel-Given a set of paths, the proposed SDN controller can better
lyfish [4], which aim to provide high aggregate throughput.utilize these paths by deterministically assigning MPTCP
Furthermore, Multipath TCP (MPTCP)[][5] was recently subflows to them. As we show in this paper, this can result
proposed as a new transport approach for datacenters [6h near-optimal performance without the need for as many
MPTCP outperforms regular TCP in terms of performancesubflows as in random-based approaches.
and robustness. Intuitively, this is because MPTCP is able t To facilitate deterministic assignment of subflows to paths
strip data to multiple paths inside the network, by creatingour controller performs packet inspection to extract the
multiple subflows, while offering load balancing by sending MPTCP options and stores information regarding MPTCP
more data to the least congested paths [7]. connections. We compare this MPTCP-aware approach to

A key aspect that affects MPTCP performance is the routthe random-based approach used in ECMP. We find that
ing mechanism of the subflows. Currently, the most promi-when MPTCP connections are not limited by the host access
nent and widely deployed routing mechanism in datacenternks, the MPTCP-aware approach provides significant per-
is a flow-based variant of Equal-Cost Multi-Path Routingformance gains, and is able to achieve near-optimal perfor-
(ECMP) [8]. Flow-based ECMP uses random hashing tanance with fewer subflows. When MPTCP connections are
uniformly split the subflows over different shortest paths.limited by the host access links, the MPTCP-aware and the
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random-based approaches perform similarly. This is becaus Detal et al. [13] demonstrated the performance improve-
the bottlenecks lie at the endpoints of the connections, anthents of a deterministic routing approach in datacenters.
the better exploitation of paths inside the network yields n Specifically, the authors proposed a routing approach where
benefits. To improve performance in such cases, we explorend hosts are able to select packet header values in order
the use of multiple interfaces at the hosts in conjunctidhwi to force the selection of a specific path. To achieve this,
our MPTCP-aware approach. Using a dual-homed varianthe authors implemented a user space extension that enables
of the Jellyfish topology [4] and our MPTCP Linux Kernel end hosts to select TCP header values that determine the
modification [10], we demonstrate that multiple subflows perdesired path. Furthermore, to facilitate the deterministi
pair of IP addresses can significantly improve performanceapproach the authors implemented a new path selection
Our modification has been included in the latest versiormechanism on switches (instead of the hash function in
(v0.90) of the MPTCP Linux Kerne[[7]. Further, we make typical flow-based ECMP). Taken altogether, the approach
our SDN controller publicly available [11]. in [13] requires additional modifications on end hosts and
The rest of the paper is organized as follows. In Sectiorswitches. On the contrary, our approach can be deployed
[Mwe review the most relevant earlier work and in Sectionon typical OpenFlow-enabled networks by using our SDN
[Mwe provide the necessary MPTCP background. In Sectiorcontroller [11] without the need of extra modifications on
[[Viwe present the design of our system, and in Sedfibn V weend hosts or switches.
perform our evaluation. A discussion follows in Section VI, Agache et al.[[14] study the use of multiple host inter-

and we conclude in Sectian VII. faces in datacenters. The authors do not use multihoming
(hosts being connected to more than one switch) because
Il. RELATED WORK it increases the overall costs due to extra switches. ldstea

the authors proposed GRIN, a datacenter architecture based

Raiciu et al. [6] demonstrated that the use of MPTCPon VL2 [3], which interconnects free interfaces between
in datacenters can be beneficial in terms of performanchosts. Intuitively, a host in GRIN can utilize another hgst’
and robustness. The authors used flow-based ECMP to roulisterface when that interface is not being utilized, thus
the MPTCP subflows, and proposed using a dual-homedpportunistically increasing its bandwidth. By design,I8R
variant of the FatTree topology to improve performance. Inprovides significant performance improvements only when
this paper, we consider an MPTCP-aware SDN approach considerable percentage of hosts are not heavily utilizin
for routing the subflows, which can exploit more efficiently their interfaces. On the other hand, we demonstrate that our
the available paths. Furthermore, using our modification otlual-homed solution (DH-Jellyfish) can achieve significant
the MPTCP Linux Kernel at the hosts, we explore a dual-performance improvements when all hosts are fully utitizin
homed variant of the Jellyfish topology that provides moretheir interfaces. Note that our approach can deliver the
path diversity than FatTree. full merits of multihoming without increasing costs (same

There have been a few recent studies demonstrating theumber of switches).
merits of integrating MPTCP with SDN. The most relevant
to our work is the one by Sandri et al. [12], who proposed ll. MPTCP BACKGROUND
an SDN controller that distributes subflows belonging to the In this section we present the required MPTCP back-
same MPTCP connection over distinct disjoint paths. Theground for the design of our SDN controller. More infor-
controller requires storing the network topology for eachmation about MPTCP can be found A [5].
MPTCP connection, and cannot exploit settings where hosts MPTCP presents a regular TCP interface to applications,
have multiple interfaces. Specifically, the controlleratee  while in fact it spreads data across several subflows. Each
each subflow between two hosts the same, irrespectivelPTCP connection has a unique identifier, calleden,
of the subflow’s source-destination IP addresses (intesfac  which is used for the association/authentication of new
Our controller, does not store a topology for each MPTCPsubflows. Fundamentally, a subflow is established similarly
connection, but only a set of paths, which is a significantlyto a TCP connection with the difference that the handshake
smaller subset of the topology. More importantly, our con-contains MPTCP-specific options such as NIAPABLE
troller is designed for multi-interface settings, where weand MP_JOIN. The MP.CAPABLE option is used only
show, using our MPTCP Linux Kernel modification, that the during the initial subflow to verify whether the remote host
creation of multiple subflows per pair of IP addresses carns MPTCP-enabled. The MBOIN option is used for the
significantly improve performance. Further, Sandri etB2][ establishment of each additional subflow and its associatio
considered only small toy topologies where host acceswith the MPTCP connection.
links were not bottlenecks. Here, we focus on datacenter Figure[1 depicts the subflow establishment of an MPTCP
topologies that have specific structural characterisaosl  connection. For the initial subflow, the hosts perform a
explore the usage of multiple interfaces in cases wherdandshake with the MRCAPABLE option that contains
access links can be bottlenecks. randomly generated keys. These keys are used for the
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Below, we provide a detailed description of the topology and
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[ACK] MP_JOIN { receiver's HMAC } A Top0|ogy

The topology plays a major role in the performance of
Figure 1: Subflow establishment in MPTCP. a datacenter. In this paper, we consider the FatTrée [1]
and Jellyfish[[4] topologies. Both topologies are built gsin
commodity switches with uniform link capacities, but they
calculation of the token (cryptographic hash of the keys)have some fundamental differences.

For the establishment of additional SUbﬂOWS, the hosts FatTree is probab|ythe most popumctureddatacenter
perform a handshake with the MFOIN option as follows.  topology, aiming to deliver high aggregate throughput ehil
The sender sends a SYN packet with the token and &eeping costs low. Considering /aary FatTree topology
random nonce. (The MEAPABLE and MPJOIN SYN  with three levels of switches, each one consistingkof
packets are the subflow setup packets). Upon reception forts, the topology interconnects /4 hosts. There aré

the packet, the receiver responds with a SYN+ACK packehods, each containing two layers iof2 switches (edge and
containing its own nonce and a calculated HMAC code ofaggregation levels). Each switch at the edge level connects
the sender’s nonce. Finally, the sender sends an ACK packgt/a hosts. For hosts that reside in different pods there are

that contains the calculated HMAC of the receiver's nonce;2 /4 shortest paths anél/2 edge-disjoint paths. Figufd 2
The HMACs are calculated using the keys exchanged duringhows a FatTree topology with = 4.

the MP_CAPABLE handshake, and the nonces exchanged in Jellyfish is the most prominentandomly constructed

the MP_JOIN handshakes. topology. It can hold more hosts than FatTree while main-

taining the same performande [4]. It also provides the flexi-
bility to define the number of switches, ports per switch and
hosts at will. Each host has one interface that is conneoted t

IV. SYSTEM OVERVIEW

MPTCP-aware ! = one switch. Hqsts are assumed uniformly distrib_uted among
Conirol Plane Link SN Contraller I < warding Mo the switches, i.e., the number of hosts per switcl 45|,
B3 lane Hink Il A N whereN is the total number of hosts arftithe total number

Core w w of switches. As a result, all switches have a similar number
W of free switch ports devoted for the core of the network. To

Aggre‘_;aﬁonT = e ‘ construct the core, pairs of switches are connected at mndo
Edge & aa F = Switch until all ports in all switches are used. Since Jellyfish is a
o g AN ANV AN 5? ;E. - random graph, there is no prior knowledge of the available
 edo o o1 oz Pod s shortest and edge-disjoint paths between hosts as in [eatTre

_ . Dual-homed JellyfishWe also propose and explore a
Figure 2: System Overview dual-homed variant of Jellyfish (DH-Jellyfish). DH-Jellyfis
uses the same equipment as Jellyfish but each host has two
Figure[2 provides a general overview of the system wenterfaces. The construction of DH-Jellyfish is the samdwit
consider. The transport protocol is MPTCP with the extraJellyfish with the following addition. For the second inter-
modification described in Sectidn TM-C. The system takedace at each host, we randomly select a switch and connect
as input an underlying datacenter topology, where eackhe host, given that: (i) the host is not already connected
switch is connected to the SDN controller through controlto the switch; and (ii) the switch has not been already
plane links—for clarity, only four such links are shown. connected(%] times. The second constraint ensures that
The controller is responsible for the calculation of pathswe uniformly connect the extra interfaces to the switches.
(consisting of data plane links), and the installation af th DH-Jellyfish sacrifices some path diversity in the core (as
appropriate OpenFlow_[15] rules to the switches. When awitches have fewer available ports to interconnect) iffav
packet arrives at a switch, the rules tell the switch where t®f increased bandwidth at the endpoints. As we show, DH-
forward the packet. When a packet of a subflow arrives adellyfish can offer significant performance improvements
a switch and a rule does not exist, the packet is redirectedompared to Jellyfish in our MPTCP-aware approach.



B. Controller to match a subflow to an existing MPTCP connection (if
We have based our controller implementation on Flood!here is one). The goal is to avoid assigning more than one
light [L6]. It consists of two main components: the Topology Subflows of the same connection to a single path. If the
Manager (TM) and the Forwarding Module (FM). The TM number of subflows is larger than the number of available
calculates and provides sets of paths between host ingsrfacPaths, the subflows are deterministically assigned to paths
to the FM. The FM is responsible for the selection ofin @ uniform manner.
paths and the installation of the appropriate OpenFlowsrule The FM maintains two hashtablegiathCache and
to the switches. These rules consist of header values tolows. pathCache is used to cache sets of paths be-
match packets and an associated action to apply to matchifyeen source-destination IP addresses, which are obtained
packets. Specifically, the matching header values in ow cady querying the TM. Specifically, when a new subflow setup
are source-destination IP addresses and port numberd) whi@acket arrives, the FM first queripathCache to see if a set
together identify packets belonging to the same subflow. Th&f paths corresponding to the source-destination IP adeses
action is the port of the switch to forward the matching Of the subflow exists. If it exists, the FM loads this set of

packets. Below, we describe the TM and FM components i?aths to theflows hashtable and maps it to the requested
detail. MPTCP connection. Otherwise, the FM queries the TM and
1) Topology Manager (TM):The TM has an up-to-date Stores the obtained set of paths to bgithCache and
global view of the topology. This is obtained by messagesflows. The entries inpathCache are set to expire every
exchanged between the SDN controller and the switche€0 minutes, so that paths can get refreshed by querying the
(see the LinkDiscoveryManager modulein[16]). The TM is TM. This is a reasonable time interval in which datacenter
queried by the FM whenever a set of paths between sourcéopologies can be considered almost static. Indeed, Gill et
destination interfaces (IP addresses) is needed. The T™ us@!l- [17] showed that switches in datacenters have median
the Depth First Search (DFS) graph traversal algorithm andime between failures in the order of multiple hours. In
finds all available paths, whose lengths do not exceed &ase of failures within thé0 minutes interval, failed paths
certain hop-count threshold. Subsequently, the TM filtergvill not be utilized but, MPTCP will be able to achieve
the obtained set of paths to extract one of the followingacceptable performance as it will only send traffic through
subsets, which is returned to the FM: @hortest paths the good paths.
which contains all the paths that have the same hop-count The flows hashtable contains an entry for each MPTCP
as the shortest path; (ik-shortest pathswhich contains the connection. Each such entry consists of subentries for each
first k paths in increasing hop-count order; and (ifedge- pair of source-destination IP addresses (interfaces) bged
disjoint paths which contains the first paths that do not the subflows of the connection. Each such subentry, called
share any edges in increasing hop-count order. IPentry, caches the obtained set of paths for a source-
The selection of a good set of paths is crucial for thedestination IP address pair, as well as the current assighme
performance of MPTCP. The set of paths should exploit thef subflows to paths in the set. Using this information,
available path redundancy in the topology, while being aghe FM is able to keep track of the available paths it can
small as possible. If these two conditions are met, thenavith choose from for a new subflow. The entries for an MPTCP
deterministic subflow assignment to paths we should be ableonnection are expired frorfilows after 5 seconds, as the
to maximize MPTCP’s performance with a small number ofcached information is useful only until the establishment
subflows. As mentioned, besides decreasing overheads at thé all the connection’s subflows, which happens at the
end hosts, a small number of subflows is also desirable as lreginning of the connectionl[7].
will minimize the number of rules installed at the switches Algorithm [1 shows the detailed pseudocode of the
and the load (redirections of subflow setup packets) to thd/PTCP-aware FM. When the connection setup packet of
EM. a new subflow arrives at the first switch of the network,
2) Forwarding Module (FM):The FM can perform either the switch forwards the packet to the FM as there are
deterministic or random assignment of subflows to paths. Imo forwarding rules installed yet at the switches for the
the latter, the FM randomly selects a path from the obtaineghackets of the subflow. Upon reception of the packet, the
set of paths for the source-destination IP addresses of tHeM extracts the source-destination IP addresgé%) and
subflow, and assigns the subflow to the path. If the seport numbersgorts) (lines 1,2). It also extracts the MPTCP
of paths is the set of shortest paths, then this approach iptions (line 3), and distinguishes the cases IRPABLE
equivalent to flow-based ECMP. and MP_JOIN. If the option is MPCAPABLE (initial
In the deterministic approach, each subflow is assigned teubflow), the FM stores thePs in a primaryl Ps hashtable
a different path, which belongs to the obtained set of pathglines 4,5). It then finds the shortest path between tlid¢se
for the source-destination IP addresses of the subflow. Thisy queryingpathCache or the TM, and assigns this path
approach isMPTCP-awarebecause it requires the FM to to the subflow (lines 6-8). The FM always assigns to the
extract the MPTCP options from the subflow setup packetitial subflow the shortest path and keeps track offiEs



Algorithm 1 Forwarding Module pseudocode

Input: p is the subflow setup packet received at the controller
1: IPs «+ Extract source/destination IP addresses fiom

path, the FM installs forwarding rules for the subflow, which
is identified by itsIPs and ports, on all the switches that
belong to the assigned path (line 30).

2: ports + Extract source/destination port numbers frpm We note that the switches delete a rule from their table
3: type < Extract MPTCP option fromp if thev d t . ket tching that rule f

4 if type —— MP_CAPABLE then if they do not receive a packet matching that rule for a
5 StoreIPs in primaryl Ps specified time interval. The default value of this interval i

6:  QuerypathCache/TM to find the shortest path fof Ps Floodlight is 5 second$ [16]. We also note that the usage of
7. If TM queried, updatepathCache pathCache and flows significantly reduces the processing
8 path + shortest path time of the subflow setup packets at the controller. By
9: if type == M P_JOIN then

processing time we mean the time interval between the

10: token < Extract MPTCP token fromp .

11:  if token does not exist inflows then _receptlo_n of a subflow setup packet at the contr(_)ller a_nd the
12: Create a newentry in flows using thetoken installation of the corresponding rules at the switcheds Th
13: Query pathCache/TM to get set of paths fof Ps time includes all the required processing from the FM and
14: If TM queried, updatepathCache the TM if required. In our evaluation, the average procegsin
15: Create a new Pentry In eniry usingI.Ps time for subflow setup packets that do not require querying
16: path + Get next path fronY Pentry the TM i d1 280 f t kets that
17 Updatel Pentry e TM is aroundims vs.280ms for setup packets tha
18:  else require querying the TM. We note that the path calculation
19: entry < flows[token) in our TM implementation is currently not performance-
20: if IPs exists inentry then optimal. Specifically, our TM calculates all possible paths
2L IPentry + entry[IPs) between two hosts within a given hop-count threshold,
22: path <+ Get next path fron¥ Pentry d f th lculated path b d B
o3 Updatel Pentry and many of the calculated paths may never be used. By
24: else optimizing the path calculation process, the processimg ti

25: QuerypathCache/TM to get set of paths fof Ps  for subflow setup packets that require querying the TM can
26: |Cf:TM que“ev(?lllgpdat@qthctlche aIp decrease. Such optimization however is beyond the scope of
27: reate a ne entry In entry using I Ps

28: path + Get next path froml Pentry the present work.

29: Updatel Pentry C. An improved MPTCP path manager

30: Install rules for thepath to the switches usingPs andports

The component responsible for the creation of subflows
in the MPTCP Linux Kernel is called path manager. The
implementation offers two path managefsilmesh and

in primaryl Ps—the reason for this is to avoid assigning ndiffports[7]. However, prior to our contribution these path
the same path to additional subflows of the connection wittmanagers did not offer the functionality of creating more
the samel Ps. than one subflow per pair of source-destination interfaces
If the option is MP JOIN (additional subflow), the FM (IP addresses), when MPTCP uses multiple interfaces at the
extracts the token from the packet, which identifies thesource and/or destination. This limitation was preventing
existing MPTCP connection (lines 9,10). If the token doesMPTCP from exploiting multiple paths between the same
not exist in flows, which occurs only if this is the first pair of IP addresses in multi-interface settings.
additional subflow, the FM creates a newtry in flows Motivated by the above observation, we have extended
using the token (lines 11,12). Subsequently, the FM queriethe fullmeshpath manager, which now offers the flexibility
pathCache or the TM to get a set of paths for tHé”s, and  to arbitrarily change the number of subflows per pair of IP
creates a new Pentry in entry for theseIPs (lines 13-  addresses in multi-interface settings. Our patch [10] leesib
15). ThisI Pentry stores the obtained set of paths. One ofincluded in the latest release (v0.90) of the MPTCP Linux
these paths is then assigned to the subflow, and ety ~ Kernel [7]. In Sectior V=B, we demonstrate the merits of
is updated to indicate this assignment (lines 16,17). If théhe extendedullmeshin the DH-Jellyfish topology.
token exists inflows, the correspondingntry is retrieved
(line 19), and the FM checks if théPs exist in entry
(line 20). If they exist, the FM retrieves the correspondingA- Setup
1 Pentry, from where the next available path is assigned to For our evaluation we used the Mininet emulator [18] and
the subflow (lines 21,22). The FM then updatesfifentry  the MPTCP Linux Kernel Implementation v.0.90. For the
as before (line 23). If thd Ps do not exist inentry, the  emulation of the switches we used Open vSwitch [19]. The
FM queriespathCache or the TM to get a set of paths for topologies, traffic patterns, and subflow routing mechasism
the I Ps, and creates a correspondinf§entry in entry as  used are described below.
before (lines 25-27). It then assigns a path to the subflow Topologies.We emulated an 8-ary FatTree topology hav-
and updated Pentry (lines 28,29). After the selection of a ing 128 hosts and 80 switches (see Hig. 2 for a 4-ary

V. EVALUATION



M-Disjoint(4) R-Shortest(16) M-Disjoint(8) M-Shortest(8) R-Disjoint(8) R-Shortes}(8
T

Subflows ~ PT uT PT uT Subflows PT uT PT uT PT U PT uT
1 48.5% 45.1% 49.1%  44.1% 1 67.7% 452% 66.7%  482%  49.5%  44.3%  54.2%  45.3%
2 69.7% 58./% 67.1% 55.8% 2 83.6% 585% 81.9% 60.5% 66.1% 58.8% 69./% 5/.3%
3 82.7% 63.9% 77.7% 60.5% 3 03.1% 59.5% 89.8% 62.4% 77.1% 58.9% 795% 61.2%
4 90.0% 64.3% 83.8% 62.4% 4 056% 66.1% 93.6% 63.0% B81.9% 63.6% 84.8% 62.0%
5 00.5% 65.0% 87.8% 63.2% 5 096.0% 66./% 95.1% 63.2% 86.2% 63.6% 874% 62.6%
6 00.8% 65.4% 89.9% 64.1% 6 96.0% 67.2% 954%  63.4% 88.4% 63.5% 89.9%  63.0%
Table I: Average MPTCP throughput in Table 1I: Average MPTCP throughput in Jellyfish (% of optimal).
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Figure 3: Distribution of MPTCP throughput.

FatTree). By construction, in this topology there are 16worst throughput to the best throughput. The latter metric
shortest paths and 4 edge-disjoint paths between hosts thatovides details about the performance of the slowest con-
reside in different pods. We also emulated Jellyfish and DHnection. This metric is important in datacenters where jobs
Jellyfish topologies, consisting of 120 hosts and 60 swi#checreate multiple collaborating workers because the overall
each. In all cases, all links have the same capacity. performance is dictated by the performance of the slowest

Traffic patterns. We considered two different types of worker. All metrics are in the form of percentages compared
traffic patterns: (i) the unconstraint traffic matrix (UThda  to the optimal throughput, which is the capacity of the host
(i) the permutation traffic matrix (PT). In both cases, we interface in FatTree and Jellyfish, and the sum of capacities
randomly selectV source-destination pairs of hosts, whereof the host interfaces in DH-Jellyfish. For example, if we
N is the number of hosts in the topology. Then, we establistassume uniform link capacities of 1Gb/s in the network
long-lived MPTCP connections between all selected pair¢opologies, then the optimal throughput is 1Gb/s for the
of hosts—all connections are initiated at the same time. IrFatTree/Jellyfish topology and 2Gb/s for the DH-Jellyfish
UT, a host can participate in any number of connectionsiopology. We say that the achieved throughputnisar-
meaning that the host access links can be bottlenecks. In P@ptimal if it is not smaller than 90% of the optimal. All
we have the additional selection constraint that no host caresults are averaged over 10 different runs.

participate in more than one connection. This ensures that FatTree. Table[]l shows the average MPTCP throughputin
the host access links are not bottlenecks for the connegtionthe FatTree topology with the MPTCP-aware (M) and ran-
which can share links only inside the core of the topology.dom (R) approaches. The random approach uses all available
Subflow routing. For subflow routing we consider both (16) shortest paths between hosts, akin to flow-based ECMP.
the MPTCP-aware approach (depicted as M) as well aghe MPTCP-aware approach uses all (4) edge-disjoint paths.
the random-based approach (depicted as R), which amor the PT, the MPTCP-aware approach requires only 4
implemented in our FM. We also consider the cases whergubflows to achieve near-optimal performance, while the
the source-destination paths are shortest pathshortest random approach requires 6 subflows. That is, the random
paths, andi-edge-disjoint paths. approach requires 50% more subflows and 300% more paths
to achieve near-optimal performance. Figure 3(a) shows the
distribution of the MPTCP throughput with the PT. The
We use the following evaluation metrics: (i) the aver- worst throughput in the MPTCP-aware approach with 4 sub-
age throughput over all MPTCP connections; and (ii) theflows is 57% of the optimal, while in the random approach
distribution of the MPTCP throughput, represented by thewith the same number of subflows is 37%. This corresponds
ranking of the individual connection throughputs, from theto 54% improvement in the MPTCP-aware approach. By

B. Results



further increasing the number of subflows, the randot
approach better utilizes the available shortest paths @nd
performance becomes similar to that of the MPTCP-awal
approach. For the UT, several MPTCP connections ha
their throughput limited by the host access links. Becaus
of this, the better exploitation of distinct paths inside th
core of the topology yields no significant benefits. In thit
case, the MPTCP-aware and the random-based approac
perform similarly.
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Jellyfish. Table[dl shows the average MPTCP throughput
in Jellyfish. We consider the case where both MPTCPFigure 4: (a) MPTCP throughput vs. number of subflows
aware and random-based approaches use 8-edge-disjop#r pair of IP addresses in DH-Jellyfish; and (b) MPTCP-
paths, as well as the case where both approaches use @ware vs. random-based approach in DH-Jellyfish and Jel-
shortest paths. Figuké 3(b) shows the corresponding throug lyfish.
put distributions when the traffic pattern is the PT and
8-edge-disjoint paths are used—a similar behaviour holds
for 8-shortest paths (Fid.] 3(c)). Our observations with thepair of addresses, we used our modification of the MPTCP
PT are the following. First, with only 4 subflows, the Linux Kernel described in Sectidn TVIC. We observe that
MPTCP-aware approach achieves near-optimal performanaeith 2 subflows per pair of addressesx 4 = 8 subflows
in both cases, while the random approach always performis total) the throughput can be improved by up to 50%
worse (Table[dl). Second, with 4 subflows and 8-edge-compared to the case where 1 subflow per pair of addresses
disjoint paths, the worst throughput in the MPTCP-awareis used { x 4 = 4 subflows in total). This is because we
approach is 77% of the optimal, whereas in the randomexploit the path redundancy that exists between each pair
based approach is only 28% (Fig. 3(b)). This corresponds tof IP addresses. We observe no additional gains by further
175% improvement in the MPTCP-aware approach. Thirdjncreasing the number of subflows.
we note that significant performance benefits can also be Figure[4(b) juxtaposes the performance of the MPTCP-
achieved if k-shortest paths are used. Specifically, willy on aware and random-based approaches in DH-Jellyfish and
4 subflows and 8-shortest paths, the worst throughput idellyfish. The y-axis in the plot is the throughput of each
the MPTCP-aware approach is 60% of the optimal, whileMPTCP connection normalized by the capacity of a single
in the random-based approach is only 32% (Figl 3(c))interface, which is the optimal throughput in Jellyfish. In
This corresponds to 88% improvement in the MPTCP-awarall cases, we use 8-edge-disjoint paths between source-
approach. Finally, we observe that the performance gaas adestination IP addresses and 8 subflows per MPTCP connec-
more pronounced than in FatTree (cf. Fify. 3(a) vs. Hig. 3(b))tion. The traffic pattern is the UT. In DH-Jellyfish, subflows
This is because Jellyfish provides more path diversity, Wwhic are split over the 4 pairs of IP addresses as explained earlie
we exploit (e.g., by using 8-edge-disjoint paths). HoweverWe observe that the MPTCP-aware and the random-based
similar to FatTree, when the traffic pattern is the UT, theapproaches perform similarly in Jellyfish, as expected. In
MPTCP-aware and the random-based approaches perforH-Jellyfish, both approaches perform better. However, the
similarly (Table[T). best of the two is the MPTCP-aware approach, which im-

DH-Jellyfish. As can be seen in Tabl€l],1l, the averageproves the average throughput by 65% compared to Jellyfish.
throughput with the UT is smaller than with the PT, in all
cases. This is expected since connections in the UT can
share access links that become bottlenecks. As explaimed, t We have demonstrated that a deterministic subflow routing
mitigate this effect, hosts in DH-Jellyfish have one addiélo mechanism requires 33% and 50% less subflows than the
interface that can be used by MPTCP to send additionalandom approach to achieve equivalent performance for the
subflows. Note that in this dual-interface setting, if a seur FatTree and Jellyfish topologies, respectively (see Tdbles
has the interfaces,b and the destination the interfaces[). This reduction gives a significant boost to MPTCP’s
c,d, the MPTCP connection will send subflows over all deployment potential in large scale SDN'’s because it resluce
pairs of interfaces{a, ¢}, {a,d}, {b, ¢}, {b,d}. Thatis, each the following: i) the number of installed rules at OpenFlow
connection uses 4 pairs of source-destination IP addresseswitches, and ii) the overall load at the SDN controller.

Figure[4(a) shows the distribution of the MPTCP through-Below, we describe these two factors in more detail.
put with 1, 2, 3 and 4 subflows per pair of IP addresses. The (i) Rules on OpenFlow switchesin large scale SDNs a
results correspond to the MPTCP-aware approach, whictarge number of MPTCP subflows raises scalability concerns
uses 8-edge-disjoint paths between source-destination Ifecause OpenFlow switches can approximately hold mid
addresses. To be able to send more than 1 subflow péive figures of rules in their TCAM (64K for commercial
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switches in[[20]). Considering a FatTree-based network wit investigate ways for providing deterministic MPTCP subflow
N hosts there ar©(N?) possible source-destination pairs. routing using a proactive SDN environment.

The 33% reduction of the number of subflows (4 instead of
6 subflows per MPTCP connection) translates to an order
of 2N?2 fewer subflows in the network. For example, if [1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable,
N = 100 and there arel instead of6 MPTCP subflows Commodity Data Center Network Architecture,” iIACM
between each source-destination pair, th(_an there is a totafz] g!GGCu%"\AgI_ 2L0u0'8|.:). Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
of 100 x 99 x 2 = 19800 fewer subflows in the network Y. Zhang’ and S. Lu, “BCube: A H|gh Performance’ Server-
(39600 instead of 59400). Moreover, considering a Jellyfish centric Network Architecture for Modular Data Centers,” in
based network withiV hosts the reduction is 50% (3 instead ACM SIGCOMM 20089.

: ; [3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
of 6 subflows per MPTCP connection), which translates to P. Lahiri, D. A. Maltz, P. Patel, and S, Sengupta, “VL2:
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