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Abstract— We consider coding schemes for channels with non-
uniform inputs (NUI), where standard linear block codes cannot
be applied directly. We show that multilevel coding (MLC) with
a set of linear codes and a deterministic mapper can achieve the
information rate of the channel with NUI. The mapper, however,
does not have to be one-to-one. As an application of the proposed
MLC scheme, we present a rateless transmission scheme over the
binary symmetric channel (BSC).

I. I NTRODUCTION

Consider a discrete memoryless channel (DMC) with input
X ∈ X , outputY ∈ Y and letPX be the input distribution.
When PX is the uniform distribution onX , denoted by
unif(X ), it is well known that linear codes can be directly used
to achieve the information rate corresponding toPX [1]. When
|X | = 2m, binary linear codes along with multilevel coding
(MLC) suffice to achieve the information rate corresponding
to unif(X ). Given extensive recent results on designing good
LDPC codes for binary input symmetric channels [2], [3],
it suffices to say that LDPC codes provide a good practical
solution to this communication problem.

However, in many cases, we are interested in input distri-
butions which are not the uniform distribution. This could be
because the capacity achieving distribution is non-uniform (for
example, the Z channel [4]). Or, other signalling constraints
may force us to use non-uniform inputs. An example of this is
optical channels with cross-talks, where the probability of 1s
transmitted by each userp1 = P (X = 1) has to be constrained
to bep1 ≪ 1/2 to control the interference to other users [5]. In
such scenarios, binary linear codes can not be applied directly
since they can only induce the uniform distribution. We refer
to such channels as ‘channels with non-uniform inputs (NUI)’.
The coding problem for such channels remains open [4].

This problem was previously studied by Ratzer and Mackay
[5] [6]. In [6], they focused on designing inverse Huffmann
code type mappers to induce the desired distribution. However,
soft output decoding of the Huffman code is usually computa-
tionally complex and, further, the variable length nature of the
mapping may incur catastrophic decoding errors. Alternatively,
in [5], LDPC codes over GF(q) with deterministic mappers
were used to induce the desired non-uniform distribution. The
main drawback of this scheme is that the decoding complexity
for the nonbinary LDPC code is significantly larger and the
code optimization is very complicated.

In this paper, we first show that MLC using a set of binary
linear codes and a deterministic mapper suffices to achieve
the information rate of the channel with NUI. The mapper,
however, does not necessarily have to be one-to-one. This
scheme, discussed in Section II, is shown to be optimal when
the channel law is known at the transmitter. Although an
MLC scheme with binary inputs can only induce dyadic input
distributions, it is shown that via proper time sharing, the
proposed MLC with a small number of layers can get close to
the channel information rate for an arbitraryPX . Compared
with the previous works, the proposed MLC scheme not only
has low complexity, but is theoretically justifiable as well.

As an important application of coding for channels with
NUI, we consider the problem of rateless transmission over
the binary symmetric channel (BSC). In [7], a simple layering,
dithering (or interleaving) and repeating based rateless scheme
was proposed for AWGN channel. In this paper, we extend
(non-trivially) their results to the BSC case. Thanks to the
degraded nature of the BSC, a similar layering scheme can
be applied without a rate loss. However, in order to perform
layering, the number of 1s of the coded bits in each layer must
be constrained. This is precisely where the proposed MLC
scheme can be applied. We further show that repeating does
not incur a rate loss in the low rate region over the BSC even
for non-uniform inputs. Therefore, rateless transmissionover
the BSC becomes possible by simply layering, interleaving
and repeating the proposed MLC block.

II. CODING FORCHANNELS WITH NON-UNIFORM INPUTS

The problem of coding for channels with NUI can be dated
back to Gallager. In [8], Gallager showed that binary linear
codes can achieve the capacity of any DMC:

Theorem 1 Binary linear codes can be used to achieve the
capacity of an arbitrary discrete memoryless channel.

We refer interested readers to [8] for the detailed proof.
The main result of this theorem says that for any DMC,
capacity can be achieved by a set of linear codes with a
deterministic mapper under maximum likelihood decoding
(MLD). However, as suggested by Gallager, finding practical
decoding algorithms is a nontrivial problem. Note that in
Gallager’s proof, the key component, a deterministic mapper is
used to induce the desired channel input distribution to achieve
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Fig. 1. An example of a deterministic mapper

the capacity of the DMC. The deterministic mapper can be
defined as follows:

Definition 1 A deterministic mapping is a functionf : W →
X , whereW ∈ {0, 1}m and X ∈ X (X is the set of all
possible channel input symbols).

For example, consider the channel with NUI, i.e.,p1 =
P (X = 1) = 1/4 and p0 = P (X = 0) = 3/4. A possible
deterministic mapper is shown in Figure 1, whereW ∈ {0, 1}2

andX ∈ {0, 1}. SinceW is uniformly distributed, the mapper
can induce the desired distribution onX . Note that using
linear codes with a deterministic mapper, we can only obtain
probabilities of the formk/2m. However, by increasingm,
we can approximate the desired distribution arbitrarily well.

Proposed Scheme: We first propose an MLC scheme to
achieve the information rate of channels with NUI. The
diagram of the proposed MLC scheme is shown in Figure
2 and the details of the scheme is as follows:Encoding:
In each layer,Wi is encoded using a capacity achieving
binary linear code. The code rate of theith layer is selected
to be Ri = I(Wi;Y |W1, · · · ,Wi−1). Then we induce the
desired distribution onX from W = [W1, · · · ,Wm] using a
deterministic mapper as suggested in Theorem 1.Decoding:
At the decoder, we apply MSD:W1 is first decoded and then
W2 is decoded based onY and the decision ofW1 and so
forth until Wm is decoded based onY and all the decisions
from W1 to Wm−1.

Now, we show that the information rate of a channel with
NUI can be achieved by the above MLC scheme.

Theorem 2 The proposed coding scheme can achieve
the information rate of the DMC with NUI, i.e.,
∑m

i=1
I(Wi;Y |W1, · · · ,Wi−1) = I(X ;Y ).

Proof: We first show that the deterministic mapping from
W to X does not incur a rate loss. Note thatW → X → Y
forms a Markov chain. ExpandingI(W ;Y,X) in two ways,
we have:

I(W ;Y,X) = I(W ;X) + I(W ;Y |X) (1)

= I(W ;Y ) + I(W ;X |Y ) (2)
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Fig. 2. System Model for the Proposed Coding Scheme for Constrained
Input Channels

Due to the Markovian structureI(W ;Y |X) = 0, thus, the
mutual information betweenW andY can be written as:

I(W ;Y ) = I(W ;X)− I(W ;X |Y ) (3)

= (H(X)−H(X |W ))− (H(X |Y )−H(X |W,Y ))
(4)

= H(X)−H(X |Y ) = I(X ;Y ) (5)

(4) to (5) follows by the fact thatX is a function ofW .
Hence, we can achieve the information rate using the

proposed MLC. SinceW = [W1,W2, · · · ,Wm], the mapping
from W1,W2, · · · ,Wm to W is a bijection. According to the
chain rule of mutual information, we have:

I(X ;Y ) = I(W ;Y ) =

m
∑

i=1

I(Wi;Y |W1, · · · ,Wi−1) (6)

The proof generalizes the MLC proof in [9], where the
mapping fromW to X is a bijection. However, here,W does
not need to be a deterministic function ofX , which suggests
that the one-to-one type mappers (e.g., inverse Huffman code
[6]) are not required in order to achieve the information rate.
Essentially, what is needed is a deterministic mapper, which
shapes the uniform distribution obtained from the coded bits
of the linear codes to be the desired channel NUI distribution.
Besides, the theorem implies that in each layer, standard binary
linear codes, such as binary LDPC codes suffice.

Example 1: We give an example of the proposed MLC
scheme over a BSC with NUI. In Figure 3, the information rate
is plotted as a function of the channel crossover probability
h. The probability of 1s at the channel input is fixed to be
p1 = 1/4. We can see that the proposed MLC can achieve
the information rate supported by the channel. In contrast,
time sharing a linear code with 0s will incur a significant rate
loss. Besides, note that the mapper will introduce memory
across the layers. Therefore, bit-interleaved-coded-modulation
(BICM) without iterative demodulation (the demapper gener-
ates bit-level soft information for each layer by ignoring the
correlation across the layers) also incurs a significant rate loss.
For Z channels, similar phenomenon is observed. Due to the
page limit, the results are not shown here.
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Fig. 3. Achievable Rate of Different Schemes over a BSC withp1 = 1/4

The input probabilities that can be induced are of the form
k/2m, i.e., dyadic fractional numbers. However, any desired
input probability p1 can be approached by properly time
sharing between two MLC schemes. For instance, if we need
p1 = 2/5 at the channel input, we can time share between
two MLC schemes with 2 layers, one withp1 = 1/4 and the
other withp1 = 1/2. The rate loss of the proposed MLC time
sharing scheme is usually small.

Example 2: Consider the proposed MLC over for a BSC
with NUI in Figure 4. In this case, the channel crossover
probability is fixedh = 0.3 and the plot shows the change
of the information rate as a function ofp1. We can see that
the simple scheme that time shares a linear code with 0s will
incur a substantial loss. To get close to the information rate,
we may time share between two of the MLC schemes with
m = 3. As shown in Figure 4, for anyk/8 ≤ p1 ≤ (k+1)/8,
time sharing between the MLC scheme withp1 = k/8 and
p1 = (k + 1)/8 achieves most of the information rate.

III. R ATELESSTRANSMISSION SCHEME OVERBINARY

SYMMETRIC CHANNEL USING LAYERING AND REPEATING

In this section, we present an application of the proposed
scheme to rateless transmission over the BSC, which is based
on layering, interleaving and repeating. We show that in
the low rate region, repeating preserves information rate and
therefore it can be used as a simple rateless scheme, which
extends the result of [7] to the BSC case. We then show
that layering information does not incur a rate loss for the
BSC due to its degraded nature. As a result, in order to form
layering, the coded bits in each layer have to be non-uniformly
distributed, where the proposed MLC scheme in Section II
becomes useful.

The problem of rateless transmission over BSC can be
formulated as follows: suppose we want to communicate
over a BSC with an unknown but lower bounded crossover
probabilityh ≥ hmin. The capacity of this channel is bounded
by 0 ≤ C ≤ 1−H(hmin). Sinceh is unknown, the transmitter
will first send a mother code of rateRmax = 1−H(hmin) and
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Fig. 4. Information Rate of a 3-Layer MLC Scheme over a BSC with h =
0.3

then keep sending extra redundancies until the receiver gets
enough information to decode. The mother code together with
any of the redundant suffix should be a good code such that as
long as right enough redundancies are collected, the receiver
will be able to decode. Therefore, the proposed scheme is
called rateless, since it can work for a wide range of rates
(0 ≤ R ≤ 1 − H(hmin)). For details on rateless codes over
the binary erasure channel (BEC), we refer interested readers
to [10][11].

Here, we propose a rateless transmission scheme over
the BSC based on layering, interleaving and repeating. The
structure of the rateless scheme over the BSC is shown in
Figure 5.

Proposed Scheme: Encoding: In Block 1, each of theith

layer encodes its message into coded bits obeying{pi, 1−pi}
Bernoulli distribution. The initial code rate of theith layer
Ri should be selected such thatRmax =

∑n

i=1
Ri = 1 −

H(hmin). Then, the coded bits from each layer are interleaved,
since we have the NUI distribution, interleaving rather than
dithering has to be used to make sure that interference from
other layers does not combine coherently when we combine
the repeated blocks (See [7] for details). All the interleaved
layers are then stacked, i.e., bit wise XORed togetherXall =
∑n

i=1
⊕Xi and transmitted through the BSC. If the receiver

is not able to decode, Block 2 is sent. That is all the coded
bits of each layer are repeated, interleaved using a different
set of interleavers, then stacked together and transmitted
through the channel again. The above procedure continues
until the receiver has got enough repeated blocks to decode,
i.e., mI(Xall;Yall) ≥ Rmax. Decoding: At the decoder, we
first wait until enough number of blocks are collected. Then
we apply MSD. In thenth layer, we first generate the soft
information of each coded bit from the repeated channel
outputs and use them to decode thenth layer’s codeword. Then
the decoded bits are subtracted and the(n− 1)th layer sees a
clearer channel. We repeat the above decoding procedure until
the1st layer is decoded. Eventually, the information rate after
m-time repetition isR = Rmax/m.
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Fig. 5. the Proposed Rateless Scheme over the BSC

As a prerequisite to show the optimality of the proposed
scheme, we first give the following lemma:

Lemma 1 Suppose a and b are constants, the functionf(x) =
log(b + ax) satisfies the following inequalities asx → 0

log b+
a

b
x−

1

2
(
a

b
x)2 ≤ log(b+ ax) ≤ log b+

a

b
x (7)

Proof: This lemma is immediate by considering the
Taylor series expansion off(x) nearx = 0.

It is shown in [12] that for channels with uniform input
distribution, repeating preserves information rate, in the low
rate region. Here we extend this result to the BSC with NUI.

Theorem 3 Let X be the channel input satisfying Bernoulli
distribution {p, 1− p}. X is transmitted through a BSC with
crossover probabilityh. LetY be the channel output andY m

be the m-time repetition ofX through the BSC. Whenp → 0,
the information rate is preserved by repeatingX m times, i.e.,
limp→0 I(X ;Y m) = limp→0 mI(X ;Y ).

Proof: The channel outputY will obey {py, 1 − py}
Bernoulli distribution, wherepy = p⊗h = p(1−h)+(1−p)h.

We have the information rate:

I(X ;Y ) =H(p⊗ h)−H(h) (8)

As p goes to zero, we have:

lim
p→0

mI(X ;Y ) = lim
p→0

mp(1− 2h) log
1− h

h
+ o(p) (9)

On the other hand, we can derive the information combining
of a repetition code over the BSC with NUI. Note thatY m

can be viewed as a vector channel output, there are(m + 1)
types of channel outputs. Different outputs of the same type
are just different permutations and are statistically equivalent.
We have the probability of theith type as:

pi = phi(1− h)m−i + (1− p)hm−i(1 − h)i (10)

= p
[

hi(1− h)m−i − hm−i(1− h)i
]

+ hm−i(1− h)i

(11)
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Fig. 6. Degraded Nature of BSC

Let Ai = hi(1−h)m−i−hm−i(1−h)i andBi = hm−i(1−
h)i. Thus we havepi = Aip+ Bi. Since all the probabilities
of all the channel outputs will sum up to be “1”. We have:

m
∑

i=0

(

m

i

)

(Aip+Bi) = 1 (12)

Besides, since

m
∑

i=0

(

m

i

)

Bi = (h+ 1− h)m = 1 (13)

we have:
m
∑

i=0

(

m

i

)

Ai = 0 (14)

The mutual information in the low rate region can therefore
be written as:

lim
p→0

I(X ;Y m) = lim
p→0

m
∑

i=0

−

(

m

i

)

Ai(logBi + log e)p+ o(p)

(15)

= lim
p→0

p log
1− h

h

[

−

m
∑

i=0

(

m

i

)

Aii

]

+ o(p)

(16)

= lim
p→0

pm(1− 2h) log
1− h

h
+ o(p) (17)

= lim
p→0

mI(X ;Y ) + o(p); (18)

where (15) to (16) follows from Lemma 1 and some straight-
forward manipulations. From (18), we can see that for very
low rate, repeating preserves information rate.

In the proposed scheme, we use layering to drive the coding
rate of each layer to the low rate region. We can show that
layering is lossless as follows:

Theorem 4 For the BSC, layering does not incur any loss
in information rate and MSD can be used to achieve the
information rate.

Proof: The channel model of information layering over
the BSC is shown in Figure 5. Let the overall stacked



information asXall =
∑n

i=1
⊕Xi The overall channel output

is Yall = Yn. We have the following relationship:

I(X1, X2, · · · , Xn;Yn)

=
n
∑

i=1

I(Xi;Yn|Xi+1, · · · , Xn) (19)

=

n
∑

i=1

I(Xi;Yi) =

n
∑

i=1

(H(Yi)−H(Yi−1)) (20)

= H(Yn)−H(Y0) = I(Xall;Yn) (21)

From the above equations, (21) suggests that stacking does not
incur a rate loss and (19) suggests that the overall information
rate can be achieved by MSD.

It remains to show that the rate loss due to repeating does
not accumulate as the number of layers increases. Thus, as the
number of layers goes to be large, the overall rate loss due to
repeating is negligible.

Theorem 5 Using layering and repeating for rateless trans-
mission is information lossless as long as the rate of each
layer is sufficiently small.

Proof: Let the total number of layers beN . For the
jth layer, we have the channel input and output asXj , Yj .
The input probabilitypj and crossover probabilityhj . Let
the probability of 1 of the overall information bepN . For
simplicity, let each layer haspi = p. By recursion we have
the following relationship:

pj = p =
1− (1− 2pN )

1

N

2
(22)

(Note thatpN = 1/2− ǫ, where0 < ǫ < 1/2, sincepi < 1/2.
As N → ∞, pN can be made arbitrarily close to 1/2.)

The information rate per m-time channel use ismI(Xj ;Yj),
while the information rate of the m-time repeating is
I(Xj ;Y

m
j ). We have the overall rate loss as:

∆ = lim
N→∞

N
∑

j=1

∆j = lim
N→∞

N
∑

j=1

[

mI(Xj ;Yj)− I(Xj ;Y
m
j )

]

= 0

(23)
Note that the information rate of each layer can be made ar-

bitrarily small such that Lemma 1 holds. Thus the information
rate per m-time channel use is upper bounded by:

lim
p→0

mI(Xj ;Yj) ≤ lim
p→0

mp(1− 2hj) log
1− hj

hj

(24)

On the other hand, following Lemma 1 we have the following
inequalities:

log(Bi +Aip) ≥ logBi +
Ai

Bi

p−
1

2
(
Ai

Bi

)2p2 (25)

log(1− Bi −Aip) ≥ log (1 −Bi)−
Ai

1−Bi

p−
1

2
(

Ai

1−Bi

)2p2

(26)

Note thatAi andBi do not depend on the number of layers
N and consequently they are bounded. Thus, plugging (25)

(26) into (15), we have a lower bound of the information rate
of the m-time repetitionI(Xi;Y

m
i ) as:

lim
p→0

I(Xj ;Y
m
j ) ≥ lim

p→0
mp(1− 2hj) log

1− hj

hj

− cmp2

(27)
wherec is constant.

Combining (24) and (27) the rate loss can be bounded by:

∆j = mI(Xj ;Yj)− I(Xj ;Y
m
j ) ≤ cmp2 (28)

Consequently, we have the overall information loss as:

∆ = lim
N→∞

N
∑

j=1

∆j (29)

≤ cm lim
N→∞

[

1− (1 − 2pN)
1

N

2

]2

N ∝ lim
N→∞

1

N
= 0

(30)

Note thatpi < 1/2 for all the layers, i.e., each layer will
have to have NUI distribution, since otherwise the interference
seen by the upper layers will have crossover probability
1/2. Thus, in order to perform the rateless transmission, we
need codes for channels with NUI, where the proposed MLC
scheme discussed in the previous section becomes useful.
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