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Abstract

This paper investigates the capacity of compound state-dependent channels with non-causal state

information available at only the transmitter. A new lower bound on the capacity of this class of channels

is derived. This bound is shown to be tight for the special case of compound channels with stochastic

degraded components, yielding the full characterization of the capacity. Specific results are derived for

the compound Gaussian Dirty-Paper (GDP) channel. This model consists of an additive white Gaussian

noise (AWGN) channel corrupted by an additive Gaussian interfering signal, known at the transmitter

only, where the input and the state signals are affected by fading coefficients whose realizations are

unknown at the transmitter. Our bounds are shown to be tight for specific cases. Applications of these

results arise in a variety of wireless scenarios as multicast channels, cognitive radio and problems with

interference cancellation.

I. INTRODUCTION

In the recent years, intensive research addressing theoretical and practical aspects was undertaken on

communications over channels controlled by random parameters, namely states. Gel’fand and Pinsker [1]

derived the capacity expression for discrete memoryless channels (DMCs), where the i.i.d. state sequence

is known at the transmitter before the start of the communication, but not at the receiver. This scenario
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is known as state-dependent DMCs with non-causal state information. Costa [2] considered the case of

an additive white Gaussian noise (AWGN) channel corrupted by an additive Gaussian interference which

is available at the transmitter only. He showed that choosing an appropriate probability distribution (PD)

for the auxiliary random variable (RV) and the state, referred to asDirty-Paper Coding(DPC), there is

no loss in capacity if the interference is known only to the encoder. This result has gained considerable

attention because of its potential use to mitigate the interference effects in multi-user scenarios.

In this work we focus on the compound state-dependent channel with non-causal state information

at the transmitter. This channel arises in scenarios where there is uncertainty on the channel statistic.

In this model, the conditional PD of the channel is parameterized by θ, which belongs to an arbitrary

setΘ and remains constant during the communication. Whereas, neither the sender nor the receiver are

recognizant of the realizationθ that governs the communication. This problem was initiallyinvestigated

in [3], where lower and upper bounds on the capacity were derived. In [4], this problem is identified as

being equivalent to thecommon-messagebroadcast channel (BC) with non-causal state information at

the transmitter. Moreover in [5], this is recognized to be the multicast channel. Results were obtained

for AWGN and binary channels, where a transmitter sends a common message to multiple receivers and

each of them experiences an additive interference available at the transmitter only. These channels are

of great interest because of their role in multi-user channels and in particular, for the emerging field of

cognitive radios. Recent work in [6] investigated the capacity of this framework, which is essentially

related to the problem considered here when the cognitive user is unaware of the channel path gains.

Broadcast channels with imperfect channel knowledge are also instances of this class of channels (cf. [7]

and [8]).

In prior work [9], [10], it was claimed that a strong converseestablishes the optimality of the lower

bound first derived in [3]. In this paper we will demonstrate that this is not the case in general. In fact,

the rate expression (2) that was conjectured to be optimal for the general compound channel with states

corresponds to the natural extension of the capacity expression obtained by Gel’fand and Pinsker’s [1] to

the compound setting case. Here we establish a new lower bound on the capacity of this class of channels

that can outperform the previous lower bound. This bound is based on a non-conventional approach [11],

[12] via a broadcasting strategy that allows the encoder to adapt the auxiliary RVs to each of possible

channel outcomes (or each of different users in the multicast setting). Finally, we specialize this bound

to the compound Gaussian Dirty-Paper (GDP) channel and derive an upper bound which is tight for

some compound models. Furthermore, we show that our lower bound is tight for the compound channel

with stochastic degraded components. Recent independent efforts deriving similar results are reported
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in [13], where explicit examples demonstrate also that the rate in expression (2) can be surpassed. The

organization of this paper is as follows. Definitions and main results are stated in Section II, while the

proof outline and an application to the compound GDP channelare given in Sections III and IV.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we introduce main definitions, formalize the problem and present lower and upper

bounds on the capacity.

A. Definitions and Problem Statement

We begin with the description of an arbitrary family of channels with discrete inputx ∈ X , discrete

states ∈ S and discrete outputy ∈ Y , which is characterized by a set of conditional probability

distributions (PDs)WΘ =
{

Wθ : X ×S 7−→ Y
}

θ∈Θ
, indexed byθ ∈ Θ, whereΘ is the set of indexes

(assumed to be finite). The transition PD of then-memoryless extension with inputsx = (x1, . . . , xn),

statess = (s1, . . . , sn) and outputsy = (y1, . . . , yn) is given by

W n
θ (y|x, s) =

n
∏

i=1

Wθ(yi|xi, si). (1)

The sequence of statess is assumed to be drawn i.i.d. with PDPS . The encoder is assumed to know

the sequence of states before the transmission starts, but the decoder does not know it. Whereas, neither

the sender nor the receiver are cognizant of the realizationof θ that governs the communication. The

channel states change from letter to letter following the PDPS , but θ ∈ Θ should not change during the

communication. This scenario is known as compound DMCs withnon-causal state information at the

transmitter. We argue the capacity is not increased if the decoder is aware of the indexθ ∈ Θ.

Definition 2.1 (Code):A code for this channel consists of two mappings, the encodermapping
{

ϕ :

Mn × S n 7−→ X n
}

and the decoder mapping
{

ψ : Y n 7−→ Mn

}

for some finite set of integers

Mn =
{

1, . . . ,Mn

}

. The encoding function
{

ϕ
}

maps the corresponding messagem ∈ Mn and the

statesS n into X n and the decoding function
{

ψ
}

mapsY n into Mn. In presence of feeback, where

the past of the channel outputs are available at the transmitter, the encoder mappings are given by
{

ϕi : Mn × Y i−1 × S n 7−→ X
}n

i=1
. An n-length block code for simultaneous DMCs

{

W n
θ : X n ×

S n 7−→ Y n, θ ∈ Θ
}∞

n=1
consists on a common code(ϕ,ψ) for the set of channelsWn

Θ =
{

W n
θ

}

θ∈Θ
.

The rate of such code isn−1 logMn and its error probability associated to the messagem ∈ Mn is

defined as

e(n)m

(

W n
θ , ϕ, ψ|s

)

=W n
θ

(

⋃

m′ 6=m

ψ−1(m′)
∣

∣ϕ(m, s), s
)

,
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for θ ∈ Θ ands ∈ S n. The maximum of average error probability (over all messages) is defined as

ē(n)max

(

W
n
Θ, ϕ, ψ

)

= max
m∈M

max
θ∈Θ

∑

s∈S n

Pn
S (s) e

(n)
m

(

W n
θ , ϕ, ψ|s

)

.

An n-length block code for the simultaneous DMCsWn
Θ whose maximum of average error probability

(2.1) satisfies̄e(n)max

(

W
n
Θ, ϕ, ψ

)

≤ ǫ will be called an(n, ǫ)-code.

Definition 2.2 (Achievable rate and capacity):Given 0 < ǫ, γ < 1, a non-negative numberR is an

ǫ-achievable rate for the compound channelWΘ if for every sufficiently largen there exist(n, ǫ)-codes

of raten−1 logMn ≥ R − γ. Then,R is an achievable rate if it isǫ-achievable for every0 < ǫ < 1.

The supremum ofǫ-achievable rates is called theǫ-capacityCǫ while the supremum of achievable rates

is called the capacity.

In the remainder of this section we state lower and upper bounds on the capacity of the general

compound DMC (1).

B. Lower Bounds on the Capacity

The following achievable rate, first found in [3], corresponds to the straightforward extension of the

Gel’fand and Pinsker’s capacity [1] to the compound settingcase.

Theorem 2.3:A lower bound on the capacity of the compound DMC
{

Wθ : X × S 7−→ Y
}

θ∈Θ

with states non-causally known only at the transmitter is given by

R = sup
PXU|S∈Q

min
θ∈Θ

{

I(U ;Yθ)− I(U ;S)
}

, (2)

whereU 
 (X,S) 
 Yθ for all θ ∈ Θ and the set of admissible input PDs is defined as followsQ =
{

PXU |S ∈ P(X × U ) : PXU |S = PX|USPU |S, ‖U ‖ ≤ ‖X ‖‖S ‖+ ‖Θ‖
}

.

Notice that if the encoder is unaware of the states, i.e.,(X,U) must be independent ofS, expression (2)

reduces to the capacity of standard compound DMCs [14].

We next state a new achievable rate that improves (2). For sake of clarity, we first consider the case

of two componentsΘ = {1, 2} and then we generalize this to an arbitrary setΘ.

Theorem 2.4:A lower bound on the capacity of the compound DMC
{

W1,W2 : X × S 7−→ Y
}

with states non-causally known only at the transmitter is given by

R = sup min
{

I(U, V1;Y1)− I(U, V1;S),

I(U, V2;Y2)− I(U, V2;S),

1

2

[

I(U, V1;Y1)− I(U, V1;S)+

I(U, V2;Y2)−I(U, V2;S)− I(V1;V2|U,S)
]}

, (3)
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where the supremum is taken over the set of all joint PDsPXUV1V2|S = PX|UV1V2SPUV1V2|S that satisfy

(U, V1, V2) 
 (X,S) 
 (Y1, Y2) form a Markov chain.

Remark 2.5:Expression (3) can be reduced to (2) by settingV1 = V2 = U . In contrast, there is no

possible choice for(X,U) in theorem 2.3 yielding the rate (3). This observation implies that expression

(2) cannot be optimal for the general compound DMC (1). Furthermore, we shall see (section IV) that

for the compound GDP channel the RVs(V1, V2) are indeed needed.

Theorem 2.6:A lower bound on the capacity of the compound DMC
{

Wθ : X × S 7−→ Y
}

θ∈Θ

with general componentsΘ = {1, . . . ,K} and states non-causally known only at the transmitter is given

by

R = sup min
K⊆Θ

1

‖K‖
[

∑

k∈K

I(U, Vk;Yk)− ‖K‖I(U ;S)

+H
(

{Vt | t ∈ K}|U,S
)

−
∑

k∈K

H(Vk|U)
]

, (4)

where the supremum is taken over the set of all joint PDsPXUV1...VK |S = PX|UV1...VKSPUV1...VK |S

satisfying(U, V1, . . . , VK) 
 (X,S) 
 (Y1, . . . , YK) form a Markov chain.

Observe that the rate (4) reduces to the rate (3) for the case of K = 2. The proofs of these theorems are

sketched in Section III. We next state capacity results for some special cases.

C. Capacity of Some Compound Channels

Definition 2.7 (Degraded components):Let
{

W1,W2 : X ×S 7−→ Y
}

be a compound DMC with

componentsΘ = {1, 2}. It is said to be astochastically degraded[15] if there exists some stochastic

mapping
{

W̃ : Y 7−→ Y
}

such thatW2(y2|x, s) =
∑

y1∈Y
W1(y1|x, s)W̃ (y2|y1), for all y2 ∈ Y and

every pair(x, s) ∈ X × S . This shall be denoted byW2 � W1 (i.e. W2 is a degraded version of the

channelW1).

Theorem 2.8 (degraded components):The capacity of the compound DMC
{

Wθ : X × S 7−→
Y
}

θ∈Θ
with componentsΘ = {1, . . . ,K} whereWK � WK−1 � · · · � W1 and states non-causally

known only at the transmitter is given by

CΘ = sup
PXV1...VK |S∈QD

min
θ∈Θ

{

I(Vθ;Yθ)− I(Vθ;S)
}

, (5)

where the set of admissible input PDs is defined by

QD =
{

PXV1...VK |S ∈ P(X × V1 × . . .× VK) : PXV1...VK |S = PX|SV1
PV1|SV2

. . . PVK−1|SVK

PVK |S, (V1, . . . , VK) 
 (X,S) 
(Y1, . . . , YK)
}

.
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Proof: For the case‖Θ‖ = 2, the direct proof follows by choosingV2 = U in theorem 2.4 and the

converse proof follows by linking together the outputs(Y1, . . . , Yθ). Whereas this proof procedure easily

extends to an arbitrary setΘ.

Theorem 2.9 (feedback):The capacity of the compound DMCWΘ with states non-causally known

only at the transmitter and feedback is given by

CFB = min
θ∈Θ

sup
PXUθ |S∈Q

{

I(Uθ;Yθ)− I(Uθ;S)
}

. (6)

This theorem easily follows from [1] and by observing that the encoder is able to estimate the channel

from the feedback.

III. SKETCH OF PROOF OF THEOREMS2.4 AND 2.6

Notation: P(X ) denotes the set of all atomic PDs onX with finite number of atoms. Then-th

Cartesian power is defined as the sample space ofX = (X1, . . . ,Xn), with Pn
X

-PD determined in terms

of the n-th Cartesian power ofPX . The cardinality of an alphabet is denoted by‖ · ‖. For everyδ > 0,

we denoteδ-typical and conditionalδ-typical sets byT n
[X]δ

andT n
[Y |X]δ

(x), respectively.

Proof: We first provide details of the proof of theorem 2.4 where the general idea is as follows.

We encode the messagem into a RVU , by using superposition and Marton coding we allow partial (or

indirect [12]) decoding ofU via two other RVs, namely(V1, V2). Hence receiverY1 indirectly decodes

U via V1 while receiverY2 indirectly decodesU via V2.

Code Generation:Let T0 ≥ R andSi ≥ 0 with i = 1, 2. Fix a PD of the require formPXUV1V2|S =

PX|UV1V2SPUV1V2|S satisfying (U, V1, V2) 
 (X,S) 
 (Y1, Y2) form a Markov chain. Randomly and

independently generate⌊2nT0⌋ sequencesu(t0) form T n
[U ]δ

indexed byt0 ∈ {1, . . . , ⌊2nT0⌋}. Randomly

partition the⌊2nT0⌋ sequences into⌊2nR⌋ equal size bins. For eachu(t0), randomly and independent

generate: (i)⌊2nT1⌋ sequencesv1(t0, t1) indexed byt1 ∈ {1, . . . , ⌊2nT1⌋}, each distributed uniformly over

the setT n
[V1|U ]δ

(

u(t0)
)

, (ii) ⌊2nT2⌋ sequencesv2(t0, t2) indexed byt2 ∈ {1, . . . , ⌊2nT2⌋}, each distributed

uniformly over the setT n
[V2|U ]δ

(

u(t0)
)

.

Encoding:To send a messagem ∈ {1, . . . , ⌊2nR⌋}, choose an indext∗0 ∈ {1, . . . , ⌊2nT0⌋} from the

bin m such thatu(t∗0) and s are jointly typical, and choose indicest∗1 ∈ {1, . . . , ⌊2nT1⌋} and t∗2 ∈
{1, . . . , ⌊2nT2⌋} such thatv1(t

∗
0, t

∗
1) ands are jointly typical,v2(t

∗
0, t

∗
2) ands are jointly typical and the

pair
(

v1(t
∗
0, t

∗
1),v2(t

∗
0, t

∗
2)
)

is jointly typical with high probability. Then send the codeword x distributed

uniformly over the setT n
[X|UV1V2S]δ

(

u(t∗0),v1(t
∗
0, t

∗
1),v2(t

∗
0, t

∗
2), s

)

. To ensure the success of this coding,
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we require that

T0 −R > S0, T1 ≥ S1 and T2 ≥ S2

S0 > I(U ;S),

S1 + S2 > I(V1;V2|U) + I(V1, V2;S|U),

S1 > I(V1;S|U), S2 > I(V2;S|U). (7)

Decoding: ReceiverY1 finds t0 and thus the messagem via indirect decoding ofu(t0) based on

v1(t0, t1). Hence receiverY1 declares thatt0 ∈ {1, . . . , ⌊2nT0⌋} is sent if it is the unique index such that

v1(t0, t1) andy1 are jointly typical(u(t0),v1(t0, t1)) ∈ T n
[UV1]δ

for somet1 ∈ {1, . . . , ⌊2nT1⌋}. This can

be achieved with small probability of error provided

T0 + T1 < I(U, V1;Y1). (8)

Notice that here receiverY1 cannot correctly decodev1(t0, t1). Similarly, receiverY2 finds t0 and thus

the messagem via indirect decoding ofu(t0) based onv2(t0, t2). Hence receiverY2 declares that

t0 ∈ {1, . . . , ⌊2nT0⌋} is sent if it is the unique index such thatv2(t0, t2) and y2 are jointly typical

(u(t0),v2(t0, t2)) ∈ T n
[UV2]δ

for somet2 ∈ {1, . . . , ⌊2nT2⌋}. This can be achieved with small probability

of error provided

T0 + T2 < I(U, V2;Y2). (9)

Observe that receiverY2 cannot correctly decodev2(t0, t2). By applying the Fourier-Motzkin procedure

to eliminate(Ti, Si){i=0,1,2} from (7)-(9), we obtain the following inequalities:

R ≤ I(U, V1;Y1)− I(U, V1;S),

R ≤ I(U, V2;Y2)− I(U, V2;S),

2R ≤ I(U, V1;Y1) + I(U, V2;Y2)− 2I(U ;S)

− I(V1;V2|U)− I(V1, V2;S|U). (10)

This concludes the proof of the rate (3). We now provide details on the proof of the extended rate (4).

The code generation, encoding and decoding remain very similar to the previous. Encoding succeeds

with high probability as long as

T0 −R > S0, Tk ≥ Sk for all k = {1, . . . ,K}
∑

k∈K

Sk >
∑

k∈K

H(Vk|U)−H
(

{Vt | t ∈ K}|U,S
)

, (11)
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for every subsetK ⊆ {1, . . . ,K} and Sk ≥ 0 for all k = {1, . . . ,K}. Decoding succeeds with high

probability if

T0 + Tk < I(U, Vk;Yk), k = {1, . . . ,K}. (12)

By combinning expressions (11) and (12), applying Fourier-Motzkin procedure, it is not difficult to show

the rate (4).

IV. A PPLICATION EXAMPLE : COMPOUND GAUSSIAN DIRTY-PAPER CHANNEL

In this section, we begin by introducing the compound Gaussian Dirty-Paper (GDP) channel and then

present lower and upper bounds on its capacity. Consider a compound memoryless GDP channel whose

output is given by
{

Y(β,θ) = β ·X+ θ ·S+ Z
}

(β,θ)∈Θ
, (13)

where X = (X1, . . . ,Xn) is the channel input andS is a white Gaussian interference (known to

the transmitter only) of powerQ and independent of the sequenceZ of white Gaussian noise of

powerN . The inputs must satisfy a limited-power constraintP (often ≪ Q), which takes the form

E
[
∑n

i=1X
2
i (m,S)

]

≤ nP , where the expectation is taken over the ensemble of messages and the

interference sequence.

We focus on the caseβ = β0 = 1, where the transmitter is unaware ofθ ∈ Θ, assumed to take

values from a set of real numbers, namelyΘ , {θ1, . . . , θ‖Θ‖}. The fading coefficientθ remains fixed

throughout a transmission.

A. Lower and Upper Bounds on the Capacity

Lemma 4.1 (Lower bound):A lower bound on the capacity of the compound GDP channel (13)is

given by

CΘ(P ) ≥ max
(PC ,P∆):PC≥0,P∆≥0,PC+P∆≤P

RΘ
−(PC , P∆), (14)

whereθmin , min{θ : θ ∈ Θ}, θmax , max{θ : θ ∈ Θ} and

RΘ
−(PC , P∆) =

1

2‖Θ‖ log

(

1 +
P∆

N

)

+















1

2
log

(

1 +
PC

P∆ +N + θ2minQ

)

if |θmin| = |θmax|
1

2
log

[

1 +
PC(1− ǫΘ)

P∆ +N + ǫΘPC

]

if |θmin| 6= |θmax|,
(15)
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and themismatch factor0 ≤ ǫΘ ≤ 1 is defined as

ǫΘ ,
1

(θmin + θmax)2

[
√

θ2max+
T

Q
−
√

θ2min +
T

Q

]2

with T = PC + P∆ +N . Optimizing expression (15) overPC andP∆ subject toPC + P∆ ≤ P yields

the rate:

RΘ
−(P ) =



















































1

2
log

[

1 +
P (1− ǫ∗Θ)

N + ǫ∗ΘP

]

, if ǫ∗Θ <
N(‖Θ‖ − 1)

P + ‖Θ‖N
1

2‖Θ‖ log

[

(P +N)

‖Θ‖N(1 − ǫ∗Θ)

(‖Θ‖ − 1

‖Θ‖ǫ∗Θ

)‖Θ‖−1
]

,

if
N(‖Θ‖ − 1)

P + ‖Θ‖N ≤ ǫ∗Θ <
‖Θ‖ − 1

‖Θ‖
1

2‖Θ‖ log

(

1 +
P

N

)

, if ǫ∗Θ ≥ ‖Θ‖ − 1

‖Θ‖

(16)

where

ǫ∗Θ ,
1

(θmin + θmax)2

[
√

θ2max+
P +N

Q
−
√

θ2min +
P +N

Q

]2

,

for |θmin| 6= |θmax|. For the case|θmin| = |θmax|,

RΘ
−(P ) =



















































1

2
log

(

1 +
P

N + θ2minQ

)

, if
θ2min

(‖Θ‖ − 1)
<
N

Q

1

2‖Θ‖ log

[

(P +N + θ2minQ)‖Θ‖

‖Θ‖N

( ‖Θ‖ − 1

‖Θ‖θ2minQ

)M−1
]

,

if
N

Q
≤ θ2min

(‖Θ‖ − 1)
<

(P +N)

Q
1

2‖Θ‖ log

(

1 +
P

N

)

, if
θ2min

(‖Θ‖ − 1)
≥ (P +N)

Q
.

(17)

Lemma 4.2 (Upper bound):An upper bound on the capacity of the compound GDP channel is given

by

CΘ(P ) ≤RΘ
+(P ) , max

ρ∈[−1,1]
min

{1

2
log

[

1 +
P (1− ρ2)

N

]

,

1

4
log

[

P +N + θ2maxQ+ 2θmaxρ
√
PQ

√

(θmax− θmin)2NQ

]

+
1

4
log

[

P +N + θ2minQ+ 2θminρ
√
PQ

√

(θmax− θmin)2NQ

]

}

, (18)

with θmin , min{θ : θ ∈ Θ} andθmax , max{θ : θ ∈ Θ}.

The proof of lemma 4.1 is sketched below while the proof of lemma 4.2 follows similar to [5]. Observe

that themismatch factorintroduces the capacity loss due to the uncertainty at the encoder on the value
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Fig. 1. Lower and upper bounds on the capacity of compound GDPchannelΘ = {−1,+1}, for P = 1 andN = 0.1, as a

function of INR=Q/N .

of θ. Hence for scenarios where the mismatch factor is smaller, e.g. θmin ≈ θmax or (P + N) ≫ Q,

expression (15) becomes closer to the capacity when the encoder and the decoder are both aware of the

channel indexθ controlling the communication.

For ‖Θ‖ = 2, the lower bound (16) provides significative gains comparedto the previous bound [5].

Although the bound (18) is not tight in general, notice that it is a sharper bound than those derived by

previous results in [3], [5], [16] and it is tight for some special setsΘ as shown in Figure 1.

Coding strategy:Notice that whenǫ∗Θ < N(‖Θ‖ − 1)/(P + ‖Θ‖N) the best encoder strategy is

implementing a DPC to mitigate the common part of the interfering signal and hence the remainder part

is treated as additional noise. In contrast to this, ifǫ∗Θ ≥ (‖Θ‖−1)/‖Θ‖ the best encoder strategy becomes

to use time-sharing to mitigate (completely) the interference. This is obtained by allowing the encoder and

the decoder to have access to a source of common randomness (e.g. a dither sequence [7]), which is not

available ifX is restricted to be a deterministic mapping. Otherwise, when N(‖Θ‖−1)/(P +‖Θ‖N) ≤
ǫ∗Θ < (‖Θ‖ − 1)/‖Θ‖ the encoder combines both strategies by using superposition coding.Asymptotic
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analysis:In the limit of high SNR (fixedN andQ, PC +P∆ → ∞) the mismatch factorǫΘ vanishes to

zero and thus the rate expression (15) coincides with its natural upper bound given by the case when the

encoder is informed withθ, which establishes the optimality of the lower bound in the high SNR limit.

In the limit whenQ→ ∞ (for N,P, ‖Θ‖ fixed) the mismatch factor becomes

ǫ∗∞ , lim
Q→∞

ǫ∗Θ =

(

θmax− θmin

θmax+ θmin

)2

.

Furthermore, when‖Θ‖ ≫ 1 (for N,P,Q fixed) the lower bound in (16) reduces to

lim
‖Θ‖→∞

RΘ
−(P ) =

1

2
log

[

1 +
P (1− ǫ∗Θ)

N + ǫ∗ΘP

]

, (19)

while for θmax ≫ θmin (for N,P,Q,K fixed) (16) writes

lim
θmax/θmin→∞

RΘ
−(P ) =

1

2‖Θ‖ log

(

1 +
P

N

)

. (20)

The scenarios (19) and (20), i.e.ǫ∗∞ ≈ 1 and ‖Θ‖ ≫ 1, yield the most important loss of degrees of

freedom.

B. Sketch of Proof of theorem 4.1

Coding scheme:The encoder splits the informationm = (m0,m1), namely common information

m0 and private informationm1. Then it divides the powerP into {PC , P1, . . . , P‖Θ‖}. The encoder

sendsm0 using a standard DPCU, sampled of lengthn i.i.d. from a PD PU |S = N(αcS,PC), applied

to the interferenceS and treats the reminder interference as noise. Whereasm1 is sent using time-

sharing via‖Θ‖ different DPCs{V1, . . . ,VK}, sampled i.i.d. of lengths{⌊nλ1⌋, . . . , ⌊nλK⌋} from

PDs PVk|US = N
(

αk(θk − αc)S + U,Pk

)

, applied once to each of interferences{θ1S, . . . , θKS}. Send

X = XC +XD with XC = U− αcS andXD = [X1 . . .XK ], whereXk = Vk − αk(θk − αc)S −U.

By substituting this in (4), it is not difficult to show that

RΘ
−(P ) = max

(αc,α)∈R‖Θ‖+1

min
k∈{1,...,‖Θ‖}

{

I(U (αc);Yk)−

I(U (αc);S) + λk
[

I
(

V
(αk)
k ;Yk|U (αc)

)

− I
(

V
(αk)
k ;S|U (αc)

)]

}

.

V. SUMMARY AND DISCUSSION

We have investigated the compound state-dependent DMC withnon-causal state information at the

transmitter but not at the receiver. Some references [9], [10] and conjectures on the capacity of these

channels [3] have lent support to the general belief that thenatural extension (2) of the Gel’fand and

Pinsker’s capacity [1] to the compound setting case is indeed optimal. This paper shows that this is not
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in general the case. We found that the capacity of the generalcompound DMC can be strictly larger than

the straightforward extension of the Gel’fand and Pinsker’s capacity. We derived a new lower bound on

the capacity and showed that it is tight for the compound channel with degraded components. It would be

of interest to determine whether the result here (3) is strictly better than the common rate result reported

in [4, eq. (45)] and further explore the optimality of this result for channels with semi-deterministic and

less noisy components.

The compound Gaussian Dirty-Paper channel that consists ofan AWGN channel with an additive

interference, where the input and the state signals are affected by fading coefficients whose realizations

are unknown at the transmitter, was also considered. We derived lower and upper bounds on the capacity

of this channel that are tight for some special cases.
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