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Abstract— The problem of resource allocation is studied for a
two-user fading orthogonal multiaccess relay channel (MARC)
where both users (sources) communicate with a destination in
the presence of a relay. A half-duplex relay is considered that
transmits on a channel orthogonal to that used by the sources.
The instantaneous fading state between every transmit-receive
pair in this network is assumed to be known at both the
transmitter and receiver. Under an average power constraint
at each source and the relay, the sum-rate for the achievable
strategy of decode-and-forward (DF) is maximized over all power
allocations (policies) at the sources and relay. It is shownthat
the sum-rate maximizing policy exploits the multiuser fading
diversity to reveal the optimality of opportunistic channel use by
each user. A geometric interpretation of the optimal power policy
is also presented.

I. I NTRODUCTION

The multiaccess relay channel (MARC) is a network in
which several users (source nodes) communicate with a single
destination in the presence of a relay [1]. The MARC is
a model for relay-based cooperation in a multiuser network
where the users have limited power and processing capabilities
or need tangible incentives to cooperate. We model a MARC
with a half-duplex relay as anorthogonal MARC where the
relay transmits on a channel orthogonal to that used by the
sources (see [2], [3]). The coding strategies developed forthe
relay channel [4] extend readily to the MARC [3]. For exam-
ple, the strategy of [4, Theorem 1], now often calleddecode-
and-forward (DF), has a relay that decodes user messages
before forwarding them to the destination [5], [6]. Similarly,
the strategy in [4, Theorem 6], now often calledcompress-
and-forward (CF), has the relay quantize its output symbols
and transmit the resulting quantized bits to the destination [3].

We study the problem of resource allocation in a two-
user ergodic fading orthogonal MARC employing DF under
the assumption that the instantaneous fading state between
each transmit-receive pair in this network is known at both
the transmitter and receiver. Resource allocation for a single-
user ergodic fading orthogonal relay channel employing DF
and subject to an average power constraint at the source and
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relay is studied in [2] (see also [7]). The authors formulate
the problem as amax-min optimization. They draw parallels
with the classic minimax optimization in hypothesis testing
to show that the optimal resource allocation achieves one of
three solutions depending on the joint fading statistics. The
orthogonal MARC studied here is a multiaccess generalization
of the orthogonal relay channel in [2]; however, the optimal
policies developed in [2] do not extend readily to maximize
the sum-rate of the MARC. For a two-user MARC, we show
that the DF sum-rate belongs to one of five disjoint cases
or lies on the boundary of any two of them. Our results
reveal two interesting observations: 1) analogously to a classic
fading multiaccess channel [8], [9], the sum-rate optimal
policy for each case exploits the multiuser fading diversity
to opportunistically schedule users; 2) however, these optimal
policies are not necessarily water-filling solutions. Finally, we
present a geometric interpretation for each case to highlight
the effects of node topology in the analysis of multi-terminal
networks.

The paper is organized as follows. In Section II, we model
the orthogonal MARC with Gaussian noise and fading. In
Section III we present the rate region and determine the power
policies that maximize the DF sum-rate. Finally, we conclude
in Section IV.

II. CHANNEL MODEL AND PRELIMINARIES

A two-user MARC consists of two source nodes numbered
1 and2, a relay noder , and a destination noded. We write
K = {1, 2} to denote the set of sources,T = K ∪ {r} to
denote the set of transmitters, andD = {r, d} to denote the
set of receivers. In an orthogonal MARC, the sources transmit
to the relay and destination on one channel, say channel 1,
while the half-duplex relay transmits to the destination onan
orthogonal channel 2 as shown in Fig. 1. A fractionθ of the
total bandwidth resource is allocated to channel 1 while the
remaining fractionθ = 1− θ is allocated to channel 2. In the
fractionθ, the sourcek transmits the signalXk while the relay
and the destination receiveYr and Yd,1 respectively. In the
fractionθ, the relay transmitsXr and the destination receives
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Fig. 1. A two-user orthogonal MARC.

Yd,2. In each time symbol (channel use), we then have

Yr = hr,1X1 + hr,2X2 + Zr (1)

Yd,1 = hd,1X1 + hd,2X2 + Zd,1 (2)

Yd,2 = hd,rXr + Zd,2 (3)

whereZr, Zd,1, Zd,2 are independent circularly symmetric
complex Gaussian noise random variables with zero means
and unit variances. We writeh to denote the vector of fading
gains,hk,m, for all k ∈ D andm ∈ T , k 6= m, such thath is
a realization for a given channel use of a jointly stationaryand
ergodic vector fading processH. We assume that the fraction
θ is fixed a priori and is known at all nodes.

Over n uses of the channel, the source and relay tranmis-
sions are constrained in power according to

n
∑

i=1

E(|Xki|
2
) ≤ nP k for all k ∈ T . (4)

Since the sources and relay know the fading states of the links
on which they transmit, they can allocate their transmitted
signal power according to the channel state information. We
write Pk(h) to denote the power allocated as a function of the
channel statesh at thekth transmitter, for allk ∈ T . For an
ergodic fading channel, (4) then simplifies to

E(Pk(h)) ≤ P k for all k ∈ T (5)

where the expectation in (5) is over the joint distributionH.
We write P (h) to denote a vector of power allocations with
entriesPk(h) for all k ∈ T , and defineP to be the set of
all P (h) whose entries satisfy (5). For ease of notation, we
henceforth omit the functional dependence ofP on h. We use
the notationC(x) = log(1+ x) where the logarithm is to the
base 2,(x)+ = max(x, 0), and writeRS =

∑

k∈SRk for any
S ⊆ K.

III. SUM-RATE OPTIMAL POWER POLICY

The DF rate region for a MARC with fixed channel gains
and a full-duplex relay is developed in [5, Appendix A] (see
also [6]). For a half-duplex MARC with a fixedh and a
fixed fraction θ, the DF rate region includes an additional

conditioning on the half-duplex modes of the relay [3] and
is the set of all rate pairs(R1, R2) that satisfy

Rk ≤ min







θC
(

|hd,k|
2Pk

θ

)

+ θC
(

|hd,r|
2Pr

θ

)

,

θC
(

|hr,k|
2Pk

θ

)







, k = 1, 2

(6)
and

R1+R2 ≤ min















θC

(

2
∑

k=1

|hd,k|
2Pk

θ

)

+ θC
(

|hd,r|
2Pr

θ

)

,

θC

(

2
∑

k=1

|hr,k|
2Pk

θ

)















.

(7)
For a stationary and ergodic vector processH , the channel in
(1)-(3) can be modeled as a set of parallel Gaussian orthogonal
MARCs, one for each fading instantiationh. For a fixed
P , the DF rate bounds for this ergodic fading channel are
obtained by averaging the bounds in (6) and (7) over all
channel realizations. The DF rate region,RDF , achieved over
all P ∈ P , is given by the following theorem.

Theorem 1: The DF rate region,RDF , achieved over an
ergodic fading orthogonal Gaussian MARC is

RDF =
⋃

P∈P

{Rr (P ) ∩Rd (P )} (8)

where, for allS ⊆ K, we have

Rr (P ) =











(R1, R2) : RS ≤ θEC







∑

k∈S

|hr,k|
2
Pk

θ

















(9)
and

Rd (P ) =















(R1, R2) : RS ≤ θEC

(
P

k∈S

|hd,k|
2Pk

θ

)

+θEC
(

|hd,r|
2Pr

θ

)















(10)
Remark 2: The rate regionRDF is convex. This follows

from the convexity of the setP and the concavity of thelog
function.

The regionRDF in (8) is a union of the intersections
of the regionsRr(P ) andRd(P ) achieved at the relay and
destination respectively, where the union is over allP ∈ P .
SinceRDF is convex, each point on the boundary ofRDF

is obtained by maximizing the weighted sumµ1R1 + µ2R2

over all P ∈ P , and for all µ1 > 0, µ2 > 0. Specifically,
we determine the optimal policyP ∗ that maximizes the sum-
rateR1+R2 whenµ1 = µ2 = 1. Observe from (8) that every
point on the boundary ofRDF results from the intersection of
Rr(P ) andRd(P ) for someP . In Figs. 2 and 3 we illustrate
the five possible choices for the sum-rate resulting from such
an intersection. Case1 and case2 result when no rate pair on
the sum-rate plane achieved at one receiver lies within or on
the boundary of the rate region achieved at the other receiver
(see Fig. 2). On the other hand, cases3a, 3b, and 3c result
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Fig. 2. Rate region and sum-rate for case 1 and case 2.

when there is more than one such rate pair as shown in Fig.
3. Observe that case3c corresponds to a boundary case where
the sum-rate planes overlap. We also consider six boundary
cases where there is exactly one such rate pair that serves as
a transition between case1 or 2 and one of cases3a, 3b , or
3c. An example of a boundary case for case1 and case3a
is shown in Fig. 3. We writeBm ⊆ P to denote the set of
P that achieve casei, i = 1, 2, 3a, 3b, 3c andBl,n, l = 1, 2,
n = 3a, 3b, 3c to denote the set ofP satisfying each boundary
case. We show in the sequel that the optimization is simplified
considerably when the conditions for each case are defined
such that the setsBi andBl,n are disjoint for alli, l, n, and
thus, are either open or half-open sets such that no two sets
share a boundary. Finally, we observe that cases1 and2 do not
share a boundary since such a transition (see Fig. 2) requires
passing through case3a or 3b or 3c.

To determine the optimalP ∗, we first define the conditions
for each case and determine the policyP (i) or P (l,n) maxi-
mizing the sum-rate for casei or the boundary case(l, n). We
collect the six boundary cases as the last case. The optimal
policy for each case is determined using Lagrange multipliers
and theKarush-Kuhn-Tucker (KKT) conditions [10, 5.5.3].

Case 1: This case occurs when the power policyP ∈ B1

achieves the relay and destination regions shown in Fig 2. The
maximum sum-rate achieved in this case is

max
P∈B1

(

Rmax
1,d (P ) +Rmax

2,r (P )
)

(11)

where Rmax
k,m is the maximum rate achieved by userk at

receiverm ∈ D in (9) and (10). The open setB1 contains
all P that satisfy

Rmax
1,d (P ) < Rmin

1,r (P ) andRmax
2,r (P ) < Rmin

2,d (P ) (12)

whereRmin
k,m is the rate achieved by userk when it is the

first user to be successively decoded at a sum-rate corner
point achieved at receiverm. SinceB1 is not known a priori,
we determine the optimalP (1) maximizingR1 + R2 in (11)
over P . Expanding (11) using (9) and (10) and applying the
Lagrange multiplier rule and the KKT conditions, we obtain
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Fig. 3. Rate region and sum-rate for cases3a, 3b, and3c.

P
(1)
k andP (1)

r as

P
(1)
k =

(

θ
νk ln 2 − θ

|hm,k|
2

)+

(k,m) = (1, d), (2, r) (13)

and

P (1)
r =

(

θ

νr ln 2
−

θ

|hd,r|
2

)+

(14)

where the water-filling levelνk, k = 1, 2, r, is determined from
(5). To ensure that case 1 occurs, we require thatP (1) ∈ B1,
i.e., (13) and (14) satisfy (12). Then, the concavity of the rate
functions in (9) and (10) suffices to show thatP (1) in (13) and
(14) maximizes (11). On the other hand, whenP (1) 6∈ B1, we
show thatR1+R2 achieves its maximum outsideB1. Note that
the expression forR1+R2 for the other cases is not the same
as that in (11). The proof follows from the fact thatR1 +R2

in (11) is a concave function ofP for all P ∈ P . Thus, when
P (1) 6∈ B1, for everyP ∈ B1 there exists aP

′

∈ B1 with
a larger sum-rate. Combining this with the fact that the sum-
rate expressions are continuous while transitioning from one
case to another at the boundary of the open setB1, ensures
that the maximum sum-rate is achieved by someP 6∈ B1.
We remark that similar arguments also apply to the remaining
cases, and will be omitted for brevity. Finally, we remark that
(12) models a network geometry in which the destination and
source 1 are physically proximal, i.e., they form a cluster,and
the relay and source 2 form another cluster.

Case 2: The maximum sum-rate achieved for this case is

max
P∈B2

(

Rmax
1,r (P ) +Rmax

2,d (P )
)

(15)

whereB2 contains allP that satisfy

Rmax
1,r (P ) < Rmin

1,d (P ) andRmax
2,d (P ) < Rmin

2,r (P ) . (16)

As in case 1, we can show that (15) is maximized by setting
the optimalP (2)

k andP (2)
r to the expressions in (13) and (14)

respectively with(k,m) = (1, r), (2, d) provided the resulting
P (2) satisfies (16). Finally, we remark that the conditions in
(16) model a network geometry in which the destination and
source 2 form one cluster while the relay and source 1 form
another cluster.



Case 3: Consider the cases3a, 3b, and3c shown in Fig. 3.
The sum-rate optimization for all three cases simplifies to

max
P∈B3

min ((RK)r , (RK)d) (17)

where(RK)r and (RK)d are the mutual information expres-
sions in (9) and (10) respectively forS = K, andB3 consists of
P that do not satisfy (12) and (16) either as strict inequalities
or with equality. We writeB3 = B3a ∪ B3b ∪ B3c, whereBi,
i = 3a, 3b, 3c is defined for casei below. The optimization in
(17) is a multiuser generalization of the single-usermax-min
problem studied in [2]. Extending the known general solution
to (17), the optimal policyP (3) for this case satisfies one of
following three conditions

Case 3a: (RK)r |P (3) < (RK)d |P (3) (18)

Case 3b: (RK)r |P (3) > (RK)d |P (3) (19)

Case 3c: (RK)r |P (3) = (RK)d |P (3) . (20)

We proceed to study cases3a, 3b, and3c in detail.
Case 3a: Maximizing (RK)r subject to (5) results in the KKT
conditions

fk ≤ νk ln 2, k = 1, 2 (21)

where

fk = |hr,k|
2

/(

1 +
2
∑

k=1

|hr,k|
2 Pk

θ

)

. (22)

For those channel states in which the two users do not see
the same scaled fading gains at the relay, i.e.,|hr,1|/ ν1 6=
|hr,2|/ ν2, (21) reduces, for allk, j ∈ K, k 6= j, andi = 3a,
to

P
(i)
k =

{
(

θ
νk ln 2 − θ

|hr,k|
2

)+

fk > fj
νk
νj
, j 6= k

0 o.w.
. (23)

Observe that the optimalP (3a)
k in (23) is an opportunistic

water-filling solution that exploits the fading diversity in a
multiaccess channel with the relay as the receiver. The optimal
policy at the relayP (3a)

r is given by (14). ForP (3a) ∈ B3, the
requirement of satisfying (18), i.e.,P (3a) ∈ B3a, simplifies to
a threshold conditionP r > Pu

(

P 1, P 2

)

whereP k, k ∈ T ,
is defined in (5) and the thresholdPu

(

P 1, P 2

)

is obtained by
setting (18) to an equality. WhenP (3a) ∈ B3 butP (3a) 6∈ B3a,
R1+R2 is maximized by eithercase 3b or case 3c. ForP (3a)

6∈ B3, as argued in case 1, the sum-rate is not maximized by
anyP ∈ B3. Finally, the condition in (18) suggests a geometry
where the sources and destination are clustered.
Case 3b : The KKT conditions and optimalP (3b)

k for this case
maximize(RK)d and are given by (21) and (23) respectively
with the subscript ‘r’ in (22) changed to ‘d’ for all k and
i = 3b. Further, (21) and (22) also hold for the relay node,
k = r, and simplifies to the water-filling solution in (14).
Thus, as in case3a, it is optimal to time-duplex the users
except that this is now based on their scaled fading gains to
the destination. ForP (3b) ∈ B3, satisfying (19), i.e.,P (3b)

∈ B3b, reduces to satisfying the threshold conditionP r <
Pl

(

P 1, P 2

)

wherePl

(

P 1, P 2

)

is determined by setting (19)

to an equality. Finally, (19) implies a geometry in which the
sources are clustered closer to the relay than to the destination.
Case 3c (equalizer policy): Maximizing (RK)r over all P ,
subject to (20) givesP (3c). This case occurs whenP (3c) ∈
B3c, i.e. Pl

(

P 1, P 2

)

≤ P r ≤ Pu

(

P 1, P 2

)

. The resulting
KKT conditions take the form in (21) such that fork = 1, 2,

fk =
(1− α) |hr,k|

2

1 +
2
∑

j=1

|hr,j |
2
Pj

/

θ

+
α |hd,k|

2

1 +
2
∑

j=1

|hd,j|
2
Pj

/

θ

. (24)

For k = r, fr is obtained by replacinghr,k in (22) by hd,r

and scaling byα. The Lagrange multiplierα accounts for the
boundary condition in (20) and is computed by evaluating (20)
at P (3c). The relay’s optimal policy simplifies to the water-
filling solution in (14) with the first term scaled byα. For
|hm,1| /ν1 6= |hm,2| /ν2, m = r or d, (21) simplifies, forfk
in (24) and for allk, j ∈ K, k 6= j, andi = 3c as

P
(i)
k =

{
(

root of fk|Pj=0

)+
fk > fj

0 o.w.
(25)

From (25), we see that userk, k = 1, 2, transmits opportunis-
tically over those channel states where a functionfk of its
fading gains and power is larger than that of the other user.
Note that the optimal policyP (3c)

k in (25) is no longer a water-
filling solution at the two sources. Finally, we remark that this
boundary case occurs for a range of geometries that transition
from the clustered geometry of case3a to that of case3b.

Case 4: Boundary Cases: We now consider the six bound-
ary cases and summarize the optimalP (l,n), l = 1, 2, n = 3a,
3b, 3c, for each case. As with case3c, we observe that the
geometries for these boundary cases also straddle the clustered
geometries of the two cases involved.
Case 1 andCase 3a: The sum-rate optimization for this case
simplifies to

max
P∈B1,3a

(RK)r s.t. (RK)r = Rmax
1,d +Rmax

2,r (26)

whereB1,3a is the set of allP that satisfy (18), (26), and
one of the inequalities in (12) (see Fig. 3). Note that from
(9), we can write(RK)r = Rmin

1,r +Rmax
2,r thus simplifying the

condition in (26) toRmin
1,r = Rmax

1,d as shown in Fig. 3. As
before, we obtain the KKT conditions in (21) fork = 1, 2,
(k,m) = (1, d), (2, r), and

fk =
(1− α) |hr,k|

2

1 +
2
∑

j=1

|hr,j |
2Pj

θ

+
α |hm,k|

2

1 +
|hm,k|

2Pk

θ

(27)

whereα is the Lagrange multiplier satisfying the boundary
condition in (26). When|hm,1| /ν1 6= |hm,2| /ν2, m = r or
d, (21) simplifiesP (1,3a)

k to the opportunistic non-water-filling
solution in (25) withfk in (27), and for allk, j ∈ K, k 6= j,
(k,m) = (1, d), (2, r), (l, n) = (1, 3a). The optimalP (1,3a)

r

is given by (14) with the first term scaled byα.
Case 2 andCase 3a: The sum-rate optimization for this case
is

max
P∈B2,3a

(RK)r s.t.Rmin
2,r = Rmax

2,d (28)



whereB2,3a is the set of allP that satisfy (18), (28), and
the remaining inequality in (16). The resulting KKT con-
ditions in (21) usefk, k = 1, 2, defined in (27) but with
(k,m) = (1, r), (2, d). Note that α captures the equality
condition in (28). For|hm,1| /ν1 6= |hm,2| /ν2, m = r or
d, and(k,m) = (1, r), (2, d), P (2,3a)

k at each source is given
by the opportunistic policy in (25). The optimal relay policy
P

(2,3a)
r is the same as that obtained incase 1 andcase 3a.

Case 1 andCase 3b: The sum-rate optimization for this case
is

max
P∈B1,3b

(RK)d s.t.Rmin
2,d = Rmax

2,r (29)

whereB1,3b is the set of allP that satisfy (19), (29), and the
remaining inequality in (12). The resulting KKT conditions
satisfy (21) wherefk, k = 1, 2, is given by (27) with
the subscript ‘r’ replaced by ‘d’. Note that α captures the
boundary condition in (29). For|hm,1| /ν1 6= |hm,2| /ν2, m =

r or d, and (k,m) = (2, r), (1, d), P (1,3b)
k at each source is

given by the opportunistic non-water-filling solution in (25).
The optimal relay policyP (1,3b)

r simplifies to the water-filling
solution in (14).
Case 2 andCase 3b: The sum-rate optimization for this case
simplifies to

max
P∈B2,3b

(RK)d s.t.Rmin
1,d = Rmax

1,r (30)

whereB2,3b is the set of allP that satisfy (19), (30), and
the remaining inequality in (16). We remark that the KKT
conditions are the same as (21) wherefk, k = 1, 2, is given
by (27) with ‘r’ replaced by ‘d’ and (k,m) = (1, r), (2, d).
The resultingP (2,3b)

k , k = 1, 2 are given by the opportunistic
policies in (25). Finally, the optimalP (2,3b)

r is the same as
that obtained incase 1 andcase 3b.
Case 1 andCase 3c: The sum-rate optimization for this case
is

max
P∈B1,3c

(RK)r s.t.Rmin
2,d = Rmax

2,r andRmax
1,d = Rmin

1,r (31)

whereB1,3c is the set of allP that satisfy (20), (31), and the
remaining inequality in (12). The resulting KKT conditions
satisfy (21) fork = 1, 2, and(k,m) = (1, d), (2, r) where

fk =
α3 |hr,k|

2

1 +
2
∑

j=1

|hr,j|
2Pj

θ

+
α2 |hd,k|

2

1 +
2
∑

j=1

|hd,j |
2Pj

θ

+
α1 |hm,k|

2

1 +
|hm,k|

2Pk

θ

(32)
andα1, α2, andα3 = 1 − α1 − α2 are Lagrange multipliers
that capture the boundary conditions in (31). When|hm,1| /ν1
6= |hm,2| /ν2, m = r or d, for all k, j ∈ K, k 6= j, and pairs
(k,m) = (1, d), (2, r), the optimalP (1,3c)

k , k = 1, 2, is given
by the opportunistic policy in (25) whileP (1,3c)

r is given by
the water-filling solution in (14) with the first term scaled by
(α1 + α2).
Case 2 andCase 3c: The sum-rate optimization for this case
is

max
P∈B2,3c

(RK)r s.t.Rmax
2,d = Rmin

2,r andRmin
1,d = Rmax

1,r (33)

whereB2,3c is the set of allP that satisfy (20), (33), and the
remaining inequality in (16). The resulting KKT conditions
and optimal policyP (2,3c) are the same as incase 1 andcase
3c but with (k,m) = (1, r), (2, d).

Finally, the optimalP ∗ is given by the following theorem.
Theorem 3: The P ∗ that maximizes the sum-rate is ob-

tained by computingP (m) or P (j,k) starting from case1
and proceeding one case at a time, until for some case the
correspondingP (m) or P (j,k) satisfies the case conditions.

IV. SUMMARY AND FUTURE WORK

We have developed the power policy that maximizes the
sum-rate of a two-user orthogonal MARC. We have shown
that the optimal policy is a function of the channel statistics
and network geometry and can be classified into two broad
categories. The first category involves cases where each user
is clustered with a different receiver as a result of which the
sum-rate decouples into independent terms for each user and
the relay. The second category includes the cases where the
two users are clustered with one of the receivers as well as
the boundary cases. The first category admits the classic water-
filling solution at each user and the relay. The optimal policies
for the second category do not always result in a water-filling
solution at the sources; however, they reveal the optimality of
exploiting the multiuser fading diversity to opportunistically
schedule users. Our results can be generalized to aK-user
orthogonal MARC withK > 2. Finally, one could also
consider the resource allocation problem for CF where the
challenge lies in solving a non-convex optimization problem.
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