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Real-Time Thevenin Impedance Computation

Stefan Sommer Hjortur Jbhannsson
Department of Electrical Engineering, Technical Univigrsif Denmark
Email: shso@elektro.dtu.dk / hj@elektro.dtu.dk

Abstract—Stable and secure operation of power systems be- algorithm can therefore play a key role in concrete implemen
comes increasingly difficult when a large share of the power-  tations of these transient stability assessment methoelgive
duction is based on distributed and non-controllable renewble theoretical arguments for why poor performance is observed

energy sources. Real-time stability assessment is depenten for previous approaches, we exploit parallelism in partthef
very fast computation of different properties of the grid operating P pp d ploitp p

state, and strict time constraints are difficult to adhere toas the algorithm to obtain a good balance between serial and gérall
complexity of the grid increases. Several suggested apprcizes computation, and we evaluate the developed method on $evera
for real-time stability assessment require Thevenin impeédnces to complex power systems. Thus, we show how a key property of

be determined for the observed system conditions. By comhing e hower system state can be computed at millisecond scale
matrix factorization, graph reduction, and parallelizati on, we d df L-ti tabilit t
develop an algorithm for computing Thevenin impedances an and used for real-ime stability assessment.

order of magnitude faster than previous approaches. We teghe A P o .
factor-and-solve algorithm with data from several power grids of - Faper Overview

varying complexity, and we show how the algorithm allows rek The paper starts with a short description of approaches
time stability assessment of complex power grids at millis®nd 5 rea|-time transient stability assessment. In Sectibnue

time scale. describe the problem of computing Thevenin impedances and
previous approaches. The LU-factorization of the netwatk a
mittance matrix takes a key role, and we progress to distgssi

it and node elimination strategies in the following section

Efforts on de-carbonizing the power system often impl\gve develop the factor-and-solve algorithm in Section VI and

a shift from centralized and controllable energy productid \éaluate Its performﬁnce alnd _charactenksucs in the |asiose
to distributed and non-controllable renewable energyesir '€ Paper ends with concluding remarks.
This shift makes stable and secure operation of power sgstem Il. BACKGROUND

an increasingly challenging task. T ) bil i< chall d both b hif
In traditional power systems, stability could be asses$ed o ransient stability assessment is challenged both by & shi

line and sensitivities to various contingencies establishy n ttlme—sc\ell\llisnd by |rt1_crealse n theoTpIexnyoC]; povvterl_ d
running time-consuming simulations. Multiple factors bkt systems. With conventional power systems and centralize

future power system challenge this approach: the complexﬂlrIOducdt'O;}’ I‘.”‘ re'?t'\tﬁ.ls/ stablle ?nd c?ntrollaple O?S%pmnt
of the power grid will rise with increased de-centralizatio 2"°'€d Ofi-lin€ stability evaluations fo remain valld foours.

resulting in increased computational burden and longef ruWIth de-centralization, weather dependence, and redused ¢

time for simulations; and the power system should be abtfé’l' stability of the rapidly fluctuating operating poinisst be

to operate under rapidly changing conditions for examp?evalu":ltecj atamuph shorter t|me—sgale, preferably inthea: .
At the same time, the complexity of power systems in-

due to inclusion of weather dependent energy sources. Lar
P ot (ﬁeases. Renewable energy sources add to the number of

fluctuations of the system operating point can be commob, i th ; d ¢ b . nal
and in combination these factors will likely make the resolt | USEs In the system, and power Systems becomes Increasingly
interconnected to even out differences in the production of

conventional off-line stability assessment obsolete dafore ther d dent It | Hicient t
the time-domain simulation has completed. The need for re§t9- Weather dependent sources. I 1S no longer suflicient 1o

time transient stability assessment has therefore beel gt pon5|der nerorks reglona!ly due to Increasing nur_nber of
interconnections across national borders. This in turmireg
several sources [1]. _ . X
real-time computation on networks with thousands of buses

In this paper, we develop a fast algorithm for real-time Con?a_nd tens of thousands of branches.

utation of Thevenin impedances in complex power systems. . L L .
P P piex p 4 Real-time monitoring and control is in particular enabled

Becquse several approaches fpr real time stability am_s by the advent of phasor measurement units (PMUs, [2], [3]).
require knowledge of Thevenin impedances, the algorith . .

. A few methods have been developed for real-time stability
makes the use of these approaches feasible for complex power

systems at increased time resolution. The factor—anclesoﬁlssessment using PMU data._ In [4], an existing methpd IS
adapted for real-time use while [5], [6] propose a entirely

new approach exploiting analytically derived expressifors
This work is part of the Secure Operation of Sustainable P@ystems PP P 9 y y P

(SOSPO) project with support from the Danish Strategic BeteCouncil Stability boundaries [7]. See also [8] for a combined off-
(DSF). line/on-line approach. The adaptability of existing affd

|I. INTRODUCTION



approaches to real-time computation and the dependencei.en the admittance matrix with allc nodes but nodek
grid complexity is surveyed in [9]. removed. The Thevenin impedanZg, , then equals the last

Thevenin impedance calculations constitutes a major codiagonal element of the inverted matﬁfgl
ponent of the stability assessment in [6]. Several addition A naive algorithm for computingZi, ,, for all vc nodes
methods base voltage stability monitoring on local measungould set up and invert}, for eachk = N — M +1,..., N.
ments and Thevenin impedances [10], [11], [12], [13]. This is a very inefficient approach and in practice infeasibl

Computations involving power grids are often performefbr real-time computation since the number of arithmetic
on matrices representing the connections and state of theopgrations required for inverting a matrix has complexity
the network. Typical computations involves factorizingse O(n?) [18]2. The fact that the upper leftV — A1) x (N — M)
matrices using solvers that are particularly suited forrspa submatrix ofY; does not depend ok strongly suggests that
network computations [14]; relaxation methods [15]; andie can be more efficient.
graph reduction algorithms [16]. See also [17] for comaris
of factorization and relaxation methods.

A full time-domain simulation will typically simulate a The LU-factorization [18], [19] splits a matrix into a prociu
differential-algebraic system. Thevenin impedance campu©f @ lower diagonal and an upper diagonal matrix, e.g. for the
tions differ by only considering the algebraic part of netivo @dmittance matrice¥” andY}, factorizations
equations and the_t computational _eff_ort is therefore sign.ifi Y = LU andY, = LU,
cantly reduced. This makes Thevenin impedance compugation
applicable as parts in real-time stability assessment odsth can be obtained. In particular, the inverse Yf is given
The computational aspects of dealing with this particul@ly Y, ' = U, 'Ly ". It is conventional to let the diagonal
system of equations are different than when using the flﬂlements Oka be aII1 which then implies that the Thevenin
differential-algebraic system, and the algorithm devetbpere impedanceZy , is given by inverse of the last diagonal
reflects the real-time requirement. element ofUy, i.e. Ziny = (U, (n—m41,N—M+41)) "

It is shown in [5] that this diagonal element and hence
Il. THEVENIN IMPEDANCES Znx can be recovered from the factorizatinU of the full

Consider a power grid consisting a¥ nodes with the admittance matrix” by the formula

voltage atM < N nodes being kept constant by means

IV. IMPEDANCES FROMLU-FACTORIZATIONS

of voltage control equipment. Lettiny’ denote the system Uk, (v—m+1,N-m+1) = Yooy — LUk )
admittance matrix, the system node voltage equation is  with the last term being the inner product between the entrie
=YV . 1) 1,...,N — M of the kth row of L and of thekth column

of U. The advantage of using this relation is that only one
The M voltage controlled nodews/¢s) and theN — M nodes matrix, Y, needs to be factorized in order to computg

of non-controlled voltagencs) can be ordered so that thes for all vc nodes, i.e. foralk = N — M +1,..., N. Although
and ves are numbered by indices...,N — M and N — Y is larger thanY}, this offers a substantial reduction in
M +1,...,N, respectively. The system admittance matrisomputational effort. In [5],LU-factorization of Y and (3)
then takes the form is used for computing Thevenin impedances. We analyze this
Yne  Yink method below in order to develop a more efficient approach,
Y= <Yn€k ch> and we use the method as basis for the comparisons in the

ex eriment section.
where Y, denotes the admittance matrix of only the non P

controllednc part of the systemY,. denotes the admittanceA. Sparsity, Ordering and Fill-Ins
matrix of the voltage controlleuc part, andYjix encodes the  pye to the very high sparsity of network matricds]/-
links between thenc andvc parts of the network. factorization is in general a very efficient procedure. Tgtou
For each nodé of thevcs, we are interested in computinghe worst case performance @3(N?), the complexity is in
the Thevenin impedander the node, i.e. the impedance seepractice close to linear [17] This complexity can be reached
from nodek when all vc nodes besides node node are jith appropriate ordering of the matrix rows and columns and
shorted. This situation can be modeled by removingvall with specialized solvers. In line with [17], we use the KLU
nodes besides from the system, and the Thevenin impedancgver [14] that is particularly optimized for matrices kit
Zn,x can then be obtained by inverting the resulting admittanggarsity structure equivalent to power network matrices.
matrix. We letYin,.. denote the column of the link matrix ~ A key factor in achieving close to linear complexity in the
Yink corresponding to theith node, and, correspondingly.factorization is minimizing the number dfll-ins, non-zero
we let Yf ,. denote the row of the transpose link matriglements of the factoré and U that are not present i

corresponding to théth node. LettingY{, ) denote thekth The number of fill-ins is very dependent on the ordering of
diagonal element of’, we define

Y, = < E;nc Yink,-&
Yiink,k- Y(ka)

This, however, does not change tBén?3) complexity.

2Instead of invertingY},, a linear system could be solved to get the result.
> 3[17] experimentally assesses the complexitydoN %), o ~ 1.2.
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V. SCHUR COMPLEMENT AND NODE ELIMINATION

With system loads represented by their admittance values,
no current enters the nodes of non-controlled voltages)(
and the network equation (1) can be stated as

0 _ }/nC }/Iink ‘/I’]C (4)
Ivc Y”?;k ch MIC '
Using theSchur complemer1], [16]
S = Yue — YiYne Yink

of Yy, the vc-part of the solution to (4) can be obtained by
solving the reduced systefj, = SVic. The Schur complement
can in addition be obtained by successivelyninatingnodes

from the system and creating reduced admittance matrices. F
Figure 1. Sparsity patterns of (top) the LU-factorizatidrihe full admittance €@Ch node to be eliminated as illustrated in Figure 2, the new

matrix Y with ordering placing the voltage controlled nodess] to the right; admittance matrix is given by the formula
and (bottom) the LU-factorization of th¥,c submatrix after application of

node elimination. The excessive fill-ins in the lower rightpart of the full new Y(i,N)Y(N,j)
factorization (top) slows down the algorithm. In contratste factorization Y(i,j) = 165 — T Yoo ®)

of the reduced matrix (bottom) can be done with very limitddiri and (N,N)

consequently very fast factorization. The factor-andsddlgorithm reduces gnd S is the matrix resulting from eliminating atics. Confer
both the dimension of the matrix to be factored (in this casefr917 x 7917 . . L -

to 960 x 960) and the number of non-zeros in the factors (frd629093 to [16] for more information on node elimination and network

10174) thus providing a great reduction in computational time. reduction.

A. WhyY Should Not Be Factored

the matrixY . For network matrices, ordering algorithms like When eliminating nodes, branches are added to the resulting
Approximated Minimum Degree (AMD, [20]) and variantshetwork, and in the completely reduced network consistiing o
ensure a very low degree of fill-in. The number of both nordll vcs, all pairs of nodes are in general connected by branches.
zeros inY and additional fill-ins are in practice close tolhe Schur complemert is therefore a dense matrix.
linearly correlated withN which implies the close to linear In [22], [23], it is observed that if a matrix with the block
complexity of the factorization. structure in (2) isLU-factored, the product of the lower right

In (2), we used an ordering with thecs occurring with blocks Ly, Uyc of the factorsL, U corresponding to thecs
lower indices than thecs. This ordering is required for theProvide the Schur complement &j. directly, i.e.S = LycUvc.
relation (3) that allows us to extract the Thevenin impeeanc This provides a way to compute and factsrbut it also
To adhere to this indexing convention, [5] applies AMpBells us why the large number of fill-ins are observed when
ordering to the submatrice,. and Y;¢ individually before computing Thevenin impedances with the method of [5] that
combining them to obtain the full matriX as in (2). The uses factorization of the full matriX': because is dense, the
result of this partial ordering strategy is that the uppérgart ~factorsLyc andUyc will in general not be spar$gand Lyc, Uvc
of the factorsL, U becomes adequately sparse but the lowéfe precisely the lower right blocks of the factdrsU where
right part of the factors unfortunately contains a very ¢ar¢the excessive number of fill-ins occur. Indeed, any fixed lloun
number of fill-ins. This problem that slows down the algarith on the maximum node degree in bdti andUyc would imply
considerably is illustrated in Figure 1. In the next sectime that the number of non-zeros i would grow linearly with
give a theoretical explanation for the occurrence of therfgl
and we show how an improved Thevenin impedance algorith
avoids this problem.

4The product of sparse matrices can be dense. However, if mextomple
it the node degree of the networks represented by thergcthe product
will be sparse.



the number ofvcs, i.e. M. SinceS is dense, the number of lightweight, and they can in addition be computed compyetel
non-zeros grow quadraticallynz(S) ~ M?, implying that in parallel. In the sequel, we denote the factorizationygpf
no such bound can exist. for the factorization stepand the backwards solutions (7),(8)
VI EACTOR-AND-SOLVE THEVENIN |MPEDANCE for the backwards-solve steprhe algorithm for computing

' Thevenin impedances with this approach is listed in Algo-

ALGORITHM rithm 1. Though we will see in the experiments section that
We here derive a fast algorithm for computing Thevenin

impedances without factoring the full admittance malfiand  Algorithm 1 Factor-and-solve Thevenin impedance algorithm.
thereby avoiding the excessive fill-in in the Schur compleme™ 7 _ 77 " factorization 0fYnc
part of the factors. We denote the resulting algoritfactor- for k=N—-M+1— Ndo v for eachvc possibly in
and-solverelating to its composition of two individual steps. parallel

We derive the algorithm by coupling a variant of the U, (N—M41) & solveCne Yink %)
relation (3) with the structure of left-looking LU-factastion ﬁT’ < solve(/T VT )

i ; : . k,(N—M+1)- nc'* link, k-

algorithms. First, a close _varlant of (3) f_or computing b (N MALN—M11)
Uk, (N—M+1,N—M+1) UsesY} instead ofY. Using the fac- Vi k) 7£k7(N_M+1)Uk7‘(N_M+1)

torizationY, = LU, we have i .
Zink < Up (N nms1,v—m41) > Thevenin impedance

Uk, (N—ms1,N—m+1) = Yiek) — Liy(v—ar41). Up, (vn—m11) nodek
(6) end for

where the notation in the rightmost term denotes the inner
product between entries ..., N — M of the last row ofL;, the backwards-solve step can dominate the runtime, the com-
and of the rightmost column d¥;. The advantage of using pletely parallel nature of the loop over alts makes speeding
this formula is thatLy, (v_ari1y. and Uy .(v_are1) Can be up this step straight-forward by splitting the computatifn
obtained from a factorizatiol,c = LncUnc Of the nc-part of several compute cores. In contrast, the factorization &ep
Y only. hard to parallelize and therefore in reality the limitingtiar

We now consider iterations of left-looking LU-factorizai  of the algorithm. We analyse this step below.
algonthms [19]. W'.th thls class of algorithms, mé._MJ.F ! A. Node Elimination and Factorization Speed
columns in a factorizatiol, = LU} are computed iteratively o ) )
from left to right, i.e. starting with column and ending with _ The factorization step of Algorithm 1 consist of the LU-
column N — M + 1. At each stepj, the upper left(j — 1)- factor!zat!on .onnC. We use the KL.U solver [14] for the
block of Ly, is used to compute the firgt- 1 entries of thejth factorlzatlon_ln contrast to e.g. [5] which uses UMFPACK][24
column ofUy. In particular, computation oV — M entries of whel_"n factoringY'. The sparsity of _the network matrices are
the rightmost column uses only the upper igf — M)-block SO hlgh_that KLL_J being a left-looking solver performs better
of Ly, i.e. the block representing tmes. Writing this last step than a right-looking multifrontal methods such as UMFPACK.

of the algorithm explicitly, theV' — M first entries of column KLU is a state-of-the-art and very optimized solver, and

N — M + 1 of U, satisfies it is therefore inherent_ly difficult to improve the factaaizon
R . speed. Nevertheless, it turns out we can speed up the factor-
LncUg,.(N—r41) = Yiink, -k (7) ization step of Algorithm 1 by using that we only need to

solve (6) for which factorization of the full submatri%,c is

not required. Instead, we perform node elimination prior to

factorization to reduce the matrix size. We denote this part

the factor-and-solve algorithm threode eliminationstep.
Successive node elimination using the update formula (5)

produces an equivalent network matrix that has fewer nodes

UneLt (n—ars1). = Yiok e (8) but potentially is less sparse. For simulation of largestesi

. . L _ networks, several methods elimination parts of the system i

again using only the factorization dhc. Thus, using (6), we used to reduce the size of the network as much as possible

getUk,(N—_MfLN—MHg from two backwards solutions using, ot producing to much fill-in [25], [26].

the f_actorlzanon Offne. . . . __Forreal-time computation, we will see that node eliminatio

. With the above computation, all matrlc_es anq (_)peratlo%an speed up the computation but only if careful considamati

involved are sparse and we completely avoid the fill-in pmduis taken with respect to the amount of fill-ins and the time

|ng| fi%tor';at'l?n o;the f:JI{.admlttanc;e matéi»(. tln add('jt"t)g' used for elimination. Due to the efficiency of KLU, we can be
only the backwards solutions are dependentigran € quite relaxed in removing only a relatively limited numbér o

factoryzaﬂc;}n CSY"; ml:jSt bel dpne only onﬁe. Due to_th odes. We do this with a simple fill-in reducing strategy: we
sparsity, the backwards solutions are each computatjon l:an through thacs removing a node only if it is connected to

Sit is possible to reuse parts of the computations from thefemtion step less _tha_n 4 Othm!cs and if th_e fillintroduced in the link matrix
when solving (7) and (8). We will explore this further in fatuwork. Yiink is limited. Since removing nodes of degree 3 or less does

whereffnnk,.,c denotes the firsfV — M entries of the column
Yink,..x- The vectori’?h.(N_MH) is therefore computed with a
triangular backwards solve using the factorizatiorygf only.
Similarly, we obtain the firsfV — M entries of rowN — M +1
of L by the equation



not introduce fill-ins, this strategy ensures that the nunafe 10 e oM Comparcon Thevenin impedances
non-zeros inYy. does not increase during the process, confer o Fattoraname sy o
Figure 2. The number of non-zeros M Will in general e (R e >
increase but the number of added fill-ins is controlled by a i /
fixed limit.

As we will see in the experiments section, the application
of node elimination prior to running Algorithm 1 reduces the
computational effort for the factorization step by a facddr

2-3.
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VIl. EXPERIMENTS
1638/ 23é3/ 27:‘15/ 27é7/ 271‘15/ 2756/ 31é0/ 791‘7/

We will examine the speedup provided by the factor-and- Sl 7y 2%y 2 21 Zidy Lo 1oL

solve Thevenin impedance algorithm and evaluate its abso- nr. busses /. v nodes (8 grds)

lute runtime. In particular, we will show that the Thevenin

impedance of all generators for power systems of consitkerabigure 3. Computation time for determining Thevenin impemss using the

sizes can be established in less than 3 ms. and therefore hgU-factorization (3], red), the factor-and sovegainithm (black), and
. . .. . . actor-and-solve algorithm with node elimination (bluEyaluation performed

performed in real time. In addition, we will explore the rimé o, g power grids ranging from 1648 buses to 7917 buses witieeet 313

of the serial and parallel parts of the algorithm to evaluated 1325 voltage controlled nodes. Note the logarithmidesoa the time

the achieved overall efficiency, and we will show the greﬁris. For the largest system, the new method is roughly 88gtifaster than

. . . . e previous approach.
reduction in size and number of non-zeroes for the matrix to P PP

be factored x107° Time Usages, Thevenin Impedances
. . . 3 T T T T T T T
We perform experiments on admittance matrices generated I - fectorizaion
from test systems included in the RBE-30.¢ and MAT- 5| | I Backvards-—solve

POWER [27] network simulation packages. The test systems
include the US west-coast (1648 buses, 2602 branches) and
US east-cost (7917 buses, 13014 branches) power grids along
with 6 additional systems ranging from 2383 to 3120 blses
The runtime is tested on a 3.2GHz Intel Core i7 hexa-core
desktop CPU. In accordance with [5], UMFPACK [14] is used
for factoring the full admittance matrix with the reference
method, and KLU [14] is used for the factorization step of
Algorithm 1. The main loop of the algorithm is parallelized 0

time (s.)

1648/ 2383/ 2736/ 2737/ 2746/ 2746/ 3120/ 7917/

using six threads, and the node elimination step uses AVX BT et e s Gy
vector instructions to exploit fine-grained parallelism.

Figure 3 shows for each test system the runtime @fye 4. The time consumed for the three different parteffactor-and-
the original Thevenin impedance algorithm employing LUsolve algorithm: factorization (blue), node eliminatianden), and backwards-
factorization of the full admittance matrix, the runtime ofolve (red). The backwards-solve step parallelizes caelgland the runtime

. . .. . can thus be reduced by employing more computational cores.
the factor-and-solve algorithm without node eliminatiamd . ! y employing putat

the factor-and-solve algorithm with node elimination prio

to the factorization. For all three approaches, the runtimg.,i,ation, and backwards-solve. It is seen that aivelgt
of the initial symbolic pre-factquzatlon step is left out 0arge portion of the computational effort is spend on the
the measurements because this step only need to be dpR&.\ards-solve. It is important to relate this to the ettt

once for each network. The timings are performed just Qg o lwards-solve step is completely parallelizable.the
the computational parts leaving out the time used for 'h't'?esults here. we used all 6 cores of the test machine. If a

copying of data, and the obtained timings are averaged OVeldyction in runtime is needed, a machine with more cores
large number of runs. Please note the logarithmic scale®n {1 aiow the runtime of the backwards-solve step to be
vertical axis and the achieved approximately 80 times speedy; en down below the runtime used for the reduction and
on the largest system with the factor-and-solve algorithfe(orization. In addition, there is room for more optintiza
compar ed to the previous methoq. ) of the code used for computing the backwards-solve.

In Figure 4, we plot the runt|me_ of the three_dl_fferc_ent Because backwards-solve step can be parallelized, tred seri
parts of the factor-and-solve algorithm: node el”mna’t'OTJarts of the algorithm are in reality the true bottlenecks. |

Shttp:/ww.energy.siemens.com/us/en/services/ Figure 5, we plot the runtime of the serial parts in order to
power-transmission-distribution/power-technologieternational/ evaluate the benefits of the node elimination step. Emptpyin
software-solutions/pss-e.htm node elimination results in a 2-3 times speedup for this pért

"The packages includes test systems that are consideratalifesnThe . .
runtime for these systems are negligible with the develogledrithm and the algorithm. In total, the factor-and-solve algorithrdueed

therefore not included in the evaluation. the dimension of the matrix to be factorized for the largest
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(6]

T T T T
—©6— Factor-and-solve (KLU)
—*— Factor-and-solve (KLU + node elimination)

(7]
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(8]

time (s.)
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L
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313

L
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1325

L
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349

I , . .
2736/ 2737/ 2746/ 2746/
280 255 379 388
nr. busses / nr. vc nodes (8 grids)

L
2383/
327

[11]

Figure 5. Runtime for the factor-and-solve algorithm edlg the [12]

backwards-solve step without node-elimination (black)d awith node-
elimination (blue). Node elimination results in a speedtfi@a dactor 2-3 for

this part of the algorithm. [13]

. o [14]
test system froni7917 x 7917 (the full admittance matrix)

to 960 x 960 (the node eliminated non-controlled part of the
admittance matrix). At the same time, the number of honse

in the factors is reduced fromb49093 to 10174.
[16]

VIII. CONCLUSION 171
Real-time calculation of Thevenin impedances is important

for several suggested approaches to stability assesshivent.
have given theoretical arguments for why excessive fiII-i[r%S]
occurs in the factorization used for previous approaches [19]
calculating Thevenin impedances. These insights havettead

. . ; - 120]
an improved algorithm that achieves an order of magmtu&ze
speedup and that allows parallelization of the computatign
heavy part of the algorithm. Additional saving in compugati [21]
time is in achieved by using node elimination prior to th&z]
factorization step.

On admittance matrices from several power systems, Wél
evaluate and characterize the performance of the factbr-an
solve algorithm on large and complex grids. Comparison with4]
previous approaches shows approximately 80 times speecf%/%ﬁ)
for the largest power system. In addition, we determine h
the different steps of the algorithm affect its performaand
how the runtime can be controlled using parallelization &%l
the backwards-solve step. As a result, for these systeras, th
Thevenin impedance computation is no longer a bottleneck fa7]
real-time transient stability assessment.
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