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Abstract— The problem of resource allocation is studied for a relay is studied in [2] (see also [7]). The authors formulate
two-user fading orthogonal multiaccess relay channel (MARC) the problem as anax-min optimization. They draw parallels
where both users (sources) communicate with a destinatiomi with the classic minimax optimization in hypothesis tegtin

the presence of a relay. A half-duplex relay is considered #t to sh that th timal locati hi f
transmits on a channel orthogonal to that used by the sources 0 show that the optimal resource allocation achieves one o

The instantaneous fading state between every transmit-reive three solutions depending on the joint fading statistidse T

pair in this network is assumed to be known at both the orthogonal MARC studied here is a multiaccess generatiati

transmitter and receiver. Under an average power constraib of the orthogonal relay channel in [2]; however, the optimal
at each source and the relay, the sum-rate for the achievable g)icies developed in [2] do not extend readily to maximize
strategy of decode-and-forward (DF) is maximized over all pwer

allocations (policies) at the sources and relay. It is showithat the sum-rate of the MARC. For a two-user _MAR_C’_ We show
the sum-rate maximizing policy exploits the multiuser fadng that the DF sum-rate belongs to one of five disjoint cases
diversity to reveal the optimality of opportunistic channel use by or lies on the boundary of any two of them. Our results
each user. A geometric interpretation of the optimal power plicy  reveal two interesting observations: 1) analogously taaasit

is also presented. fading multiaccess channel [8], [9], the sum-rate optimal

I. INTRODUCTION policy for each case exploits the multiuser fading divgrsit
The multiaccess relay channel (MARC) is a network ito opportunistically schedule users; 2) however, thesenaht

which several users (source nodes) communicate with aesin Plicies are not necessarily water-filling solutions. Hiyave
.present a geometric interpretation for each case to highlig

destination in the presence of a relay [1]. The MARC i e effects of node topology in the analysis of multi-teratin
a model for relay-based cooperation in a multiuser net\NoF]ketWOrkS
where the users have limited power and processing capedbilit '

or need tangible incentives to cooperate. We model a MARC

with a half-duplex relay as aorthogonal MARC where the ~ The paper is organized as follows. In Secfidn I, we model
relay transmits on a channel orthogonal to that used by tHe orthogonal MARC with Gaussian noise and fading. In
sources (see [2], [3]). The coding strategies developethfor Sectior{Ill we present the rate region and determine the powe
relay channel [4] extend readily to the MARC [3]. For exam_policies_ that maximize the DF sum-rate. Finally, we conelud
ple, the strategy of [4, Theorem 1], now often caltstode- in Section[TV.

and-forward (DF), has a relay that decodes user messages

before forwarding them to the destination [5], [6]. Simiyar Il. CHANNEL MODEL AND PRELIMINARIES

the strategy in [4, Theorem 6], now often calledmpress-
and-forward (CF), has the relay quantize its output symbol
and transmit the resulting quantized bits to the destingd8.

A two-user MARC consists of two source nodes numbered
? and 2, a relay node-, and a destination nodé We write
K = {1,2} to denote the set of source®, = K U {r} to
We study the problem of resource allocation in a twoqenOte the_ set of transmitters, amu= {r,d} to denote the .
set of receivers. In an orthogonal MARC, the sources transmi

user ergodic fading orthogonal MARC employing DF undetrc') the relay and destination on one channel, say channel 1,

the ha?sumpt!?n th‘?‘t the.m-statrrw]?aneotus fI? q'ni state l:eéwt ile the half-duplex relay transmits to the destinationamn
each transmit-receive pair in this network 15 known at bo thogonal channel 2 as shown in Hig. 1. A fractidof the

the transn;-ttefr ?d rect(::ver. R(Iasolurce sllocatllon folr g.lstt tal bandwidth resource is allocated to channel 1 while the
user ergodic tading orthogonal refay channel employing emaining fractiord = 1 — 6 is allocated to channel 2. In the

and subject to an average power constraint at the source %%tione the source: transmits the signaX;, while the relay

This research was supported in part by the US National Sgienandation and _the_deStmat'on rece'V_Er and Y 1 respe_ctlv_ely. In the
under Grants ANI-03-38807, CCR-04-29724 and CNS-06-25637 fraction 6, the relay transmits(,. and the destination receives
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S X1 conditioning on the half-duplex modes of the relay [3] and

\ is the set of all rate pairéR;, R2) that satisfy
h

oC (Lesfle) 1 go (Lechl),

Ry < min o (Ihr,%\sz)

k=1,2

(6)

% ' - and
2 _
5% 0C (Z hd,k0|2pk) +8c (\hd%\zpr) :
| R1+Rs < min k=1 )
) oc (S |k |* Pr
Fig. 1. A two-user orthogonal MARC. = [

(7)
For a stationary and ergodic vector procéksthe channel in
Y. In each time symbol (channel use), we then have (@D)-(3) can be modeled as a set of parallel Gaussian orttadgon
’ MARCs, one for each fading instantiatioh. For a fixed
Y, =he 1 Xq + heoXo + Z, (1) P, the DF rate bounds for this ergodic fading channel are
Y1 =hg1 X1+ hgoXo+ Zag1 (2) obtained by averaging the bounds ia (6) and (7) over all
S 7 7 channel realizations. The DF rate regi@y -, achieved over
Yao = harXe + Zaz 3) all P € P, is given by the following theorem.
where Z,., Za1, Za» are independent circularly symmetric Theorem 1: The DF rate regionRpr, achieved over an
complex Gaussian noise random variables with zero meattgodic fading orthogonal Gaussian MARC is
and unit variances. We write to denote the vector of fading
gains,hy,m, forall k € D andm € T, k # m, such thath is Rpr = U {R-(B)NRa(P)} (8)
a realization for a given channel use of a jointly statioreang £eP
ergodic vector fading procedd. We assume that the fractionwhere, for allS C K, we have

0 is fixed a priori and is known at all nodes.
P 3 Jhoil® Py

. k€S
Over n uses of the channel, the source and relay tranmis- %" (B) = q (B1, Re) : Rs < 0EC 0

sions are constrained in power according to

i 9)
S E(Xl?) <nPy forall ke T, (4 and
=1 > |ha,k*Pr
A . A (Rl,Rg) : RS S QEC I@f
Since the sources and relay know the fading states of the link R4 (P) =
on which they transmit, they can allocate their transmitted LIEC (\hd,ZIQPT)
signal power according to the channel state information. We 0 (10)

write Py (h) to denote the power allocated as a function of the
channel stateg at thek!” transmitter, for allk € 7. For an
ergodic fading channelJ4) then simplifies to

Remark 2: The rate regiorfiR pr is convex. This follows
from the convexity of the seP and the concavity of thég
function.

E(Py(h)) < Py forall ke T (5)

The regionRpr in @) is a union of the intersections
where the expectation ifi](5) is over the joint distributih  of the regionsR, (P) and R4(P) achieved at the relay and
We write P (h) to denote a vector of power allocations withjestination respectively, where the union is overRle P.
entries P (h) for all k£ € 7, and defineP to be the set of SinceR - is convex, each point on the boundary Bf »
all P (h) whose entries satisfy(5). For ease of notation, Wg obtained by maximizing the weighted symR; + 2 Rs
henceforth omit the functional dependencedbn h. We use over all P € P, and for all iy > 0, ue > 0. Specifically,
the notationC(x) = log(1 + x) where the logarithm is to the we determine the optimal policP* that maximizes the sum-
base 2(z)" = max(z,0), and writeRs = 3", Rk for any rate R, + R, wheny; = us — 1. Observe from[{8) that every
S CK. point on the boundary dR pz results from the intersection of
R.-(P) andR4(P) for someP. In Figs.[2 andB we illustrate
the five possible choices for the sum-rate resulting fromhsuc

The DF rate region for a MARC with fixed channel gainsin intersection. Caskand case result when no rate pair on
and a full-duplex relay is developed in [5, Appendix A] (se¢the sum-rate plane achieved at one receiver lies within or on
also [6]). For a half-duplex MARC with a fixed and a the boundary of the rate region achieved at the other receive
fixed fraction §, the DF rate region includes an additiona{see Fig[P). On the other hand, cases 3b, and 3¢ result
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Fig. 2. Rate region and sum-rate for case 1 and case 2. Fig. 3. Rate region and sum-rate for cases 3b, and3c.

when there is more than one such rate pair as shown in FI@E}) and PV as

[3. Observe that cask corresponds to a boundary case where 4

the sum-rate planes overlap. We also consider six boundaryP,il) = (Uk?n2 - ﬁ) (k,m) = (1,d),(2,r) (13)
cases where there is exactly one such rate pair that serves a(? ’

a transition between caseor 2 and one of caseSa, 3b, or " _ _ 4

3c. An example of a boundary case for casand case3a p) — ( 0 . 0 ) (14)
is shown in Fig[B. We write3,, C P to denote the set of " vpIn2 |hd,r|2

P that achieve case i = 1,2,3a,3b,3cand 3, ,, | = 1,2,

n = 3a, 3b, 3c to denote the set @P satisfying each boundary
case. We show in the sequel that the optimization is simglifi

considerably when the conditions for each case are defi ; . ) .
such that thye set8; and 53, ,, are disjoint for allé, [, n, and unctions in {9) and(10) suffices to show tiat!) in (L3) and

- - )
thus, are either open or half-open sets such that no two s ) maximizes[(I1). On the other hand, wheft) ¢ B,, we

share a boundary. Finally, we observe that casasd2 do not >0V thati?; +R; achieves its maximum outsidg, . Note that
share a boundary since such a transition (see[Fig. 2) resqum:e expression foR, + R, for the other cases is not the same
passing through casg: or 3b or 3c. as that_ln [(I). The proof.follows from the fact thAt + R»

in (I1) is a concave function @? for all P € P. Thus, when
P & By, for every P € B, there exists aP' € B; with

. ) @) -2 a larger sum-rate. Combining this with the fact that the sum-
for each case and determine the poliy” or L") maxi- e expressions are continuous while transitioning frate o

mizing the sum-rate for caseor the boundary casg, n). We case to another at the boundary of the opensetensures

collect the six boundary cases as the last case. The optiq?,p@.{t the maximum sum-rate is achieved by soRez B,

policy for each case is determined using Lagrange multipliyye remark that similar arguments also apply to the remaining
and theKarush-Kuhn-Tucker (KKT) conditions [10, 5.5.3]. 4505 and will be omitted for brevity. Finally, we remarktth

Case 1. This case occurs when the power poliEyc B, ) models a network geometry in which the destination and
achieves the relay and destination regions shown ifilFig 8. T&, ,ce 1 are physically proximal, i.e., they form a clusted

maximum sum-rate achieved in this case is the relay and source 2 form another cluster.
max (P) 4 RIS (P)) (11) Case 2. The maximum sum-rate achieved for this case is

max ( 1,d
gleaé( max (P) + RYS* (P)) (15)

where the water-filling levaly, k = 1,2, r, is determined from
[B). To ensure that cagé 1 occurs, we require Pt € By,
& (13) and[(I4) satisfy_(12). Then, the concavity of taer

To determine the optimaP*, we first define the conditions

PeB;

where R;'7 is the maximum rate achieved by uskrat

receiverm € D in (@) and [10). The open séf; contains where3, contains allP that satisfy
all P that satisfy , )
. . . . 1 (B) < Ryy' (P) and RyG* (P) < Ry)" (). (16)
rd* (B) < Ry (B) and B2 (P) < R (B) - (12) As in casdl, we can show thaf[15) is maximized by setting
where R™» is the rate achieved by usér when it is the the optimalP” and P to the expressions ifi (13) arid{14)
first user to be successively decoded at a sum-rate correspectively with(k,m) = (1,r), (2,d) provided the resulting
point achieved at receiven. SinceB3; is not known a priori, P satisfies [(16). Finally, we remark that the conditions in
we determine the optimaP™) maximizing R, + R, in (I1) (I8) model a network geometry in which the destination and
over P. Expanding[(I1) usind{9) and (10) and applying theource 2 form one cluster while the relay and source 1 form
Lagrange multiplier rule and the KKT conditions, we obtaianother cluster.



Case 3: Consider the case®:, 3b, and3c shown in Fig[B.
The sum-rate optimization for all three cases simplifies to

gle%)i min ((Rx), , (Rk),) (17)

where (R ), and (Rx), are the mutual information expres-

sions in [9) and{1I0) respectively f6r= K, andB; consists of

P that do not satisfy[{12) an@(lL6) either as strict inequesditi

or with equality. We writeB3 = Bs, U Bs, U Bs., wherel;,
i = 3a, 3b, 3c is defined for case below. The optimization in
(I72) is a multiuser generalization of the single-us@x-min

to an equality. Finally,[{119) implies a geometry in which the
sources are clustered closer to the relay than to the déstina
Case 3c (equalizer policy): Maximizing (Rx), over all P,
subject to [2D) givesP®?). This case occurs wheR©¢) ¢
Bsc, i.e. P, (P1,P3) < P, < P,(P1,P3). The resulting
KKT conditions take the form in(21) such that fér=1, 2,

(1-a) |hr,k|2

2 2 ’
2 2
143 (Rl Pj/9 1+ 3 [hayl Pj/9
Jj=1 Jj=1

a|hai|

fo=

(24)

problem studied in [2]. Extending the known general sotutio™©" ¥ = 7, f» is obtained by replacing,.;. in (22) by A4,
to (I7), the optimal policy?® for this case satisfies one ofand scaling byx. The Lagrange multipliee accounts for the

following three conditions

Case 3a: (R;c)T |£(3) < (R}c)d |£(3) (18)
Case 3b: (RIC)T |B(3) > (Rm)d |£(%) (19)
Case 3c: (R;{)T |£(3) = (R’C)d |£(3). (20)

We proceed to study casés, 3b, and3c in detail.
Case 3a: Maximizing (Rx),. subject to[(5) results in the KKT
conditions

fe <vpln2,

2 2
h,. P
fro = |hr,k|2/<1+§ :%) .
k=1

k=1,2 (21)
where

(22)

boundary condition i (20) and is computed by evaluafing (20
at P3<), The relay’s optimal policy simplifies to the water-
filling solution in (I4) with the first term scaled by. For
|hm, 1l /v1 # |hm,2| /v2, m = r or d, (Z21) simplifies, forfy

in 24) and for allk,j € K, k # j, andi = 3c as

pli) _ (root of fklpj:0)+ Ir > f;
k 0 0.W.

From [25), we see that usér k = 1,2, transmits opportunis-
tically over those channel states where a functjanof its
fading gains and power is larger than that of the other user.
Note that the optimal policyf’,g%) in (28) is no longer a water-
filling solution at the two sources. Finally, we remark thaist
boundary case occurs for a range of geometries that tramsiti

(25)

For those channel states in which the two users do not 6" the clustered geometry of case to that of casesb.

the same scaled fading gains at the relay, il&,,1|/ 11 #
|hr2|/ v2, (21) reduces, for alk,j € K, k # j, andi = 3aq,
to

(i) (L - LY
P,j = veln2 ~ Th, g2

0

fo > 1550 # k
0.W.

(23)

Observe that the optimaP,gg") in (23) is an opportunistic
water-filling solution that exploits the fading diversitp &
multiaccess channel with the relay as the receiver. Thenapti
policy at the relayP®® is given by [T#). Fo?®®) € Bs, the
requirement of satisfyind (18), i.eR(®*) € Bs,, simplifies to
a threshold conditiorP, > P, (P, P2) wherePy, k € T,
is defined in[(5) and the threshold), (P1, P-) is obtained by
setting [I8) to an equality. WheR*) € B3 but P(%) & Bs,,
R1+ R, is maximized by eithecase 3b or case 3c. For P
¢ Bs, as argued in cadd 1, the sum-rate is not maximized

any P € Bs. Finally, the condition in[(1I8) suggests a geometry

where the sources and destination are clustered.
Case 3b : The KKT conditions and optimalP,g?’b) for this case

Case 4: Boundary Cases: We now consider the six bound-
ary cases and summarize the optined™, I = 1,2, n = 3a,
3b, 3¢, for each case. As with cask, we observe that the
geometries for these boundary cases also straddle thergdst
geometries of the two cases involved.

Case 1 andCase 3a: The sum-rate optimization for this case
simplifies to

max (Ry), St (Rc), = R + Ry
PeB1,3a ’ ’

where 3, 3, is the set of allP that satisfy [(IB),[(26), and
one of the inequalities iNC(12) (see Fid. 3). Note that from
@), we can write( Rx), = R"* + Ry thus simplifying the
condition in [26) toRY})" = RY7 as shown in Figll3. As
before, we obtain the KKT conditions if_(21) fér = 1,2,

(26)

(k,m)=(1,d),(2,r), and
1—a)lh, 2 alh, 2
by fk: ( > )| ,kl ||h ,k‘LP (27)
B2 P; 14 Bkl ik
14y ealhy ;
Jj=1

where « is the Lagrange multiplier satisfying the boundary

maximize (Rx), and are given by[(21) and_(23) reSpeCtivel%ondition in [26). Whenlu1| /v1 # [hmo| Jvos m = 7 OF

with the subscripts’ in (B2) changed to ' for all £ and L (1,3a) S -
¢ = 3b. Further, [2Il) and[{22) also hold for the relay nodgéﬁgsl{:gﬁsﬁﬁhf it: &g)ozagr%?lj:z n.on-’vcvatker;éﬂllﬁng
k = r, and simplifies to the water-filling solution in_({14). k ' ) € R, I3

o - . (1,3a)
Thus, as in cas@a, it is optimal to time-duplex the users(F:m) = (1,d), (2,7), (L,n) = (1,3a). The optimal P

except that this is now based on their scaled fading gainsI od'Ven by (1) W't_h the first term sca}leq W .

the destination. FoP® ¢ B, satisfying [19), i.e.P(" ase 2 and Case 3a: The sum-rate optimization for this case
€ Bay, reduces to satisfying the threshold conditih < IS
P, (P, P;) whereP, (Py, P,) is determined by setting (1L9)

max

max (Rg), S.t.Rg‘iT“: 5 (28)

PeB2 34



where B 3, is the set of allP that satisfy [(IB),[(28), and whereB; 3. is the set of allP that satisfy [(2D),[(33), and the
the remaining inequality in[{16). The resulting KKT con+emaining inequality in[(116). The resulting KKT conditions
ditions in [21) usef, k = 1,2, defined in [2V) but with and optimal policyP(>:3¢) are the same as itase 1 andcase
(k,m) = (1,r),(2,d). Note thata captures the equality 3¢ but with (k,m) = (1,7), (2,d).

condition in (28). For|h, 1| /v1 # |hmal /v2, m = r or

d, and (k,m) = (1,7),(2,d), p]f’?’“) at each source is given Finally, the optimalP™ is given by the following theorem.

by the opportunistic policy in[(25). The optimal relay pglic Theorem 3: The P* that maximizes the sum-rate is ob-
P> is the same as that obtaineddase 1 andcase 3¢.  tained by computing?™ or PU*) starting from casel
Case 1 and Case 3b: The sum-rate optimization for this caseand proceeding one case at a time, until for some case the
is correspondingf(m> or PU*) satisfies the case conditions.

R L RYIp = Ryax 29

Pglgﬁb( K)g S 2.d 2.7 (29)

whereB, 3, is the set of allP that satisfy [I9),[[29), and the We have developed the power policy that maximizes the

remaining inequality in[(12). The resulting KKT conditiongsum-rate of a two-user orthogonal MARC. We have shown
satisfy [21) wheref,, k = 1,2, is given by [27) with that the optimal policy is a function of the channel statsti

the subscript ' replaced by &'. Note thata captures the and network geometry and can be classified into two broad

boundary condition in(29). FQhu, 1| /v1 # |hm.2| /v2, m = Categories. The first category involves cases where each use
r or d, and (k,m) = (2,7), (L, d) 'Plgl,3b) at each source is 1S clustered with a different receiver as a result of whic th

given by the opportunistic non-water-filling solution OS2 sum-rate decouples into independent terms for each user and

The optimal relay polic;d%fl’%) simplifies to the water-filling the relay. The second category includes the cases where the

solution in [I#). two users are clustered with one of the receivers as well as
Case 2 and Case 3b: The sum-rate optimization for this caset_h(_e bounda_\ry cases. The first category admits the_class_er-\_/vat
simplifies to filling solution at each user and the relay. The_opt|mal pei?c_

) for the second category do not always result in a waterdillin
Poex (Ri)y St Ry = Ry (30) solution at the sources; however, they reveal the optignafit
) ’ ) exploiting the multiuser fading diversity to opportundstily
where B 3, is the set of allP that satisfy [(ID),[(30), and schedule users. Our results can be generalized i6-@ser
the remaining inequality in[(16). We remark that the KKTy1thogonal MARC with & > 2. Finally, one could also
conditions are the same ds (21) whefie k = 1,2, is given cqnsider the resource allocation problem for CF where the
by (Z4) with 'r’ replaced by & and (k,m) = (1,7),(2,d). challenge lies in solving a non-convex optimization prafle
The resultingP,iz’?’b), k = 1,2 are given by the opportunistic
policies in [25). Finally, the optimaPT(z’%) is the same as

that obtained incase 1 andcase 3b. [1] G.Kramer and A. J. van Wijngaarden, “On the white Gaussiultiple-
acess relay channel,” iRroc. 2000 IEEE Int. Symp. Inform. Theory,
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