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Abstract—Stable and secure operation of power systems be-
comes increasingly difficult when a large share of the power pro-
duction is based on distributed and non-controllable renewable
energy sources. Real-time stability assessment is dependent on
very fast computation of different properties of the grid operating
state, and strict time constraints are difficult to adhere toas the
complexity of the grid increases. Several suggested approaches
for real-time stability assessment require Thevenin impedances to
be determined for the observed system conditions. By combining
matrix factorization, graph reduction, and parallelizati on, we
develop an algorithm for computing Thevenin impedances an
order of magnitude faster than previous approaches. We testthe
factor-and-solve algorithm with data from several power grids of
varying complexity, and we show how the algorithm allows real-
time stability assessment of complex power grids at millisecond
time scale.

I. I NTRODUCTION

Efforts on de-carbonizing the power system often imply
a shift from centralized and controllable energy production
to distributed and non-controllable renewable energy sources.
This shift makes stable and secure operation of power systems
an increasingly challenging task.

In traditional power systems, stability could be assessed off-
line and sensitivities to various contingencies established by
running time-consuming simulations. Multiple factors of the
future power system challenge this approach: the complexity
of the power grid will rise with increased de-centralization
resulting in increased computational burden and longer run-
time for simulations; and the power system should be able
to operate under rapidly changing conditions for example
due to inclusion of weather dependent energy sources. Large
fluctuations of the system operating point can be common,
and in combination these factors will likely make the results of
conventional off-line stability assessment obsolete evenbefore
the time-domain simulation has completed. The need for real-
time transient stability assessment has therefore been noted by
several sources [1].

In this paper, we develop a fast algorithm for real-time com-
putation of Thevenin impedances in complex power systems.
Because several approaches for real-time stability assessment
require knowledge of Thevenin impedances, the algorithm
makes the use of these approaches feasible for complex power
systems at increased time resolution. The factor-and-solve
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algorithm can therefore play a key role in concrete implemen-
tations of these transient stability assessment methods. We give
theoretical arguments for why poor performance is observed
for previous approaches, we exploit parallelism in parts ofthe
algorithm to obtain a good balance between serial and parallel
computation, and we evaluate the developed method on several
complex power systems. Thus, we show how a key property of
the power system state can be computed at millisecond scale
and used for real-time stability assessment.

A. Paper Overview

The paper starts with a short description of approaches
to real-time transient stability assessment. In Section III, we
describe the problem of computing Thevenin impedances and
previous approaches. The LU-factorization of the network ad-
mittance matrix takes a key role, and we progress to discussing
it and node elimination strategies in the following section.
We develop the factor-and-solve algorithm in Section VI and
evaluate its performance and characteristics in the last section.
The paper ends with concluding remarks.

II. BACKGROUND

Transient stability assessment is challenged both by a shift
in time-scaleand by increase in thecomplexity of power
systems. With conventional power systems and centralized
production, a relatively stable and controllable operating point
allowed off-line stability evaluations to remain valid forhours.
With de-centralization, weather dependence, and reduced con-
trol, stability of the rapidly fluctuating operating point must be
evaluated at a much shorter time-scale, preferably in real-time.

At the same time, the complexity of power systems in-
creases. Renewable energy sources add to the number of
buses in the system, and power systems becomes increasingly
interconnected to even out differences in the production of
e.g. weather dependent sources. It is no longer sufficient to
consider networks regionally due to increasing number of
interconnections across national borders. This in turn requires
real-time computation on networks with thousands of buses
and tens of thousands of branches.

Real-time monitoring and control is in particular enabled
by the advent of phasor measurement units (PMUs, [2], [3]).
A few methods have been developed for real-time stability
assessment using PMU data. In [4], an existing method is
adapted for real-time use while [5], [6] propose a entirely
new approach exploiting analytically derived expressionsfor
stability boundaries [7]. See also [8] for a combined off-
line/on-line approach. The adaptability of existing off-line



approaches to real-time computation and the dependence on
grid complexity is surveyed in [9].

Thevenin impedance calculations constitutes a major com-
ponent of the stability assessment in [6]. Several additional
methods base voltage stability monitoring on local measure-
ments and Thevenin impedances [10], [11], [12], [13].

Computations involving power grids are often performed
on matrices representing the connections and state of the of
the network. Typical computations involves factorizing these
matrices using solvers that are particularly suited for sparse
network computations [14]; relaxation methods [15]; and
graph reduction algorithms [16]. See also [17] for comparison
of factorization and relaxation methods.

A full time-domain simulation will typically simulate a
differential-algebraic system. Thevenin impedance computa-
tions differ by only considering the algebraic part of network
equations and the computational effort is therefore signifi-
cantly reduced. This makes Thevenin impedance computations
applicable as parts in real-time stability assessment methods.
The computational aspects of dealing with this particular
system of equations are different than when using the full
differential-algebraic system, and the algorithm developed here
reflects the real-time requirement.

III. T HEVENIN IMPEDANCES

Consider a power grid consisting ofN nodes with the
voltage atM ≤ N nodes being kept constant by means
of voltage control equipment. LettingY denote the system
admittance matrix, the system node voltage equation is

I = Y V . (1)

TheM voltage controlled nodes (vcs) and theN −M nodes
of non-controlled voltage (ncs) can be ordered so that thencs
and vcs are numbered by indices1, . . . , N − M and N −

M + 1, . . . , N , respectively. The system admittance matrix
then takes the form

Y =

(

Ync Ylink

Y T
link Yvc

)

(2)

where Ync denotes the admittance matrix of only the non-
controllednc part of the system,Yvc denotes the admittance
matrix of the voltage controlledvc part, andYlink encodes the
links between thenc andvc parts of the network.

For each nodek of the vcs, we are interested in computing
the Thevenin impedancefor the node, i.e. the impedance seen
from node k when all vc nodes besides nodek node are
shorted. This situation can be modeled by removing allvc
nodes besidesk from the system, and the Thevenin impedance
Zth,k can then be obtained by inverting the resulting admittance
matrix. We letYlink,·k denote the column of the link matrix
Ylink corresponding to thekth node, and, correspondingly,
we let Y T

link,k· denote the row of the transpose link matrix
corresponding to thekth node. LettingY(k,k) denote thekth
diagonal element ofY , we define

Yk =

(

Ync Ylink,·k

Y T
link,k· Y(k,k)

)

,

i.e. the admittance matrix with allvc nodes but nodek
removed. The Thevenin impedanceZth,k then equals the last
diagonal element of the inverted matrixY −1

k .
A naive algorithm for computingZth,k for all vc nodes

would set up and invertYk for eachk = N −M + 1, . . . , N .
This is a very inefficient approach and in practice infeasible
for real-time computation since the number of arithmetic
operations required for inverting a matrix has complexity
O(n3) [18]2. The fact that the upper left(N−M)×(N−M)
submatrix ofYk does not depend onk strongly suggests that
we can be more efficient.

IV. I MPEDANCES FROMLU-FACTORIZATIONS

The LU-factorization [18], [19] splits a matrix into a product
of a lower diagonal and an upper diagonal matrix, e.g. for the
admittance matricesY andYk, factorizations

Y = LU andYk = LkUk

can be obtained. In particular, the inverse ofYk is given
by Y −1

k = U−1
k L−1

k . It is conventional to let the diagonal
elements ofLk be all 1 which then implies that the Thevenin
impedanceZth,k is given by inverse of the last diagonal
element ofUk, i.e. Zth,k = (Uk,(N−M+1,N−M+1))

−1.
It is shown in [5] that this diagonal element and hence

Zth,k can be recovered from the factorizationL,U of the full
admittance matrixY by the formula

Uk,(N−M+1,N−M+1) = Y(k,k) − L̂k·Û·k (3)

with the last term being the inner product between the entries
1, . . . , N −M of the kth row of L and of thekth column
of U . The advantage of using this relation is that only one
matrix, Y , needs to be factorized in order to computeZth,k

for all vc nodes, i.e. for allk = N −M +1, . . . , N . Although
Y is larger thanYk, this offers a substantial reduction in
computational effort. In [5],LU -factorization ofY and (3)
is used for computing Thevenin impedances. We analyze this
method below in order to develop a more efficient approach,
and we use the method as basis for the comparisons in the
experiment section.

A. Sparsity, Ordering and Fill-Ins

Due to the very high sparsity of network matrices,LU -
factorization is in general a very efficient procedure. Though
the worst case performance isO(N3), the complexity is in
practice close to linear [17]3. This complexity can be reached
with appropriate ordering of the matrix rows and columns and
with specialized solvers. In line with [17], we use the KLU
solver [14] that is particularly optimized for matrices with
sparsity structure equivalent to power network matrices.

A key factor in achieving close to linear complexity in the
factorization is minimizing the number offill-ins, non-zero
elements of the factorsL and U that are not present inY .
The number of fill-ins is very dependent on the ordering of

2Instead of invertingYk, a linear system could be solved to get the result.
This, however, does not change theO(n3) complexity.

3[17] experimentally assesses the complexity toO(Nα), α ≈ 1.2.
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Figure 1. Sparsity patterns of (top) the LU-factorization of the full admittance
matrix Y with ordering placing the voltage controlled nodes (vcs) to the right;
and (bottom) the LU-factorization of theYnc submatrix after application of
node elimination. The excessive fill-ins in the lower rightvc-part of the full
factorization (top) slows down the algorithm. In contrast,the factorization
of the reduced matrix (bottom) can be done with very limited fill-in and
consequently very fast factorization. The factor-and-solve algorithm reduces
both the dimension of the matrix to be factored (in this case from7917×7917
to 960× 960) and the number of non-zeros in the factors (from1549093 to
10174) thus providing a great reduction in computational time.

the matrixY . For network matrices, ordering algorithms like
Approximated Minimum Degree (AMD, [20]) and variants
ensure a very low degree of fill-in. The number of both non-
zeros in Y and additional fill-ins are in practice close to
linearly correlated withN which implies the close to linear
complexity of the factorization.

In (2), we used an ordering with thencs occurring with
lower indices than thevcs. This ordering is required for the
relation (3) that allows us to extract the Thevenin impedances.
To adhere to this indexing convention, [5] applies AMD
ordering to the submatricesYnc and Yvc individually before
combining them to obtain the full matrixY as in (2). The
result of this partial ordering strategy is that the upper left part
of the factorsL,U becomes adequately sparse but the lower
right part of the factors unfortunately contains a very large
number of fill-ins. This problem that slows down the algorithm
considerably is illustrated in Figure 1. In the next section, we
give a theoretical explanation for the occurrence of the fill-ins,
and we show how an improved Thevenin impedance algorithm
avoids this problem.

Figure 2. Elimination of one of two interior nodes in a six node network. The
node to be eliminated has degree three and with three new branches added
to the reduced network, the total number of branches is kept constant. This
preserves the sparsity. Elimination of nodes with higher degree will result in
an increased number of branches reducing sparsity.

V. SCHUR COMPLEMENT AND NODE ELIMINATION

With system loads represented by their admittance values,
no current enters the nodes of non-controlled voltage (ncs),
and the network equation (1) can be stated as

(

0
Ivc

)

=

(

Ync Ylink

Y T
link Yvc

)(

Vnc

Vvc

)

. (4)

Using theSchur complement[21], [16]

S = Yvc− Y T
linkY

−1
nc Ylink

of Yvc, the vc-part of the solution to (4) can be obtained by
solving the reduced systemIvc = SVvc. The Schur complement
can in addition be obtained by successivelyeliminatingnodes
from the system and creating reduced admittance matrices. For
each node to be eliminated as illustrated in Figure 2, the new
admittance matrix is given by the formula

Y new
(i,j) = Y(i,j) −

Y(i,N)Y(N,j)

Y(N,N)
, (5)

andS is the matrix resulting from eliminating allncs. Confer
[16] for more information on node elimination and network
reduction.

A. WhyY Should Not Be Factored

When eliminating nodes, branches are added to the resulting
network, and in the completely reduced network consisting of
all vcs, all pairs of nodes are in general connected by branches.
The Schur complementS is therefore a dense matrix.

In [22], [23], it is observed that if a matrix with the block
structure in (2) isLU -factored, the product of the lower right
blocksLvc, Uvc of the factorsL,U corresponding to thevcs
provide the Schur complement ofYvc directly, i.e.S = LvcUvc.
This provides a way to compute and factorS but it also
tells us why the large number of fill-ins are observed when
computing Thevenin impedances with the method of [5] that
uses factorization of the full matrixY : becauseS is dense, the
factorsLvc andUvc will in general not be sparse4, andLvc, Uvc

are precisely the lower right blocks of the factorsL,U where
the excessive number of fill-ins occur. Indeed, any fixed bound
on the maximum node degree in bothLvc andUvc would imply
that the number of non-zeros inS would grow linearly with

4The product of sparse matrices can be dense. However, if we for example
limit the node degree of the networks represented by the factors, the product
will be sparse.



the number ofvcs, i.e.M . SinceS is dense, the number of
non-zeros grow quadratically,nnz(S) ≈ M2, implying that
no such bound can exist.

VI. FACTOR-AND-SOLVE THEVENIN IMPEDANCE

ALGORITHM

We here derive a fast algorithm for computing Thevenin
impedances without factoring the full admittance matrixY and
thereby avoiding the excessive fill-in in the Schur complement
part of the factors. We denote the resulting algorithmfactor-
and-solverelating to its composition of two individual steps.

We derive the algorithm by coupling a variant of the
relation (3) with the structure of left-looking LU-factorization
algorithms. First, a close variant of (3) for computing
Uk,(N−M+1,N−M+1) usesYk instead ofY . Using the fac-
torizationYk = LkUk, we have

Uk,(N−M+1,N−M+1) = Y(k,k) − L̂k,(N−M+1)·Ûk,·(N−M+1)

(6)
where the notation in the rightmost term denotes the inner
product between entries1, . . . , N −M of the last row ofLk

and of the rightmost column ofUk. The advantage of using
this formula is thatL̂k,(N−M+1)· and Ûk,·(N−M+1) can be
obtained from a factorizationYnc = LncUnc of the nc-part of
Y only.

We now consider iterations of left-looking LU-factorization
algorithms [19]. With this class of algorithms, theN −M +1
columns in a factorizationYk = LkUk are computed iteratively
from left to right, i.e. starting with column1 and ending with
columnN −M + 1. At each stepj, the upper left(j − 1)-
block ofLk is used to compute the firstj−1 entries of thejth
column ofUk. In particular, computation ofN −M entries of
the rightmost column uses only the upper left(N −M)-block
of Lk, i.e. the block representing thencs. Writing this last step
of the algorithm explicitly, theN −M first entries of column
N −M + 1 of Uk satisfies

LncÛk,·(N−M+1) = Ŷlink,·k (7)

whereŶlink,·k denotes the firstN −M entries of the column
Ylink,·,k. The vectorÛk,·(N−M+1) is therefore computed with a
triangular backwards solve using the factorization ofYnc only.
Similarly, we obtain the firstN−M entries of rowN−M+1
of Lk by the equation

UT
ncL̂

T
k,(N−M+1)· = Ŷ T

link,k· (8)

again using only the factorization ofYnc. Thus, using (6), we
getUk,(N−M+1,N−M+1) from two backwards solutions using
the factorization ofYnc.5

With the above computation, all matrices and operations
involved are sparse and we completely avoid the fill-in produc-
ing factorization of the full admittance matrixY . In addition,
only the backwards solutions are dependent onk, and the
factorization of Ync must be done only once. Due to the
sparsity, the backwards solutions are each computationally

5It is possible to reuse parts of the computations from the factorization step
when solving (7) and (8). We will explore this further in future work.

lightweight, and they can in addition be computed completely
in parallel. In the sequel, we denote the factorization ofYnc

for the factorization stepand the backwards solutions (7),(8)
for the backwards-solve step. The algorithm for computing
Thevenin impedances with this approach is listed in Algo-
rithm 1. Though we will see in the experiments section that

Algorithm 1 Factor-and-solve Thevenin impedance algorithm.
Lnc, Unc← factorization ofYnc

for k = N −M + 1→ N do ⊲ for eachvc possibly in
parallel

Ûk,·(N−M+1) ← solve(Lnc,Ŷlink,·k)
L̂T
k,(N−M+1)· ← solve(UT

nc,Ŷ
T

link,k·)
Uk,(N−M+1,N−M+1) ←

Yk,(k,k) − L̂k,(N−M+1)·Ûk,·(N−M+1)

Zth,k ← U−1
k,(N−M+1,N−M+1) ⊲ Thevenin impedance

nodek
end for

the backwards-solve step can dominate the runtime, the com-
pletely parallel nature of the loop over allvcs makes speeding
up this step straight-forward by splitting the computationof
several compute cores. In contrast, the factorization stepis
hard to parallelize and therefore in reality the limiting factor
of the algorithm. We analyse this step below.

A. Node Elimination and Factorization Speed

The factorization step of Algorithm 1 consist of the LU-
factorization of Ync. We use the KLU solver [14] for the
factorization in contrast to e.g. [5] which uses UMFPACK [24]
when factoringY . The sparsity of the network matrices are
so high that KLU being a left-looking solver performs better
than a right-looking multifrontal methods such as UMFPACK.

KLU is a state-of-the-art and very optimized solver, and
it is therefore inherently difficult to improve the factorization
speed. Nevertheless, it turns out we can speed up the factor-
ization step of Algorithm 1 by using that we only need to
solve (6) for which factorization of the full submatrixYnc is
not required. Instead, we perform node elimination prior to
factorization to reduce the matrix size. We denote this partof
the factor-and-solve algorithm thenode eliminationstep.

Successive node elimination using the update formula (5)
produces an equivalent network matrix that has fewer nodes
but potentially is less sparse. For simulation of large resistor
networks, several methods elimination parts of the system is
used to reduce the size of the network as much as possible
without producing to much fill-in [25], [26].

For real-time computation, we will see that node elimination
can speed up the computation but only if careful consideration
is taken with respect to the amount of fill-ins and the time
used for elimination. Due to the efficiency of KLU, we can be
quite relaxed in removing only a relatively limited number of
nodes. We do this with a simple fill-in reducing strategy: we
scan through thencs removing a node only if it is connected to
less than 4 otherncs and if the fill introduced in the link matrix
Ylink is limited. Since removing nodes of degree 3 or less does



not introduce fill-ins, this strategy ensures that the number of
non-zeros inYnc does not increase during the process, confer
Figure 2. The number of non-zeros inYlink will in general
increase but the number of added fill-ins is controlled by a
fixed limit.

As we will see in the experiments section, the application
of node elimination prior to running Algorithm 1 reduces the
computational effort for the factorization step by a factorof
2-3.

VII. E XPERIMENTS

We will examine the speedup provided by the factor-and-
solve Thevenin impedance algorithm and evaluate its abso-
lute runtime. In particular, we will show that the Thevenin
impedance of all generators for power systems of considerable
sizes can be established in less than 3 ms. and therefore be
performed in real time. In addition, we will explore the runtime
of the serial and parallel parts of the algorithm to evaluate
the achieved overall efficiency, and we will show the great
reduction in size and number of non-zeroes for the matrix to
be factored.

We perform experiments on admittance matrices generated
from test systems included in the PSSR©E-30.06 and MAT-
POWER [27] network simulation packages. The test systems
include the US west-coast (1648 buses, 2602 branches) and
US east-cost (7917 buses, 13014 branches) power grids along
with 6 additional systems ranging from 2383 to 3120 buses7.

The runtime is tested on a 3.2GHz Intel Core i7 hexa-core
desktop CPU. In accordance with [5], UMFPACK [14] is used
for factoring the full admittance matrix with the reference
method, and KLU [14] is used for the factorization step of
Algorithm 1. The main loop of the algorithm is parallelized
using six threads, and the node elimination step uses AVX
vector instructions to exploit fine-grained parallelism.

Figure 3 shows for each test system the runtime of
the original Thevenin impedance algorithm employing LU-
factorization of the full admittance matrix, the runtime of
the factor-and-solve algorithm without node elimination,and
the factor-and-solve algorithm with node elimination prior
to the factorization. For all three approaches, the runtime
of the initial symbolic pre-factorization step is left out of
the measurements because this step only need to be done
once for each network. The timings are performed just on
the computational parts leaving out the time used for initial
copying of data, and the obtained timings are averaged over a
large number of runs. Please note the logarithmic scale on the
vertical axis and the achieved approximately 80 times speedup
on the largest system with the factor-and-solve algorithm
compared to the previous method.

In Figure 4, we plot the runtime of the three different
parts of the factor-and-solve algorithm: node elimination,

6http://www.energy.siemens.com/us/en/services/
power-transmission-distribution/power-technologies-international/
software-solutions/pss-e.htm

7The packages includes test systems that are considerably smaller. The
runtime for these systems are negligible with the developedalgorithm and
therefore not included in the evaluation.
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Figure 3. Computation time for determining Thevenin impedances using the
full LU-factorization ([5], red), the factor-and-solve algorithm (black), and
factor-and-solve algorithm with node elimination (blue).Evaluation performed
on 8 power grids ranging from 1648 buses to 7917 buses with between 313
and 1325 voltage controlled nodes. Note the logarithmic scale on the time
axis. For the largest system, the new method is roughly 80 times faster than
the previous approach.

0

0.5

1

1.5

2

2.5

3
x 10

−3

nr. busses / nr. vc nodes (8 grids)

tim
e 

(s
.)

Time Usages, Thevenin Impedances

 

 

1648/
313

2383/
327

2736/
280

2737/
255

2746/
379

2746/
388

3120/
349

7917/
1325

LU−factorization
Node elimination
Backwards−solve

Figure 4. The time consumed for the three different parts of the factor-and-
solve algorithm: factorization (blue), node elimination (green), and backwards-
solve (red). The backwards-solve step parallelizes completely and the runtime
can thus be reduced by employing more computational cores.

factorization, and backwards-solve. It is seen that a relatively
large portion of the computational effort is spend on the
backwards-solve. It is important to relate this to the fact that
the backwards-solve step is completely parallelizable. For the
results here, we used all 6 cores of the test machine. If a
reduction in runtime is needed, a machine with more cores
will allow the runtime of the backwards-solve step to be
driven down below the runtime used for the reduction and
factorization. In addition, there is room for more optimization
of the code used for computing the backwards-solve.

Because backwards-solve step can be parallelized, the serial
parts of the algorithm are in reality the true bottlenecks. In
Figure 5, we plot the runtime of the serial parts in order to
evaluate the benefits of the node elimination step. Employing
node elimination results in a 2-3 times speedup for this partof
the algorithm. In total, the factor-and-solve algorithm reduced
the dimension of the matrix to be factorized for the largest



0

0.5

1

1.5

2

2.5
x 10

−3

nr. busses / nr. vc nodes (8 grids)

tim
e 

(s
.)

Algorithm Comparison, Factorization and Node Elimination

 

 

1648/
313

2383/
327

2736/
280

2737/
255

2746/
379

2746/
388

3120/
349

7917/
1325

Factor−and−solve (KLU)
Factor−and−solve (KLU + node elimination)

Figure 5. Runtime for the factor-and-solve algorithm excluding the
backwards-solve step without node-elimination (black) and with node-
elimination (blue). Node elimination results in a speedup of a factor 2-3 for
this part of the algorithm.

test system from7917 × 7917 (the full admittance matrix)
to 960× 960 (the node eliminated non-controlled part of the
admittance matrix). At the same time, the number of non-zeros
in the factors is reduced from1549093 to 10174.

VIII. C ONCLUSION

Real-time calculation of Thevenin impedances is important
for several suggested approaches to stability assessment.We
have given theoretical arguments for why excessive fill-in
occurs in the factorization used for previous approaches to
calculating Thevenin impedances. These insights have leadto
an improved algorithm that achieves an order of magnitude
speedup and that allows parallelization of the computationally
heavy part of the algorithm. Additional saving in computation
time is in achieved by using node elimination prior to the
factorization step.

On admittance matrices from several power systems, we
evaluate and characterize the performance of the factor-and-
solve algorithm on large and complex grids. Comparison with
previous approaches shows approximately 80 times speedup
for the largest power system. In addition, we determine how
the different steps of the algorithm affect its performanceand
how the runtime can be controlled using parallelization of
the backwards-solve step. As a result, for these systems, the
Thevenin impedance computation is no longer a bottleneck for
real-time transient stability assessment.
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[5] H. Jóhannsson, “Development of early warning methods for electric
power systems,” Ph.D. dissertation, Technical Univ. of Denmark, 2011.

[6] H. Johannsson, R. Garcia-Valle, J. Weckesser, A. Nielsen, and J. Os-
tergaard, “Real-time stability assessment based on synchrophasors,” in
PowerTech, 2011 IEEE Trondheim, Jun. 2011.
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