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Abstract—Recently, Multipath TCP (MPTCP) has been pro-
posed as an alternative transport approach for datacenter
networks. MPTCP provides the ability to split a flow into mul-
tiple paths thus providing better performance and resilience to
failures. Usually, MPTCP is combined with flow-based Equal-
Cost Multi-Path Routing (ECMP), which uses random hashing
to split the MPTCP subflows over different paths. However,
random hashing can be suboptimal as distinct subflows may
end up using the same paths, while other available paths remain
unutilized.

In this paper, we explore an MPTCP-aware SDN con-
troller that facilitates an alternative routing mechanism for
the MPTCP subflows. The controller uses packet inspection
to provide deterministic subflow assignment to paths. Using
the controller, we show that MPTCP can deliver significantly
improved performance when connections are not limited by
the access links of hosts. To lessen the effect of throughput
limitation due to access links, we also investigate the usage
of multiple interfaces at the hosts. We demonstrate, using
our modification of the MPTCP Linux Kernel, that using
multiple subflows per pair of IP addresses can yield improved
performance in multi-interface settings.

Keywords-Datacenters, Multipath-TCP, MPTCP-aware SDN.

I. I NTRODUCTION

Modern datacenters are responsible for executing data
and computation intensive applications that often generate
large flows. Providing high throughput to such applications
and avoiding performance degradation due to bottlenecks
created inside the network is of paramount importance. To
this end, earlier studies have proposed different datacenter
topologies such as FatTree [1], BCube [2], VL2 [3] and Jel-
lyfish [4], which aim to provide high aggregate throughput.
Furthermore, Multipath TCP (MPTCP) [5] was recently
proposed as a new transport approach for datacenters [6].
MPTCP outperforms regular TCP in terms of performance
and robustness. Intuitively, this is because MPTCP is able to
strip data to multiple paths inside the network, by creating
multiple subflows, while offering load balancing by sending
more data to the least congested paths [7].

A key aspect that affects MPTCP performance is the rout-
ing mechanism of the subflows. Currently, the most promi-
nent and widely deployed routing mechanism in datacenters
is a flow-based variant of Equal-Cost Multi-Path Routing
(ECMP) [8]. Flow-based ECMP uses random hashing to
uniformly split the subflows over different shortest paths.

However, random hashing works suboptimally as subflows
may end up using the same paths, while available paths
remain unutilized. For example, with two subflows and two
available paths, there is a50% probability to assign the two
subflows to the same path. Another limitation is that the
available path diversity may not be well-exploited as only
shortest paths are considered.

In this paper, we explore an MPTCP-aware Software-
Defined Networking (SDN) controller for routing the
MPTCP subflows. The use of an SDN controller provides an
ideal environment for implementing more efficient routing
mechanisms for the subflows, as the controller maintains
a global view of the network [9]. The controller can cal-
culate various sets of paths between two hosts, such as
shortest paths,k-shortest paths,k-edge-disjoint paths, etc.,
thus better exploiting the available path diversity in a given
datacenter topology.

It is tempting to have more subflows per MPTCP connec-
tion to better exploit path diversity. However, the creation
and maintenance of a large number of subflows imposes
extra overheads to the end hosts, which require larger buffers
to cope with reordering, and higher CPU utilization due to
the increased usage of the MPTCP scheduler. More impor-
tantly however, in an SDN environment a larger number
of subflows imposes extra overheads to the network, by
requiring a larger number of rules to be installed at the
switches and by increasing the load at the SDN controller
(see discussion in Section VI). It is thus desirable to have
as few subflows as possible without sacrificing performance.
Given a set of paths, the proposed SDN controller can better
utilize these paths by deterministically assigning MPTCP
subflows to them. As we show in this paper, this can result
in near-optimal performance without the need for as many
subflows as in random-based approaches.

To facilitate deterministic assignment of subflows to paths,
our controller performs packet inspection to extract the
MPTCP options and stores information regarding MPTCP
connections. We compare this MPTCP-aware approach to
the random-based approach used in ECMP. We find that
when MPTCP connections are not limited by the host access
links, the MPTCP-aware approach provides significant per-
formance gains, and is able to achieve near-optimal perfor-
mance with fewer subflows. When MPTCP connections are
limited by the host access links, the MPTCP-aware and the
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random-based approaches perform similarly. This is because
the bottlenecks lie at the endpoints of the connections, and
the better exploitation of paths inside the network yields no
benefits. To improve performance in such cases, we explore
the use of multiple interfaces at the hosts in conjunction with
our MPTCP-aware approach. Using a dual-homed variant
of the Jellyfish topology [4] and our MPTCP Linux Kernel
modification [10], we demonstrate that multiple subflows per
pair of IP addresses can significantly improve performance.
Our modification has been included in the latest version
(v0.90) of the MPTCP Linux Kernel [7]. Further, we make
our SDN controller publicly available [11].

The rest of the paper is organized as follows. In Section
II we review the most relevant earlier work and in Section
III we provide the necessary MPTCP background. In Section
IV we present the design of our system, and in Section V we
perform our evaluation. A discussion follows in Section VI,
and we conclude in Section VII.

II. RELATED WORK

Raiciu et al. [6] demonstrated that the use of MPTCP
in datacenters can be beneficial in terms of performance
and robustness. The authors used flow-based ECMP to route
the MPTCP subflows, and proposed using a dual-homed
variant of the FatTree topology to improve performance. In
this paper, we consider an MPTCP-aware SDN approach
for routing the subflows, which can exploit more efficiently
the available paths. Furthermore, using our modification of
the MPTCP Linux Kernel at the hosts, we explore a dual-
homed variant of the Jellyfish topology that provides more
path diversity than FatTree.

There have been a few recent studies demonstrating the
merits of integrating MPTCP with SDN. The most relevant
to our work is the one by Sandri et al. [12], who proposed
an SDN controller that distributes subflows belonging to the
same MPTCP connection over distinct disjoint paths. The
controller requires storing the network topology for each
MPTCP connection, and cannot exploit settings where hosts
have multiple interfaces. Specifically, the controller treats
each subflow between two hosts the same, irrespectively
of the subflow’s source-destination IP addresses (interfaces).
Our controller, does not store a topology for each MPTCP
connection, but only a set of paths, which is a significantly
smaller subset of the topology. More importantly, our con-
troller is designed for multi-interface settings, where we
show, using our MPTCP Linux Kernel modification, that the
creation of multiple subflows per pair of IP addresses can
significantly improve performance. Further, Sandri et al. [12]
considered only small toy topologies where host access
links were not bottlenecks. Here, we focus on datacenter
topologies that have specific structural characteristics,and
explore the usage of multiple interfaces in cases where
access links can be bottlenecks.

Detal et al. [13] demonstrated the performance improve-
ments of a deterministic routing approach in datacenters.
Specifically, the authors proposed a routing approach where
end hosts are able to select packet header values in order
to force the selection of a specific path. To achieve this,
the authors implemented a user space extension that enables
end hosts to select TCP header values that determine the
desired path. Furthermore, to facilitate the deterministic
approach the authors implemented a new path selection
mechanism on switches (instead of the hash function in
typical flow-based ECMP). Taken altogether, the approach
in [13] requires additional modifications on end hosts and
switches. On the contrary, our approach can be deployed
on typical OpenFlow-enabled networks by using our SDN
controller [11] without the need of extra modifications on
end hosts or switches.

Agache et al. [14] study the use of multiple host inter-
faces in datacenters. The authors do not use multihoming
(hosts being connected to more than one switch) because
it increases the overall costs due to extra switches. Instead,
the authors proposed GRIN, a datacenter architecture based
on VL2 [3], which interconnects free interfaces between
hosts. Intuitively, a host in GRIN can utilize another host’s
interface when that interface is not being utilized, thus
opportunistically increasing its bandwidth. By design, GRIN
provides significant performance improvements only when
a considerable percentage of hosts are not heavily utilizing
their interfaces. On the other hand, we demonstrate that our
dual-homed solution (DH-Jellyfish) can achieve significant
performance improvements when all hosts are fully utilizing
their interfaces. Note that our approach can deliver the
full merits of multihoming without increasing costs (same
number of switches).

III. MPTCP BACKGROUND

In this section we present the required MPTCP back-
ground for the design of our SDN controller. More infor-
mation about MPTCP can be found in [5].

MPTCP presents a regular TCP interface to applications,
while in fact it spreads data across several subflows. Each
MPTCP connection has a unique identifier, calledtoken,
which is used for the association/authentication of new
subflows. Fundamentally, a subflow is established similarly
to a TCP connection with the difference that the handshake
contains MPTCP-specific options such as MPCAPABLE
and MP JOIN. The MPCAPABLE option is used only
during the initial subflow to verify whether the remote host
is MPTCP-enabled. The MPJOIN option is used for the
establishment of each additional subflow and its association
with the MPTCP connection.

Figure 1 depicts the subflow establishment of an MPTCP
connection. For the initial subflow, the hosts perform a
handshake with the MPCAPABLE option that contains
randomly generated keys. These keys are used for the



Figure 1: Subflow establishment in MPTCP.

calculation of the token (cryptographic hash of the keys).
For the establishment of additional subflows, the hosts
perform a handshake with the MPJOIN option as follows.
The sender sends a SYN packet with the token and a
random nonce. (The MPCAPABLE and MP JOIN SYN
packets are the subflow setup packets). Upon reception of
the packet, the receiver responds with a SYN+ACK packet
containing its own nonce and a calculated HMAC code of
the sender’s nonce. Finally, the sender sends an ACK packet
that contains the calculated HMAC of the receiver’s nonce.
The HMACs are calculated using the keys exchanged during
the MP CAPABLE handshake, and the nonces exchanged in
the MP JOIN handshakes.

IV. SYSTEM OVERVIEW

Figure 2: System Overview

Figure 2 provides a general overview of the system we
consider. The transport protocol is MPTCP with the extra
modification described in Section IV-C. The system takes
as input an underlying datacenter topology, where each
switch is connected to the SDN controller through control
plane links—for clarity, only four such links are shown.
The controller is responsible for the calculation of paths
(consisting of data plane links), and the installation of the
appropriate OpenFlow [15] rules to the switches. When a
packet arrives at a switch, the rules tell the switch where to
forward the packet. When a packet of a subflow arrives at
a switch and a rule does not exist, the packet is redirected

to the controller. The controller calculates the path for the
subflow and installs rules to all the switches that are in the
calculated path. Subsequent packets of the same subflow
traverse the same path and avoid redirection to the controller.
Below, we provide a detailed description of the topology and
the system’s components.

A. Topology

The topology plays a major role in the performance of
a datacenter. In this paper, we consider the FatTree [1]
and Jellyfish [4] topologies. Both topologies are built using
commodity switches with uniform link capacities, but they
have some fundamental differences.

FatTree is probably the most popularstructureddatacenter
topology, aiming to deliver high aggregate throughput while
keeping costs low. Considering ak-ary FatTree topology
with three levels of switches, each one consisting ofk
ports, the topology interconnectsk3/4 hosts. There arek
pods, each containing two layers ofk/2 switches (edge and
aggregation levels). Each switch at the edge level connects
k/2 hosts. For hosts that reside in different pods there are
k2/4 shortest paths andk/2 edge-disjoint paths. Figure 2
shows a FatTree topology withk = 4.

Jellyfish is the most prominentrandomly constructed
topology. It can hold more hosts than FatTree while main-
taining the same performance [4]. It also provides the flexi-
bility to define the number of switches, ports per switch and
hosts at will. Each host has one interface that is connected to
one switch. Hosts are assumed uniformly distributed among
the switches, i.e., the number of hosts per switch is⌈N

S
⌉,

whereN is the total number of hosts andS the total number
of switches. As a result, all switches have a similar number
of free switch ports devoted for the core of the network. To
construct the core, pairs of switches are connected at random
until all ports in all switches are used. Since Jellyfish is a
random graph, there is no prior knowledge of the available
shortest and edge-disjoint paths between hosts as in FatTree.

Dual-homed Jellyfish.We also propose and explore a
dual-homed variant of Jellyfish (DH-Jellyfish). DH-Jellyfish
uses the same equipment as Jellyfish but each host has two
interfaces. The construction of DH-Jellyfish is the same with
Jellyfish with the following addition. For the second inter-
face at each host, we randomly select a switch and connect
the host, given that: (i) the host is not already connected
to the switch; and (ii) the switch has not been already
connected⌈N

S
⌉ times. The second constraint ensures that

we uniformly connect the extra interfaces to the switches.
DH-Jellyfish sacrifices some path diversity in the core (as
switches have fewer available ports to interconnect) in favor
of increased bandwidth at the endpoints. As we show, DH-
Jellyfish can offer significant performance improvements
compared to Jellyfish in our MPTCP-aware approach.



B. Controller

We have based our controller implementation on Flood-
light [16]. It consists of two main components: the Topology
Manager (TM) and the Forwarding Module (FM). The TM
calculates and provides sets of paths between host interfaces
to the FM. The FM is responsible for the selection of
paths and the installation of the appropriate OpenFlow rules
to the switches. These rules consist of header values to
match packets and an associated action to apply to matching
packets. Specifically, the matching header values in our case
are source-destination IP addresses and port numbers, which
together identify packets belonging to the same subflow. The
action is the port of the switch to forward the matching
packets. Below, we describe the TM and FM components in
detail.

1) Topology Manager (TM):The TM has an up-to-date
global view of the topology. This is obtained by messages
exchanged between the SDN controller and the switches
(see the LinkDiscoveryManager module in [16]). The TM is
queried by the FM whenever a set of paths between source-
destination interfaces (IP addresses) is needed. The TM uses
the Depth First Search (DFS) graph traversal algorithm and
finds all available paths, whose lengths do not exceed a
certain hop-count threshold. Subsequently, the TM filters
the obtained set of paths to extract one of the following
subsets, which is returned to the FM: (i)shortest paths,
which contains all the paths that have the same hop-count
as the shortest path; (ii)k-shortest paths, which contains the
first k paths in increasing hop-count order; and (iii)k-edge-
disjoint paths, which contains the firstk paths that do not
share any edges in increasing hop-count order.

The selection of a good set of paths is crucial for the
performance of MPTCP. The set of paths should exploit the
available path redundancy in the topology, while being as
small as possible. If these two conditions are met, then witha
deterministic subflow assignment to paths we should be able
to maximize MPTCP’s performance with a small number of
subflows. As mentioned, besides decreasing overheads at the
end hosts, a small number of subflows is also desirable as it
will minimize the number of rules installed at the switches
and the load (redirections of subflow setup packets) to the
FM.

2) Forwarding Module (FM):The FM can perform either
deterministic or random assignment of subflows to paths. In
the latter, the FM randomly selects a path from the obtained
set of paths for the source-destination IP addresses of the
subflow, and assigns the subflow to the path. If the set
of paths is the set of shortest paths, then this approach is
equivalent to flow-based ECMP.

In the deterministic approach, each subflow is assigned to
a different path, which belongs to the obtained set of paths
for the source-destination IP addresses of the subflow. This
approach isMPTCP-awarebecause it requires the FM to
extract the MPTCP options from the subflow setup packets

to match a subflow to an existing MPTCP connection (if
there is one). The goal is to avoid assigning more than one
subflows of the same connection to a single path. If the
number of subflows is larger than the number of available
paths, the subflows are deterministically assigned to paths
in a uniform manner.

The FM maintains two hashtables:pathCache and
flows. pathCache is used to cache sets of paths be-
tween source-destination IP addresses, which are obtained
by querying the TM. Specifically, when a new subflow setup
packet arrives, the FM first queriespathCache to see if a set
of paths corresponding to the source-destination IP addresses
of the subflow exists. If it exists, the FM loads this set of
paths to theflows hashtable and maps it to the requested
MPTCP connection. Otherwise, the FM queries the TM and
stores the obtained set of paths to bothpathCache and
flows. The entries inpathCache are set to expire every
60 minutes, so that paths can get refreshed by querying the
TM. This is a reasonable time interval in which datacenter
topologies can be considered almost static. Indeed, Gill et
al. [17] showed that switches in datacenters have median
time between failures in the order of multiple hours. In
case of failures within the60 minutes interval, failed paths
will not be utilized but, MPTCP will be able to achieve
acceptable performance as it will only send traffic through
the good paths.

The flows hashtable contains an entry for each MPTCP
connection. Each such entry consists of subentries for each
pair of source-destination IP addresses (interfaces) usedby
the subflows of the connection. Each such subentry, called
IPentry, caches the obtained set of paths for a source-
destination IP address pair, as well as the current assignment
of subflows to paths in the set. Using this information,
the FM is able to keep track of the available paths it can
choose from for a new subflow. The entries for an MPTCP
connection are expired fromflows after 5 seconds, as the
cached information is useful only until the establishment
of all the connection’s subflows, which happens at the
beginning of the connection [7].

Algorithm 1 shows the detailed pseudocode of the
MPTCP-aware FM. When the connection setup packet of
a new subflow arrives at the first switch of the network,
the switch forwards the packet to the FM as there are
no forwarding rules installed yet at the switches for the
packets of the subflow. Upon reception of the packet, the
FM extracts the source-destination IP addresses (IPs) and
port numbers (ports) (lines 1,2). It also extracts the MPTCP
options (line 3), and distinguishes the cases MPCAPABLE
and MP JOIN. If the option is MPCAPABLE (initial
subflow), the FM stores theIPs in aprimaryIPs hashtable
(lines 4,5). It then finds the shortest path between theseIPs
by queryingpathCache or the TM, and assigns this path
to the subflow (lines 6-8). The FM always assigns to the
initial subflow the shortest path and keeps track of itsIPs



Algorithm 1 Forwarding Module pseudocode

Input: p is the subflow setup packet received at the controller
1: IPs ← Extract source/destination IP addresses fromp
2: ports ← Extract source/destination port numbers fromp
3: type ← Extract MPTCP option fromp
4: if type == MP CAPABLE then
5: StoreIPs in primaryIPs
6: QuerypathCache/TM to find the shortest path forIPs
7: If TM queried, updatepathCache
8: path ← shortest path
9: if type == MP JOIN then

10: token ← Extract MPTCP token fromp
11: if token does not exist inflows then
12: Create a newentry in flows using thetoken
13: QuerypathCache/TM to get set of paths forIPs
14: If TM queried, updatepathCache
15: Create a newIPentry in entry usingIPs
16: path ← Get next path fromIPentry
17: UpdateIPentry
18: else
19: entry ← flows[token]
20: if IPs exists inentry then
21: IPentry ← entry[IPs]
22: path ← Get next path fromIPentry
23: UpdateIPentry
24: else
25: QuerypathCache/TM to get set of paths forIPs
26: If TM queried, updatepathCache
27: Create a newIPentry in entry usingIPs
28: path ← Get next path fromIPentry
29: UpdateIPentry

30: Install rules for thepath to the switches usingIPs andports

in primaryIPs—the reason for this is to avoid assigning
the same path to additional subflows of the connection with
the sameIPs.

If the option is MP JOIN (additional subflow), the FM
extracts the token from the packet, which identifies the
existing MPTCP connection (lines 9,10). If the token does
not exist in flows, which occurs only if this is the first
additional subflow, the FM creates a newentry in flows
using the token (lines 11,12). Subsequently, the FM queries
pathCache or the TM to get a set of paths for theIPs, and
creates a newIPentry in entry for theseIPs (lines 13-
15). ThisIPentry stores the obtained set of paths. One of
these paths is then assigned to the subflow, and theIPentry
is updated to indicate this assignment (lines 16,17). If the
token exists inflows, the correspondingentry is retrieved
(line 19), and the FM checks if theIPs exist in entry
(line 20). If they exist, the FM retrieves the corresponding
IPentry, from where the next available path is assigned to
the subflow (lines 21,22). The FM then updates theIPentry
as before (line 23). If theIPs do not exist inentry, the
FM queriespathCache or the TM to get a set of paths for
the IPs, and creates a correspondingIPentry in entry as
before (lines 25-27). It then assigns a path to the subflow
and updatesIPentry (lines 28,29). After the selection of a

path, the FM installs forwarding rules for the subflow, which
is identified by itsIPs andports, on all the switches that
belong to the assigned path (line 30).

We note that the switches delete a rule from their table
if they do not receive a packet matching that rule for a
specified time interval. The default value of this interval in
Floodlight is 5 seconds [16]. We also note that the usage of
pathCache andflows significantly reduces the processing
time of the subflow setup packets at the controller. By
processing time we mean the time interval between the
reception of a subflow setup packet at the controller and the
installation of the corresponding rules at the switches. This
time includes all the required processing from the FM and
the TM if required. In our evaluation, the average processing
time for subflow setup packets that do not require querying
the TM is around1ms vs. 280ms for setup packets that
require querying the TM. We note that the path calculation
in our TM implementation is currently not performance-
optimal. Specifically, our TM calculates all possible paths
between two hosts within a given hop-count threshold,
and many of the calculated paths may never be used. By
optimizing the path calculation process, the processing time
for subflow setup packets that require querying the TM can
decrease. Such optimization however is beyond the scope of
the present work.

C. An improved MPTCP path manager

The component responsible for the creation of subflows
in the MPTCP Linux Kernel is called path manager. The
implementation offers two path managers:fullmesh and
ndiffports[7]. However, prior to our contribution these path
managers did not offer the functionality of creating more
than one subflow per pair of source-destination interfaces
(IP addresses), when MPTCP uses multiple interfaces at the
source and/or destination. This limitation was preventing
MPTCP from exploiting multiple paths between the same
pair of IP addresses in multi-interface settings.

Motivated by the above observation, we have extended
the fullmeshpath manager, which now offers the flexibility
to arbitrarily change the number of subflows per pair of IP
addresses in multi-interface settings. Our patch [10] has been
included in the latest release (v0.90) of the MPTCP Linux
Kernel [7]. In Section V-B, we demonstrate the merits of
the extendedfullmeshin the DH-Jellyfish topology.

V. EVALUATION

A. Setup

For our evaluation we used the Mininet emulator [18] and
the MPTCP Linux Kernel Implementation v.0.90. For the
emulation of the switches we used Open vSwitch [19]. The
topologies, traffic patterns, and subflow routing mechanisms
used are described below.

Topologies.We emulated an 8-ary FatTree topology hav-
ing 128 hosts and 80 switches (see Fig. 2 for a 4-ary



M-Disjoint(4) R-Shortest(16)
Subflows PT UT PT UT

1 48.5% 45.1% 49.1% 44.1%
2 69.7% 58.7% 67.1% 55.8%
3 82.7% 63.9% 77.7% 60.5%
4 90.0% 64.3% 83.8% 62.4%
5 90.5% 65.0% 87.8% 63.2%
6 90.8% 65.4% 89.9% 64.1%

Table I: Average MPTCP throughput in
FatTree (% of optimal).

M-Disjoint(8) M-Shortest(8) R-Disjoint(8) R-Shortest(8)
Subflows PT UT PT UT PT UT PT UT

1 67.7% 45.2% 66.7% 48.2% 49.5% 44.3% 54.2% 45.3%
2 83.6% 58.5% 81.9% 60.5% 66.1% 58.8% 69.7% 57.3%
3 93.1% 59.5% 89.8% 62.4% 77.1% 58.9% 79.5% 61.2%
4 95.6% 66.1% 93.6% 63.0% 81.9% 63.6% 84.8% 62.0%
5 96.0% 66.7% 95.1% 63.2% 86.2% 63.6% 87.4% 62.6%
6 96.0% 67.2% 95.4% 63.4% 88.4% 63.5% 89.9% 63.0%

Table II: Average MPTCP throughput in Jellyfish (% of optimal).

(a) FatTree. (b) Jellyfish - Disjoint paths. (c) Jellyfish - Shortest paths.

Figure 3: Distribution of MPTCP throughput.

FatTree). By construction, in this topology there are 16
shortest paths and 4 edge-disjoint paths between hosts that
reside in different pods. We also emulated Jellyfish and DH-
Jellyfish topologies, consisting of 120 hosts and 60 switches
each. In all cases, all links have the same capacity.

Traffic patterns. We considered two different types of
traffic patterns: (i) the unconstraint traffic matrix (UT); and
(ii) the permutation traffic matrix (PT). In both cases, we
randomly selectN source-destination pairs of hosts, where
N is the number of hosts in the topology. Then, we establish
long-lived MPTCP connections between all selected pairs
of hosts—all connections are initiated at the same time. In
UT, a host can participate in any number of connections,
meaning that the host access links can be bottlenecks. In PT,
we have the additional selection constraint that no host can
participate in more than one connection. This ensures that
the host access links are not bottlenecks for the connections,
which can share links only inside the core of the topology.

Subflow routing. For subflow routing we consider both
the MPTCP-aware approach (depicted as M) as well as
the random-based approach (depicted as R), which are
implemented in our FM. We also consider the cases where
the source-destination paths are shortest paths,k-shortest
paths, andk-edge-disjoint paths.

B. Results

We use the following evaluation metrics: (i) the aver-
age throughput over all MPTCP connections; and (ii) the
distribution of the MPTCP throughput, represented by the
ranking of the individual connection throughputs, from the

worst throughput to the best throughput. The latter metric
provides details about the performance of the slowest con-
nection. This metric is important in datacenters where jobs
create multiple collaborating workers because the overall
performance is dictated by the performance of the slowest
worker. All metrics are in the form of percentages compared
to the optimal throughput, which is the capacity of the host
interface in FatTree and Jellyfish, and the sum of capacities
of the host interfaces in DH-Jellyfish. For example, if we
assume uniform link capacities of 1Gb/s in the network
topologies, then the optimal throughput is 1Gb/s for the
FatTree/Jellyfish topology and 2Gb/s for the DH-Jellyfish
topology. We say that the achieved throughput isnear-
optimal if it is not smaller than 90% of the optimal. All
results are averaged over 10 different runs.

FatTree. Table I shows the average MPTCP throughput in
the FatTree topology with the MPTCP-aware (M) and ran-
dom (R) approaches. The random approach uses all available
(16) shortest paths between hosts, akin to flow-based ECMP.
The MPTCP-aware approach uses all (4) edge-disjoint paths.
For the PT, the MPTCP-aware approach requires only 4
subflows to achieve near-optimal performance, while the
random approach requires 6 subflows. That is, the random
approach requires 50% more subflows and 300% more paths
to achieve near-optimal performance. Figure 3(a) shows the
distribution of the MPTCP throughput with the PT. The
worst throughput in the MPTCP-aware approach with 4 sub-
flows is 57% of the optimal, while in the random approach
with the same number of subflows is 37%. This corresponds
to 54% improvement in the MPTCP-aware approach. By



further increasing the number of subflows, the random
approach better utilizes the available shortest paths and its
performance becomes similar to that of the MPTCP-aware
approach. For the UT, several MPTCP connections have
their throughput limited by the host access links. Because
of this, the better exploitation of distinct paths inside the
core of the topology yields no significant benefits. In this
case, the MPTCP-aware and the random-based approaches
perform similarly.

Jellyfish. Table II shows the average MPTCP throughput
in Jellyfish. We consider the case where both MPTCP-
aware and random-based approaches use 8-edge-disjoint
paths, as well as the case where both approaches use 8-
shortest paths. Figure 3(b) shows the corresponding through-
put distributions when the traffic pattern is the PT and
8-edge-disjoint paths are used—a similar behaviour holds
for 8-shortest paths (Fig. 3(c)). Our observations with the
PT are the following. First, with only 4 subflows, the
MPTCP-aware approach achieves near-optimal performance
in both cases, while the random approach always performs
worse (Table II). Second, with 4 subflows and 8-edge-
disjoint paths, the worst throughput in the MPTCP-aware
approach is 77% of the optimal, whereas in the random-
based approach is only 28% (Fig. 3(b)). This corresponds to
175% improvement in the MPTCP-aware approach. Third,
we note that significant performance benefits can also be
achieved if k-shortest paths are used. Specifically, with only
4 subflows and 8-shortest paths, the worst throughput in
the MPTCP-aware approach is 60% of the optimal, while
in the random-based approach is only 32% (Fig. 3(c)).
This corresponds to 88% improvement in the MPTCP-aware
approach. Finally, we observe that the performance gains are
more pronounced than in FatTree (cf. Fig. 3(a) vs. Fig. 3(b)).
This is because Jellyfish provides more path diversity, which
we exploit (e.g., by using 8-edge-disjoint paths). However,
similar to FatTree, when the traffic pattern is the UT, the
MPTCP-aware and the random-based approaches perform
similarly (Table II).

DH-Jellyfish. As can be seen in Tables I,II, the average
throughput with the UT is smaller than with the PT, in all
cases. This is expected since connections in the UT can
share access links that become bottlenecks. As explained, to
mitigate this effect, hosts in DH-Jellyfish have one additional
interface that can be used by MPTCP to send additional
subflows. Note that in this dual-interface setting, if a source
has the interfacesa, b and the destination the interfaces
c, d, the MPTCP connection will send subflows over all
pairs of interfaces:{a, c}, {a, d}, {b, c}, {b, d}. That is, each
connection uses 4 pairs of source-destination IP addresses.

Figure 4(a) shows the distribution of the MPTCP through-
put with 1, 2, 3 and 4 subflows per pair of IP addresses. The
results correspond to the MPTCP-aware approach, which
uses 8-edge-disjoint paths between source-destination IP
addresses. To be able to send more than 1 subflow per

(a) (b)

Figure 4: (a) MPTCP throughput vs. number of subflows
per pair of IP addresses in DH-Jellyfish; and (b) MPTCP-
aware vs. random-based approach in DH-Jellyfish and Jel-
lyfish.

pair of addresses, we used our modification of the MPTCP
Linux Kernel described in Section IV-C. We observe that
with 2 subflows per pair of addresses (2 × 4 = 8 subflows
in total) the throughput can be improved by up to 50%
compared to the case where 1 subflow per pair of addresses
is used (1 × 4 = 4 subflows in total). This is because we
exploit the path redundancy that exists between each pair
of IP addresses. We observe no additional gains by further
increasing the number of subflows.

Figure 4(b) juxtaposes the performance of the MPTCP-
aware and random-based approaches in DH-Jellyfish and
Jellyfish. The y-axis in the plot is the throughput of each
MPTCP connection normalized by the capacity of a single
interface, which is the optimal throughput in Jellyfish. In
all cases, we use 8-edge-disjoint paths between source-
destination IP addresses and 8 subflows per MPTCP connec-
tion. The traffic pattern is the UT. In DH-Jellyfish, subflows
are split over the 4 pairs of IP addresses as explained earlier.
We observe that the MPTCP-aware and the random-based
approaches perform similarly in Jellyfish, as expected. In
DH-Jellyfish, both approaches perform better. However, the
best of the two is the MPTCP-aware approach, which im-
proves the average throughput by 65% compared to Jellyfish.

VI. D ISCUSSION

We have demonstrated that a deterministic subflow routing
mechanism requires 33% and 50% less subflows than the
random approach to achieve equivalent performance for the
FatTree and Jellyfish topologies, respectively (see TablesI,
II). This reduction gives a significant boost to MPTCP’s
deployment potential in large scale SDN’s because it reduces
the following: i) the number of installed rules at OpenFlow
switches, and ii) the overall load at the SDN controller.
Below, we describe these two factors in more detail.

(i) Rules on OpenFlow switches:In large scale SDNs a
large number of MPTCP subflows raises scalability concerns
because OpenFlow switches can approximately hold mid
five figures of rules in their TCAM (64K for commercial



switches in [20]). Considering a FatTree-based network with
N hosts there areO(N2) possible source-destination pairs.
The 33% reduction of the number of subflows (4 instead of
6 subflows per MPTCP connection) translates to an order
of 2N2 fewer subflows in the network. For example, if
N = 100 and there are4 instead of6 MPTCP subflows
between each source-destination pair, then there is a total
of 100 × 99 × 2 = 19800 fewer subflows in the network
(39600 instead of 59400). Moreover, considering a Jellyfish-
based network withN hosts the reduction is 50% (3 instead
of 6 subflows per MPTCP connection), which translates to
an order of3N2 fewer subflows in the network. Again, if
N = 100 and there are3 instead of6 MPTCP subflows
between each source-destination pair, then there is a totalof
100×99×3 = 29700 fewer subflows in the network (29700
instead of 59400). As a result, the required number of rules
that need to be installed at the OpenFlow switches reduces
significantly.

(ii) Load on the SDN controller: In a reactive SDN
environment the controller needs to take action for every
subflow. Therefore, reducing the number of subflows without
compromising performance is of paramount importance.
In our system, we keep things as simple as possible at
the controller, which processes subflow setup packetsonly.
Specifically, we process these packets in a fast manner using
a two-level cache architecture as described in Section IV-B.
In our evaluation, most of the subflow setup packets are
processed within 1ms, which is an acceptable time interval.
By having an order of2N2-3N2 fewer subflows in the
network as explained above, we also significantly reduce
the load at the controller. We note that the load at an SDN
controller is an inherent issue in the SDN paradigm, and it is
suggested that for very large scale SDNs multiple controllers
should co-exist to alleviate performance bottlenecks [21].

VII. C ONCLUSION AND FUTURE WORK

We have explored an MPTCP-aware SDN approach for
deterministically routing MPTCP subflows and better ex-
ploiting the available path diversity. Our results show that
this approach can provide significant performance benefits in
datacenter topologies compared to random-based approaches
akin to flow-based ECMP. Our SDN controller accounts for
hosts that can have multiple interfaces. As we have shown,
sending more than one MPTCP subflow from each interface
can improve performance. To facilitate this capability at the
hosts, we had to modify the MPTCP implementation. This
modification has been included in v0.90 of the MPTCP
Linux Kernel implementation [7]. Furthermore, we make our
SDN controller publicly available [11].

All of our evaluation has been performed using long-lived
MPTCP flows. As part of our future work, we plan to ex-
periment with scenarios that include a mixture of both short
and long-lived flows and study the effect of the proposed
approach on flow completion time. Furthermore, we plan to

investigate ways for providing deterministic MPTCP subflow
routing using a proactive SDN environment.
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