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Abstract

This paper investigates the capacity of compound statertlmt channels with non-causal state
information available at only the transmitter. A new loweund on the capacity of this class of channels
is derived. This bound is shown to be tight for the speciakaafscompound channels with stochastic
degraded components, yielding the full characterizatibthe capacity. Specific results are derived for
the compound Gaussian Dirty-Paper (GDP) channel. This homfesists of an additive white Gaussian
noise (AWGN) channel corrupted by an additive Gaussiarrfeitieg signal, known at the transmitter
only, where the input and the state signals are affected Oindacoefficients whose realizations are
unknown at the transmitter. Our bounds are shown to be tighspecific cases. Applications of these
results arise in a variety of wireless scenarios as mutticlhannels, cognitive radio and problems with

interference cancellation.

. INTRODUCTION

In the recent years, intensive research addressing tiearand practical aspects was undertaken on
communications over channels controlled by random paensietamely states. Gel'fand and Pinsker [1]
derived the capacity expression for discrete memoryleasmls (DMCs), where the i.i.d. state sequence

is known at the transmitter before the start of the commuioieabut not at the receiver. This scenario
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is known as state-dependent DMCs with non-causal statenmafiion. Costal[2] considered the case of
an additive white Gaussian noise (AWGN) channel corruptedrbadditive Gaussian interference which
is available at the transmitter only. He showed that cha@paim appropriate probability distribution (PD)
for the auxiliary random variable (RV) and the state, refdrto asDirty-Paper Coding(DPC), there is
no loss in capacity if the interference is known only to theaster. This result has gained considerable
attention because of its potential use to mitigate the fimtence effects in multi-user scenarios.

In this work we focus on the compound state-dependent chamitie non-causal state information
at the transmitter. This channel arises in scenarios wheree tis uncertainty on the channel statistic.
In this model, the conditional PD of the channel is paraniegerby 6, which belongs to an arbitrary
set®@ and remains constant during the communication. Whereédthene¢he sender nor the receiver are
recognizant of the realizatiof that governs the communication. This problem was initiatlestigated
in [3], where lower and upper bounds on the capacity wereveeriln [4], this problem is identified as
being equivalent to theommon-messaderoadcast channel (BC) with non-causal state information a
the transmitter. Moreover in_[5], this is recognized to be thulticast channelResults were obtained
for AWGN and binary channels, where a transmitter sends arcmmmessage to multiple receivers and
each of them experiences an additive interference availabthe transmitter only. These channels are
of great interest because of their role in multi-user chénagrd in particular, for the emerging field of
cognitive radios. Recent work in][6] investigated the catyaof this framework, which is essentially
related to the problem considered here when the cognitiee issunaware of the channel path gains.
Broadcast channels with imperfect channel knowledge @ iaktances of this class of channels (cf. [7]
and [8]).

In prior work [9], [10], it was claimed that a strong conversstablishes the optimality of the lower
bound first derived in[[3]. In this paper we will demonstrdiattthis is not the case in general. In fact,
the rate expressiofi](2) that was conjectured to be optinmaht® general compound channel with states
corresponds to the natural extension of the capacity egjme®btained by Gel'fand and Pinsker’s [1] to
the compound setting case. Here we establish a new lowerdbmuthe capacity of this class of channels
that can outperform the previous lower bound. This bound&eHd on a non-conventional approdch [11],
[12] via a broadcasting strategy that allows the encoderdtpathe auxiliary RVs to each of possible
channel outcomes (or each of different users in the muttiseing). Finally, we specialize this bound
to the compound Gaussian Dirty-Paper (GDP) channel andedan upper bound which is tight for
some compound models. Furthermore, we show that our lowemd tight for the compound channel

with stochastic degraded components. Recent independferisederiving similar results are reported
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in [13], where explicit examples demonstrate also that #te n expressiori{2) can be surpassed. The
organization of this paper is as follows. Definitions and mi@sults are stated in Sectibn I, while the

proof outline and an application to the compound GDP chaarelgiven in Sectiors Il and V.

[I. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we introduce main definitions, formalize tbroblem and present lower and upper

bounds on the capacity.

A. Definitions and Problem Statement

We begin with the description of an arbitrary family of chatswith discrete input: € 2", discrete
states € . and discrete outpuy € ¢, which is characterized by a set of conditional probability
distributions (PDsWg = {Wg XS — @}eee' indexed byd € ©, where® is the set of indexes
(assumed to be finite). The transition PD of thenemoryless extension with inpuis= (x1,...,z,),
statess = (s1,...,s,) and outputsy = (y1,...,y,) IS given by

Wy'(ylx,s) = H Wo(yilzi, si). 1)

i=1
The sequence of statesis assumed to be drawn i.i.d. with PBs. The encoder is assumed to know
the sequence of states before the transmission startdiddetoder does not know it. Whereas, neither
the sender nor the receiver are cognizant of the realizatfoth that governs the communication. The
channel states change from letter to letter following the RDbuté € @ should not change during the
communication. This scenario is known as compound DMCs with-causal state information at the
transmitter. We argue the capacity is not increased if theodier is aware of the indek € 6.

Definition 2.1 (Code):A code for this channel consists of two mappings, the encodmping{w :
M, x " — 2"} and the decoder mappinfy : " — M, } for some finite set of integers
M, = {1,...,M,}. The encoding functiof¢} maps the corresponding messagec M, and the
states” into 2" and the decoding functio;{n,z)} maps#™ into M,,. In presence of feeback, where
the past of the channel outputs are available at the tratresmihe encoder mappings are given by
{@i: My x 7=t x " — 27} . An n-length block code for simultaneous DMG$Vy : 2™ x
S — Y0 € O} consists on a common code, ) for the set of channel®vy, = {W;'},_,.
The rate of such code i8~'log M, and its error probability associated to the message M,, is

defined as

el (Wi, 9ls) = W (| v (m)|e(m,s),s),

m'#£m
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for # € © ands € .. The maximum of average error probability (over all messagedefined as

el (W, 9, 0) = max maxc > Py (s) efi) (W', 0, 0]s).
sesm

An n-length block code for the simultaneous DM@%;, whose maximum of average error probability

2.J) satisfies"™), (W, ,v) < e will be called an(n, ¢)-code.

Definition 2.2 (Achievable rate and capacity@iven 0 < ¢,y < 1, a non-negative numbeR is an
e-achievable rate for the compound chani), if for every sufficiently largen there exist(n, €)-codes
of raten~'log M, > R — ~. Then, R is an achievable rate if it is-achievable for every < e < 1.
The supremum o€-achievable rates is called tlhiecapacityC. while the supremum of achievable rates
is called the capacity.

In the remainder of this section we state lower and upper #®wn the capacity of the general

compound DMCI(IL).

B. Lower Bounds on the Capacity

The following achievable rate, first found inl[3], corresdsrto the straightforward extension of the
Gel'fand and Pinsker’s capacity![1] to the compound settinge.
Theorem 2.3:A lower bound on the capacity of the compound Dlv{(Wg X xS — @}969

with states non-causally known only at the transmitter i@giby

R= sup mln{[UY{g) I(U;8)}, 2)
PXU\SG.Q feo

whereU < (X, S) e Yy for all § € © and the set of admissible input PDs is defined as follaws-
{Pxuis € P(Z xU) : Pxuis = PxjusPois: 12| < |21 + €]}
Notice that if the encoder is unaware of the states, (,/) must be independent of, expression{2)
reduces to the capacity of standard compound DMCE5 [14].

We next state a new achievable rate that improlves (2). Far shklarity, we first consider the case
of two component® = {1,2} and then we generalize this to an arbitrary Get

Theorem 2.4:A lower bound on the capacity of the compound DlV{(Wl,Wg X xS — @}

with states non-causally known only at the transmitter i@giby
R = sup min {I(U, Vi;Yh) — I(U, V5 5),

[1(U,V1; Y1) — I(U, V1; 8)+

DO =

I(U, Va3 Y2)—I(U, Vo; S) — I(Vi; V2 |U, S)] }, 3)
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where the supremum is taken over the set of all joint BRgv, 1,15 = Pxjuviv,sPoviv,|s that satisfy
(U, V1, V5) e (X, S) e (Y1,Ys2) form a Markov chain.

Remark 2.5:Expression[(3) can be reduced [d (2) by setfiig= Vo> = U. In contrast, there is no
possible choice fof X, U) in theoren{ 2B yielding the ratgl(3). This observation implthat expression
(@) cannot be optimal for the general compound DNIC (1). Famrtiore, we shall see (sectibn]1V) that
for the compound GDP channel the RV, 12) are indeed needed.

Theorem 2.6:A lower bound on the capacity of the compound Dl\/{(lZVe X xS — @}969

with general componen® = {1, ..., K'} and states non-causally known only at the transmitter isrgiv
by
1
R =sup min —— I(U, Vi; Yi) — [IK[IL(U; S)
X6 K] | ,;;
+H({Vi|t e KHU,S) = S HVilU)], (4)
kexX

where the supremum is taken over the set of all joint BB v, v, s = Pxjuvi..visPuv..vils
satisfying (U, V4,...,Vk) e (X, S) e (Y1,...,Yk) form a Markov chain.
Observe that the rat€l(4) reduces to the rate (3) for the dase-e 2. The proofs of these theorems are

sketched in Section]ll. We next state capacity results fones special cases.

C. Capacity of Some Compound Channels

Definition 2.7 (Degraded componentd)et {Wl,W2 X XS — @} be a compound DMC with
component®® = {1,2}. It is said to be astochastically degradefll5] if there exists some stochastic
mapping{W : % — %} such thatWa(ya|z,s) = >, cy Wiyi|z, )W (y2ly1), for all yo € # and
every pair(z,s) € 2 x .. This shall be denoted bW, < W; (i.e. W5 is a degraded version of the
channellty).

Theorem 2.8 (degraded component$he capacity of the compound DMQWQ 2 xS —
@}668 with component®® = {1,..., K} whereWg < Wx_; < --- < W; and states non-causally
known only at the transmitter is given by

Co = val_éllﬁsego min {I1(Vy; V) — I(Vy; 5)}, (5)
where the set of admissible input PDs is defined by

Do = {Pxv, vijs € P(Z x N x ... x Vi) : Pxv, viis = PxisviPuiisv, - - - Pue y1svic
Pyis: (Vi,..., Vi) e (X,S) e(Y1,...,Yk)}.
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Proof: For the caseé|©| = 2, the direct proof follows by choosinb, = U in theoren{ 2} and the
converse proof follows by linking together the outp(ts, . .., Yy). Whereas this proof procedure easily

extends to an arbitrary sél. ]

Theorem 2.9 (feedback)he capacity of the compound DM®g with states non-causally known
only at the transmitter and feedback is given by

Crg=min sup {I(Up;Yy) — I(Ug; S)}. (6)
ee@PXUe\SEQ

This theorem easily follows from_[1] and by observing tha¢ #ncoder is able to estimate the channel

from the feedback.

[1l. SKETCH OF PROOF OF THEOREM$2.4AND [2.G

Notation (%) denotes the set of all atomic PDs o with finite number of atoms. The-th
Cartesian power is defined as the sample spacg ef (X,,..., X,,), with Pg¢-PD determined in terms
of the n-th Cartesian power oPx. The cardinality of an alphabet is denoted |by||. For everys > 0,

we denoted-typical and conditionab-typical sets by. [}]5 and ,7[{;‘ X]é(x), respectively.

Proof: We first provide details of the proof of theordm12.4 where teeegal idea is as follows.
We encode the messageinto a RV U, by using superposition and Marton coding we allow pariel (
indirect [12]) decoding ofU via two other RVs, namelyVi, V5). Hence receivet’; indirectly decodes
U via V; while receiverY; indirectly decoded/ via V5.

Code GenerationLet T, > R and S; > 0 with i = 1,2. Fix a PD of the require fornPxyyv, 1,5 =
PxiuvivasPuvivy s satisfying (U, Vi, V2) e (X, S) e (Y1,Y2) form a Markov chain. Randomly and
independently generate@"’® | sequencesi(t,) form 9[{}}
partition the |2"7° | sequences intd2"?| equal size bins. For eaal(ty), randomly and independent

. indexed byt, € {1,...,[2""]}. Randomly

generate: (i) 2""* | sequences; (to, 1) indexed byt; € {1,...,|2"": |}, each distributed uniformly over
the Se@\%U}g(u(tO))' (i) [2""2 | sequencess(to,t2) indexed byt, € {1,...,|2""2 ]}, each distributed

uniformly over the sety, /, (u(to)).

Encoding: To send a message < {1,...,[2"%]|}, choose an index; € {1,...,|2"7 |} from the
bin m such thatu(t}) ands are jointly typical, and choose indices € {1,...,[2""*|} andt; €
{1,...,[2""2|} such thatvy (3, ;) ands are jointly typical,va(t5, t3) ands are jointly typical and the

pair (vl(tg,t’{),vQ(tg,tg)) is jointly typical with high probability. Then send the caderd x distributed

uniformly over the set7

[X‘levzsh(u(tg),vl(t;;,t’{),vz(tg,tg),s). To ensure the success of this coding,
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we require that
To—R>Sy, T7>5 and 15 > S,
So > I(U; S),
S14 52 > I(Vi; Vo|U) + 1(Va, Va3 S|U),
S1>1(Vi;S|U), Sy > I(Va; S|U). (7)

Decoding: ReceiverY; finds ¢y and thus the message via indirect decoding ofu(ty,) based on
v1(to,t1). Hence receivel; declares thaty € {1,...,[2"7°|} is sent if it is the unique index such that
v1(to,t1) andy; are jointly typical(u(tg), vi(to, t1)) € Ty, for somet; € {1,...,[2"%: |}. This can

be achieved with small probability of error provided
To+ Ty < I(U, V13 Y1). (8)

Notice that here receiveér; cannot correctly decode, (¢, t1). Similarly, receiverY; findst, and thus
the messagen via indirect decoding ofu(ty) based onvy(tg,t2). Hence receivelt, declares that
to € {1,...,[2"% |} is sent if it is the unique index such that(tg,t2) and y, are jointly typical
(u(to), va(to,t2)) € vy, for somet; € {1,...,[2""2|}. This can be achieved with small probability
of error provided

Ty + Ty < I(U, Va; Ya). 9

Observe that receiver, cannot correctly decode;(t,t2). By applying the Fourier-Motzkin procedure

to eliminate(7;, S;){i—o,1,2y from (@)-@), we obtain the following inequalities:
R <I(U,Vi;Y1) = I(U, V1 9),
R <I(U, Va3 Y2) — I(U, Va3 5),
2R < I(U,V1; Y1) + I(U, Va; Ya) — 2I(U; S)
— I(Vi; Vo|U) = I(V1, Va3 S|U). (10)

This concludes the proof of the rafg (3). We now provide tketan the proof of the extended ratd (4).
The code generation, encoding and decoding remain venjlasingo the previous. Encoding succeeds

with high probability as long as
To—R>Sy, Tp,>S, foralk={1,...,K}

Y Sk> D HVilU) - H({V, |t € X}U,S), (11)
keX keX
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for every subset C {1,...,K} andS; > 0 for all £ = {1,..., K}. Decoding succeeds with high
probability if
T0+Tk<[(U,Vk;Yk), k:{l,...,K}. (12)

By combinning expressions ({11) arid(12), applying Fouvetzkin procedure, it is not difficult to show
the rate[(4). [ |

IV. APPLICATION EXAMPLE: COMPOUND GAUSSIAN DIRTY-PAPER CHANNEL

In this section, we begin by introducing the compound GausBiirty-Paper (GDP) channel and then
present lower and upper bounds on its capacity. Considemgpaond memoryless GDP channel whose
output is given by

{Y(po)=5X+0-S+2Z}, (13)

570)697

where X = (Xi,...,X,) is the channel input an® is a white Gaussian interference (known to
the transmitter only) of power) and independent of the sequenZeof white Gaussian noise of
power N. The inputs must satisfy a limited-power constraift(often < @), which takes the form
E Y7, X?(m,S)] < nP, where the expectation is taken over the ensemble of messaye the
interference sequence.

We focus on the casg = [y = 1, where the transmitter is unaware 6fc ©, assumed to take
values from a set of real numbers, namély= {6, ... ,0)0|}- The fading coefficien? remains fixed

throughout a transmission.

A. Lower and Upper Bounds on the Capacity

Lemma 4.1 (Lower bound)A lower bound on the capacity of the compound GDP charnél id3)
given by

Co(P) > °(Po, P 14
o )_(PC,PA):Pczé?I%Xzo,PchpASPR_( ¢, Fa) 14

wherefmin = min{f : 6 € O}, Omax = max{f : € O} and

1 Pa
R®(Pc, Pp) = ———log <1 + —>
20| N
1 Pc .
5 log <1 TN Q) if [Omin| = |fmax
+ min (15)
Liog |14 —Fell — <o) it [Oin] % O
B g Pa+ N + eoPo min max|»
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and themismatch factol < eg < 1 is defined as

N 1 T T
£_ - 00 62 — ]2 _
€O (emin+9max)2 [\/ max 1 0 \/ min T 0

with ' = P + Pa + N. Optimizing expressiori (15) ove?- and P4 subject toP- + P < P yields
the rate:

2

! PA-c5)] N(le] - 1)
—1 14 © f * Ne— 1)
0g [ + ], if €5 < P O]V
! log (P +N) <”9H - 1>”@|_1

rO(p)={ 21°I IOIN(1—€5) \ [1O]les ’
if W<E*@< o] -1

P+o[|N — ol
~ o 1+£> it e > 1011
( 2[1e] N)’ = "e]

(16)

where

2

N 1 P+ N P+ N
e - 00000 62 — 162
€o (emin T emax)z [\/ max 1 0 \/ min T 0

(1 P 02 N
28 (”waan)’ RCIEDRN
s [N ORI (Ol LY

ro(p) =1 206l Ek 10167:,Q

E < erznin < (P+N)

1 R TRty

H min

gers(1+%) gz
Lemma 4.2 (Upper bound)An upper bound on the capacity of the compound GDP channevéng

by

(17)
if

(1 P(1—p?)
<R9(P) & - P
Co(P) <RI (P) pé??ffl] min { 5 log [1 + I ,

1

Lo [ PN+ 02 2@ + 20maxov/PQ

\/(emax - emin)2NQ

\/(emax - emin)2NQ
With Omin = min{f : § € O} andfnax = max{f : 6 € O}.

B

1
+-log

2 (18)

The proof of lemma&4l1 is sketched below while the proof ofreaid.2 follows similar to[[5]. Observe

that themismatch factointroduces the capacity loss due to the uncertainty at tisedsr on the value
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22+

P=1 N=0.1 ©={-14+1}

Rate (bits/symbol)

Time-sharing ,

08 I I I I I I I I I ]
-30 -25 -20 -15 -10 -5 0 5 10 15 20

INR [dB]

Fig. 1. Lower and upper bounds on the capacity of compound Gf#nel© = {—1,+1}, for P =1 and N = 0.1, as a
function of INR=Q/N.

of #. Hence for scenarios where the mismatch factor is smallgr,0gin ~ Omax O (P + N) > Q,
expression[(15) becomes closer to the capacity when thedenamd the decoder are both aware of the

channel indeXd controlling the communication.

For ||©|| = 2, the lower bound[(16) provides significative gains compdeethe previous bound [5].
Although the bound[(18) is not tight in general, notice thasia sharper bound than those derived by
previous results in([3],]5],.[16] and it is tight for some sj sets© as shown in Figurg]1.

Coding strategy:Notice that whene, < N(||©| — 1)/(P + ||©|N) the best encoder strategy is
implementing a DPC to mitigate the common part of the intéréesignal and hence the remainder part
is treated as additional noise. In contrast to thisgit> (||©|—1)/||©|| the best encoder strategy becomes
to use time-sharing to mitigate (completely) the intenfiee2 This is obtained by allowing the encoder and
the decoder to have access to a source of common randomrgsa ¢kther sequenckel![7]), which is not
available if X is restricted to be a deterministic mapping. Otherwise,miNé||@| —1)/(P + ||O||N) <
ey < (@]l —1)/]|@| the encoder combines both strategies by using superpositiding. Asymptotic
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analysis:In the limit of high SNR (fixedN and @, Pc + Pa — oo0) the mismatch factotg vanishes to
zero and thus the rate expressibnl (15) coincides with itsrabitipper bound given by the case when the
encoder is informed witl#, which establishes the optimality of the lower bound in tihghifSNR limit.
In the limit when@ — oo (for N, P, ||©|| fixed) the mismatch factor becomes
ot i = ()
Q—o0 Omax + Omin
Furthermore, whef|®| > 1 (for N, P, Q fixed) the lower bound in{16) reduces to

) 1 P(1—¢€})
] OP)==-1log |1+ ——©/ 19
H@ﬁIEOOR‘( ) 2 Og[ + N+e*@P}’ (19)
while for Omax > Omin (for N, P, Q, K fixed) (18) writes
1 P
li RO(P)=——1log(1+=]). 20
emax/elr{ﬁ_)OO _( ) 2H@|| o8 ( * N) ( )

The scenariod(19) and(20), i.€, ~ 1 and|©| > 1, yield the most important loss of degrees of

freedom.

B. Sketch of Proof of theorelm 4.1

Coding schemeThe encoder splits the informatiom = (mg,m1), namely common information
mo and private informationn;. Then it divides the power into {Fc, P1,..., Pjg|}. The encoder
sendsm, using a standard DP®U, sampled of length i.i.d. from a PD Ry s = N(a.S, Pc), applied
to the interferenceS and treats the reminder interference as noise. Whetreass sent using time-
sharing via||©| different DPCs{V;,..., Vk}, sampled i.i.d. of lengthg|nAi],...,[nAk]} from
PDs R, jus = N(ax(0x — ac)S + U, P;), applied once to each of interferencg, ..., 0xS}. Send
X =X¢+ Xp with Xg =U — .S andXp = [X; ... Xg], whereX, = Vi — ay (0 — a:)S — U.
By substituting this in[(4), it is not difficult to show that

RO(P) = i TI(U©@). vy, )—
()= e i {105

HU©;8) + M [TV viue)) — 1(vie; sjutea)] }.

V. SUMMARY AND DISCUSSION

We have investigated the compound state-dependent DMC maithcausal state information at the
transmitter but not at the receiver. Some references #hd conjectures on the capacity of these
channels[[B] have lent support to the general belief thatnéeiral extension{2) of the Gel'fand and

Pinsker's capacityl [1] to the compound setting case is iddggimal. This paper shows that this is not
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in general the case. We found that the capacity of the genemapound DMC can be strictly larger than
the straightforward extension of the Gel'fand and Pinskedpacity. We derived a new lower bound on
the capacity and showed that it is tight for the compound nbbwith degraded components. It would be
of interest to determine whether the result héte (3) istbtrimetter than the common rate result reported
in [4, eq. (45)] and further explore the optimality of thisu#t for channels with semi-deterministic and
less noisy components.

The compound Gaussian Dirty-Paper channel that consisesn0AWGN channel with an additive
interference, where the input and the state signals aretaffdby fading coefficients whose realizations
are unknown at the transmitter, was also considered. Weeatklbwer and upper bounds on the capacity

of this channel that are tight for some special cases.
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