
ar
X

iv
:1

00
6.

02
59

v1
 [

cs
.IT

]
1

Ju
n

20
10

Methods for the Reconstruction of Parallel Turbo Codes
Mathieu Cluzeau

INRIA-team SECRET
Matthieu Finiasz

ENSTA
Jean-Pierre Tillich

INRIA-team SECRET

Abstract—We present two new algorithms for the reconstruc-
tion of turbo codes from a noisy intercepted bitstream. Withthese
algorithms, we were able to reconstruct various turbo codeswith
realistic parameter sizes. To the best of our knowledge, these are
the first algorithms able to recover the whole permutation ofa
turbo code in the presence of high noise levels.

INTRODUCTION

In this article, we focus on the problem of reconstructing
a turbo code from a noisy intercepted bitstream. The code
reconstruction problem consists for the eavesdropper in re-
covering the turbo code struture, or, more precisely, finding
a decoding algorithm, ideally as efficient as the algorithm of
the legitimate recipient. The problem of code reconstruction
has already been addressed for a variety of codes [2]–[4],
[7]–[9], [11], [13], [14]. Here, we focus on turbo codes, for
which the problem has not yet been solved. The rest of this
introduction is dedicated to recalling some basic definitions
and notation on turbo codes. SectionsI andII present two new
methods for turbo code reconstruction and practical results we
obtained. Then, SectionIII gives some insights on the benefit
of combining these two methods and explains how to apply
them to punctured turbo codes.

A. Parallel Turbo Codes

We focus on reconstructing systematic parallel turbo codes
of rate 1

3 without puncturing. The inputX =
∑

XiD
i is split

in blocks of lengthN and is copied directly at the output.
X is also fed into a recursive convolutional encoder with
encoding fractionP ′(D)

Q′(D) . In other words, the output of this

convolutional encoder is given byY =
∑

YiD
i = P ′(D)

Q′(D)X .
A certain permutationΠ (of length N) is applied to the
input and it is then given to a second recursive convolutional
encoder associated to the fractionP (D)

Q(D) . It yields the output

Z =
∑

ZiD
i = P (D)

Q(D)

∑

Xπ(i)D
i, see Figure1 for the whole

scheme. Throughout this paper we consider thatM output
blocks have been intercepted, corresponding toMN input bits.

Figure 1. A systematic parallel turbo code with 3 outputs.

B. The Problem of Turbo Code Reconstruction

Turbo code reconstruction requires to solve several prob-
lems, but many of them are already solved by (punctured)
convolutional code reconstruction algorithms [7]. First, one
needs to reconstruct theP ′/Q′ convolutional encoder. Existing

techniques allow to do this efficiently by looking for short
dualwords of this convolutional code. Once this part is recon-
structed, this reveals the interleaving and allows us to isolate
the turbo coded output. At the same time, the knowledge of the
convolutional encoder can help us decrease the noise level in
the information output: this is not required for reconstruction,
but can improve the performances of our algorithms.

Once the information and turbo coded outputs have been
isolated, one needs to recover the polynomialsP andQ used in
the encoder and the permutationΠ. The number of possibilities
for P andQ are quite small as low degree polynomials are
usually used for turbo codes, so this part can be solved by
an exhaustive search. However, the sizeN of the permutation
is usually very large (up to 20 000), and most of the work
consists in recoveringΠ. This is the problem we focus on.

Previous Works:The problem of reconstructing a permuta-
tion from a noisy output stream was first studied by Barbier
in [2] where he gave an analysis of a simple algorithm. He
focuses on the problem of recovering a permutation of sizeN
from a set ofN -bit vectors and permuted versions of these
vectors assuming some noise has been added. In the context
of turbo code reconstruction, this algorithm cannot be directly
applied: instead of a permuted version of the information, we
have anencodedpermuted version of the information. In order
to apply Barbier’s algorithm one first has to decode the turbo
coded output. If there is no noise on the turbo coded output
this is possible: one simply has to multiply it byQ/P and
then apply Barbier’s algorithm. However, if there is noise on
the turbo coded output this technique no longer applies.

Another approach by Côte and Sendrier [10] makes the
opposite assumption: if there is no noise in the information
output and some noise in the turbo coded output, they can
recover the permutationΠ. They generalize this approach to
the case where there is noise in the information output but their
technique requires a large amount of intercepted data, unless
the noise is low or the permutation is short. This approach
remains interesting as it is very efficient and, in practice,the
noise level in the information output can be reduced using
the convolutional outputY : it is thus natural to assume lower
noise levels in the information than in the turbo coded output.

I. RECONSTRUCTIONUSING LOW WEIGHT DUALWORDS

The algorithm we present here takes as input the two noisy
output streamsX andZ and outputs the polynomialsP and
Q and some parts (or the totality) of the permutationΠ.

A. Basic Idea

As for linear block codes, the concept of dualwords also
exists for convolutional codes. A convolutional code is defined
by a generator matrix of polynomials (or rational fractions) and

http://arxiv.org/abs/1006.0259v1

its dual is simply the vector space spanned by polynomial vec-
tors orthogonal to this matrix. Any element of this dual vector
space is a dualword and to any such dualword corresponds a
set of binary parity check equations.

For the turbo codes we consider, a systematic encoder of
parameterP/Q, dualwords are of the form(λP, λQ) whereλ
is a polynomial. For example, forP/Q = 1 +D2 +D3/1 +
D +D2, the pair(1 +D2 +D3, 1 +D +D2) is a dualword
(hereλ = 1). Any parity check equation of the formXπ(i) ⊕
Xπ(i+1)⊕Xπ(i+3)⊕Zi+1⊕Zi+2⊕Zi+3 is thus equal to zero
on the noiseless outputsX andZ.

The main idea of this technique is to take advantage of such
dualwords of very low weight (that is, weight 6 or 8) and
exhaustively search for corresponding parity check equations.
Each parity check equation we can find will give us several
informations:

• the parity check bits on outputZ give us the polynomial
λQ of the corresponding dualword,

• the number of parity check bits onX give us the
Hamming weightw0 of λP ,

• onceP/Q has been guessed, the knowledge ofλQ allows
us to computeλP and the parity check bits onX reveal
a subset ofw0 positions of the permutationΠ.

B. Classification of the Polynomials

Each time we find a parity check for the intercepted output
streams we can deduce a pair(w0, λQ). Such a pair can only
correspond to some encodersP/Q. We want to classify all
encodersP/Q (up to a given degree) depending on their dual-
words and the associated(w0, λQ) pairs. As this classification
can be precomputed, we do not need a particularly efficient
algorithm and simply use exhaustive search: we go through all
polynomialsλ up to a certain degree, compute all multiples
(λP, λQ) and store all pairs(w0, λQ) of low weight.

Allowing multiples of weight up to 6 is enough to classify
uniquely all pairs(P,Q) whenP andQ are of degree 3 or less.
Similarly, multiples of weight up to 8 are enough to classify
uniquely all pairs of degree 5 or less, which will almost always
be the case for a turbo code.

In order to use this classification1, we now simply need
to find parity check equations for the intercepted turbo code
output. For example, suppose two dualwords have been found:
λQ = 1+D2+D4 with w0 = 3 andλQ = 1+D+D5 with
w0 = 3. The first dualword restricts the list of possibleP/Q
to two candidates:1 +D +D3/1 +D +D2 and 1 +D2 +
D3/1 +D +D2. The second dual word is enough to decide
that 1 +D2 +D3/1 +D +D2 was indeed used.

C. Finding Parity Check Equations

In order to look for parity check equations we build a matrix
from the intercepted words. This matrix hasM lines (theM
intercepted blocks) and2N columns,N columns coming from
the permutedX and theN others fromZ. Searching for parity
checks for this matrix is the exact same problem as for linear

1We did not include the classification here because of its sizebut it can be
easily recomputed.

block code reconstruction. We can thus apply the techniques
presented in [8]. Here, the block size2N is usually very large
and techniques based on the Canteaut-Chabaud algorithm [5]
can only work for very low noise levels. We therefore prefer to
use exhaustive search techniques like the Chose-Joux-Mitton
algorithm [6] which focuses on very low weight parity checks
and can thus tolerate much higher noise levels.

The Chose-Joux-Mitton algorithm uses a generalized birth-
day algorithm technique to go through all parity check equa-
tions of a given weightw. It has a time complexity of
O(N ⌈w

2
⌉) and memory complexityO(N ⌈w

4
⌉). We can thus

use it to find parity check equations of weight 8 for values
of N up to a 1 000 or 2 000, but can only afford to look for
parity checks of weight 6 for larger values (up to 20 000).

Theoretical Analysis:In order to measure the efficiency
of this algorithm, we need to measure what proportion of
the permutation it can recover, depending on the amount of
noise. Note that in order to apply the Chose-Joux-Mitton
algorithm, we need to make hard decisions on the values of the
intercepted bits. We thus consider that the Gaussian channel
of standard deviationσ is transformed into a binary symmetric
channel with cross-over probabilityτ . In order to simplify the
analysis we make two assumptions:

• what happens on the edges of a word is negligible: we
suppose that any position of the permutation appears in
w0 shifts of a same dualword,

• any position of the permutation found in one dualword
can be considered recovered: it can be found using an
exhaustive search inw0! tries (which is negligible).

Thus, the quantity we need to measure in order to analyze our
algorithm is the number of positions of the permutation which
do not belong to any of the dualwords we found.

Using the same analysis as in [8], we can compute the
probabilityPw of finding a given parity check of weightw in
a single run of the algorithm. We have:Pw = (1+(1−2τ)w

2)ℓ

with ℓ = w
2 (1 + log2 N).

Now, to determine the probability that a position of the
permutation belongs to none of the parity checks the algorithm
finds, we need to know the number of parity checks involving
this position. This depends on the polynomialsP andQ: if the
weightw of the parity check is split inw0 on the information
part andw1 on the turbo coded part,w0 shifts of this parity
check will involve a given position. So, the number of possible
parity check for one position is the sum of thew0 for all
dualwords ofP/Q in our classification. We denote byW this
weight. Then, the numberN ′ of positions of the permutation
that belong to no parity check equations after one run isN ′ =
N × (1−Pw)

W . Of course, it is possible to decrease thisN ′

by running the Chose-Joux-Mitton algorithm several times on
different windows of sizeℓ.

For example, forP/Q = 1+D2+D3/1+D+D2, with w =
6, there are 5 dualwords for a total weight on the information
side of 15. For a lengthN = 10 000 andσ = 0.43 resulting
in τ = 0.01, in one run of the algorithmN ′ = 2 868 positions
of the permutation should remain unfound and in two runs,
only 823 positions should remain.

II. RECONSTRUCTIONUSING STATISTICS ON THE

CONVOLUTIONAL ENCODERENTROPY

Similarly to the previous technique, this second algorithm
takes the two noisy outputsX andZ as input and outputs the
first positions ofΠ (or all of it). However, hereP/Q needs to
be known in order to use this algorithm. We therefore run the
algorithm for all possible encodersP/Q and only the correct
choice will give an output. The algorithm will stop after a very
small number of iterations for bad choices.

A. Basic Idea

The key idea here is to make use of a distinguisher which
is able to discriminate a typical decoding of a convolutional
code over a given noisy channel from a decoding where all
the bits come come from the noisy channel, except one which
is completely random. Such a distinguisher can be used to
recover recursively the permutationΠ in the following way.
Assume that we have already found thei− 1 first systematic
positions of the convolutional encoder. We check now all
remainingN − i + 1 possible remaining positions for thei-
th systematic bit by decoding the sequence formed by the
i first systematic positions and the associated redundancy. If
we have at our disposal the aforementioned distinguisher we
are able to find the value of the permutation because the
right hypothesis for thei-th information bit corresponds to a
typical decoding, whereas a wrong hypothesis corresponds to
the second type of decoding. Such a distinguisher only exists
if the i-th redundancy bit is not independent from thei-th
systematic bit. This is the case whenP andQ have a non-
zero constant coefficient. This is always the case in practice
and we make this assumption in this section.

We build a distinguisher from the BCJR decoding algo-
rithm [1] which is precisely the decoding algorithm used
to decode turbo codes. Consider the distribution during the
BCJR algorithm of the forward probabilitiesFi on the state
of the encoder when thei first couples of noisy information
bits and redundancy bits have been used. Consider also a
related random variableF ′

i which corresponds to the forward
probability of the BCJR algorithm if the decoder is fed with
thei−1 first couples of noisy information and redundancy bits
and then a couple formed by a random bit coming from the
channel and thei-th noisy redundancy bit. Our aim is to find
a distinguisher which after observing a sequence of samples
which come all from realizations ofFi or all from realizations
of F ′

i tells us in which case we are. To simplify the task
of finding a distinguisher for the BCJR decoding algorithm
we are going to consider a one-dimensional statistic forFi.
We choose a functional which is invariant by permuting the
states and which is basically a measure of how closeFi is to
the uniform distribution. The entropy meets these properties
and it is our choice here. We denote byH(Fi) the entropy
of the distribution, that isH(Fi) =

∑

a −Fi(a) logFi(a)
where Fi(a) stands for the forward probability that thei-
th state of the encoder isa. We expect that the distribution
of H(Fi) will be sufficiently different from the distribution
of H(F ′

i). This is the case as long the channel is not too

Figure 2. Distribution of the entropiesH(Fi) (plain line) andH(F ′

i
) (dashed

line) for Gaussian channels with standard deviations of0.8, 1.0 or 1.3.

noisy. Let us illustrate this with an example. Let us choose
P/Q = 1+D2

1+D+D2 . We have plotted in Figure2 the distribution
of H(Fi) and H(F ′

i) over a Gaussian channel for several
values of the standard deviationσ of the noise. When the
noise is rather small (σ = 0.8) the two distributions are quite
different. As could have been expected, the expected value of
H(Fi) is smaller than the expected value ofH(F ′

i). The two
distributions get closer to each other when the noise increases
until being almost the same when the standard value of the
noise exceeds1.3. It should be noted that at this point the
BCJR algorithm does not give useful information here for the
extrinsic probabilities of a bit.

The fact that these two distributions are different when the
noise is not too large leads us to the following method. First
we perform for a given polynomialP/Q a sampling test for
obtaining an approximate distribution of quantized versions of
H(Fi) andH(F ′

i) for all values2 of i between1 andN . Then
we use a distinguisher for the two hypotheses (the samples
stem from the distribution ofH(Fi) or from H(F ′

i)). The
one we will use here is just a Neyman-Pearson test using the
approximate distributions ofH(Fi) andH(F ′

i).

B. The Reconstruction Algorithm

Our algorithm works using a list of “candidates”. Each
candidate corresponds to a set of positions of the permutation
(the positions that have already been guessed) and theM
internal state probability distributions associated withthe M
received words. At the beginning, the list of candidates is
initialized with one candidate (the systematic convolutional
encoderP/Q we are testing), it has 0 guessed positions and
its internal states have probability 1 of being 0.

After i− 1 steps of the algorithm, each candidate hasi− 1
guessed positions. AfterN iterations, the permutation should
be recovered (if the correctP/Q was selected). Here is how
the i-th step of the algorithm works for one candidate.

1) Assuming thati − 1 positions of the permutation have
been guessed,N − i + 1 possibilities remain for thei-
th position. Our candidate is thus split intoN − i + 1
possible candidates which we now have to filter.

2) for each possible candidate, we update theM internal
state probability distributions using the bit from the
guessedi-th position. We then compute the entropy of
each of theseM internal states. When the number of

2The complexity of this step can be reduced a little bit if we assume that
the distribution ofH(Fi) andH(F ′

i
) becomes stationary after a while.

states is2m, these entropies have values between 0 and
m so we split this interval inw sub-intervals to obtain
an estimate of the entropy distributionDcand of our
candidate. We denote by(Dcand

j)j∈[0,w−1] the fraction

of words yielding an entropy in[jm
w
; (j+1)m

w
].

3) this distributionDcand has to be compared with two
target distributionsDgood andDbad which were precom-
puted using the same technique as in step2 on a large set
of generated samples:Dgood corresponds to samples of
H(Fi), Dbad to samples ofH(F ′

i). We use a Neyman-
Pearson test to decide which ofDgood or Dbad is closer
to Dcand. We thus compute the three values:

Tgood =
∑w−1

j=0 Dgood
j × (log2(D

good
j)− log2(D

bad
j)),

Tbad =
∑w−1

j=0 Dbad
j × (log2(D

good
j)− log2(D

bad
j)),

Tcand =
∑w−1

j=0 Dcand
j × (log2(D

good
j)− log2(D

bad
j)).

4) we set a thresholdT close to 1
2 (Tgood + Tbad) (see

sectionII-C1 for more details on how to computeT). If
Tcand > T then the distributionDcand is closer toDgood

and we keep this candidate. Otherwise we discard it.

C. Theoretical Analysis

1) Threshold selection:The selection of the thresholdT
depends on several factors: the two distributionsDgood and
Dbad and two probabilitiesα and β of respectively keeping
a bad candidate and discarding the good one. Of course,
depending on the numberM of available samples, some values
of α andβ might not be possible to achieve.

To compute precisely the thresholdT , we need to know
the distribution ofTcand, computed either for good candidates
or bad candidates. We denote byzgood, respectivelyzbad,
the random value taken byTcand when the candidates are
drawn according toDgood, respectively according toDbad.

β is defined byβ
def
= P [zgood < T], whereasα is given by

α
def
= P [zbad > T].
In order to compute estimates ofα andβ we use the large

deviations estimates of [12, Appendix 5A]. For this purpose,
we introduce the random variableXgood def

= log2
Dgood(H)
Dbad(H) .

Here H stands for a random variable drawn according to
the distributionDgood and Dgood(H) = Dgood

j where j is
such thatH belongs to thej-th quantization interval, that
is [jm

w
; (j+1)m

w
]. We define in the same wayDbad(H). We

also defineXbad similarly with H being now a random
variable distributed according toDbad. We let µgood(s)

def
=

lnE
(

esX
good)

and µbad(s)
def
= lnE

(

esX
bad)

. Denoting byµ′

andµ′′ the first and second derivatives ins of these functions,
we have the following formulas:

P [zbad > µ′
bad(s)] ≃

e(µbad(s)−sµ′

bad(s))M

|s|
√

2πMµ′′
bad(s)

(= A(s,M)),

P [zgood < µ′
good(s)] ≃

e(µgood(s)−sµ′

good(s))M

|s|
√

2πMµ′′
good(s)

(= B(s,M)).

We use these equations in order to find the suitable threshold
T and choose the smallestM such that there existssα andsβ
satisfying:

{

A(sα,M) ≤ α and B(sβ ,M) ≤ β
µ′
good(sβ) = µ′

bad(sα) (= T)

2) Complexity Analysis:The complexity of each step of
the algorithm is linear in the number of candidates. As long as
the number of candidates remains close to one, the complexity
of the algorithm is polynomial. However, a bad choice of the
probabilityα can lead to an exponential number of candidates.
For one candidate in thei-th step of the algorithm, one has to
testN − i + 1 possible positions and for each of them com-
pute the valueTcand. GeneratingDcand costsO(M2m) and
computingTcand from it costsO(w). The sampling fineness
w is a constant so we can ignore it. The cost of one step of
the algorithm is thusO(NM2m) for each candidate and the
overall complexity of the algorithm is thereforeO(N2M2m)
if the number of candidates remains bounded.

D. Experimental Results

We have run several tests using a turbo code of parameters
P/Q = 1+D2

1+D+D2 and various permutation sizes and noise
levels. For all our tests, we choseα = 1/N so as to keep the
number of bad candidates close to one, andβ = 0.01/N for a
probability of discarding the correct candidate before theend
of the N steps of the algorithm close to1%. Here are some
of the results we observed.

• If we chooseM and T as given by our theoretical
analysis, the algorithm runs smoothly and outputs a single
candidate: the correct one.

• When running the algorithm for the wrong encoderP/Q,
the algorithm starts with a single candidate and discards
it after only a few steps.

• The distributionsDgood andDbad are computed assuming
that an error occurred (or not) on the last position. Once a
bad candidate has been selected these distributions are not
optimal to eliminate it at the following step: a distribution
ending with two errors would be better. In practice, this
did not cause any problem and bad candidates never
generate further bad candidates.

• All our test were made using Gaussian noise. We did not
implement any other noise model but the formula we use
to computeM andT are true for any distribution. Other
noise models might thus require to use a much larger
number of intercepted words but should work as well.

N σ M (theory) running time
in seconds

proportion of the
permutation recovered

64 0.43 50 (48) 0.2 100%
64 0.6 115 (115) 0.3 100%
64 1 1380 (1380) 12 100%
512 0.6 170 (169) 11 100%
512 0.8 600 (597) 37 100%
512 1 2 800 (2 736) 173 100%
512 1.1 3 840 (3 837) 357 100%
512 1.3 29 500 (29 448) 4 477 100%

10 000 0.43 300 (163) 8 173 100%
10 000 0.6 250 (249) 7 043 100%

As we can see in the previous table, we manage to re-
construct the whole permutation even for extreme noise level
of σ = 1.3. For small parameters the algorithm is very fast
as the number of candidates at each step remains close to
1. However, the time difference between noise levels of1.1
and1 for a permutation of length 512 is larger than expected.
This comes from the fact that at several steps the number of
candidates increases to∼20. We also tried to run our algorithm
with less words than theoretically required. For a permutation
of length64 and a noise level of0.6, only 60 words (compared
to the115 theoretical bound) were enough to recover the whole
permutation in70% of our tests.

Concerning longer permutations, as the complexity is quad-
ratic in N and linear inM , our algorithm still performs as
expected but takes much longer. Recovering a permutation of
size10 000 takes a few hours. This shows that our algorithm
is able to reconstruct any non-punctured parallel turbo code.

III. F URTHER IMPROVEMENTS

A. Combination of the Two Methods

One can combine two algorithms we presented to improve
their performances. For instance, the first algorithm using
low weight dualwords can be used to guessP/Q without
the need for an exhaustive search. However, recovering the
whole permutation with it can require a large number of runs
depending on the noise level. In particular, the last positions
of the permutation are more expensive to guess than the first
ones. The second algorithm using entropy statistics behaves
the opposite way: the first positions of the permutation are
more expensive to recover as more choices are possible. A
good procedure is the following:

1) Run the first algorithm once. If no dualwords were found
or only very few were found, the noise level is probably
too high for this algorithm. Jump directly to step3.

2) If several dualwords were found in step1, then there
are probably enough dualwords to deduceP/Q from
the classification. Also, each further run of the first
algorithm can help reduce the number of unknown
positions in the permutation. Run this algorithm again
a few times, as long as each additional run significantly
decreases the remaining numberN ′ of positions ofΠ.

3) Except if the noise level is very low and the first
algorithm was able to reconstruct the whole permutation,
the reconstruction should always end with a run of the
second algorithm. This algorithm is relatively slow if
N ′ is large, but will almost always recover the whole
permutation if enough intercepted words are available.

B. Puncturing

The algorithms we presented were for parallel turbo codes
with no puncturing: we assumed that all the bits of outputsX
andZ were intercepted. Most real world turbo codes however
use puncturing in order to obtain different transmission rates:
typically, only one out of two bits of the outputsY andZ are
transmitted. In such a case, both our methods can be adapted.

For our first method, when a puncturing is applied, the
dualwords involving punctured bits no longer exist. Our al-
gorithm will still work, but only output dualwords with no
punctured bits. This has two consequences: first, the number
of available dualwords is smaller and the probability of not
finding any dualwords for one position is thus higher, secondly,
the classification is be sparser and identifyingP/Q requires
to look for higher weight dualwords, increasing the cost of the
exhaustive search.

For our second method, puncturing also increases the cost
of the algorithm. Depending on the puncturing pattern and the
polynomialsP/Q, each intercepted bit ofZ depends on 1 or
more positions ofΠ. For a puncturing of rate12 , each output bit
depends on the 2 previous bits of the permutedX . Therefore,
instead of guessing each position ofΠ independently, we
have to guess 2 positions (or more for sparser puncturing) at
a time. The complexity of the algorithm will thus increase
from O(N2) to O(N3). Also, instead of having to guess
between two possible entropy distributions, four distributions
are possible depending on the exactness of both guessed bits.
This makes the analysis of this algorithm more complex:
the problem of distinguishing between two distributions is
well known and classical results allow us to make optimal
decisions. For four distributions this is no longer the case,
especially if distributions we consider are not independent.

REFERENCES

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimazing symbol error rate.IEEE Trans. on Information
Theory, 20:284–287, March 1974.

[2] J. Barbier. Reconstruction of turbo-code encoders. InSPIE Defense and
Security Symp., Space Communications Technologies Conf., 2005.

[3] J. Barbier, G. Sicot, and S. Houcke. Algebric approach ofthe recon-
struction of linear and convolutional error correcting codes. In CCIS
2006, 2006.

[4] G. Burel and R. Gautier. Blind estimation of encoder and interleaver
characteristics in a non cooperative context. InInternational Conference
on Communications, Internet and Information Technology, CIIT, 2003.

[5] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-
weight words in a linear code: application to primitive narrow-sense
BCH codes of length 511. IEEE Trans. on Information Theory,
44(1):367–378, January 1998.

[6] P. Chose, A. Joux, and M. Mitton. Fast correlation attacks: an
algorithmic point of view. In L.R. Knudsen, editor,Eurocrypt 2002,
volume 2332 ofLNCS, pages 209–221. Springer, 2002.

[7] M. Cluzeau and M. Finiasz. Reconstruction of punctured convolutional
codes. InProc. of ITW. IEEE, 2009.

[8] M. Cluzeau and M. Finiasz. Recovering a code’s length andsynchro-
nization from a noisy intercepted bitstream. InProc. of the IEEE Int.
Symp. Information Theory. IEEE, 2009.

[9] M. Cluzeau and J.P. Tillich. On the code reverse engineering problem.
In Proc. of the IEEE Int. Symp. Information Theory, pages 634–638,
Toronto, Canada, 2008. IEEE Press.

[10] M. Côte and N. Sendrier. Reconstruction of a turbo-code interleaver
from noisy observation. InProc. of the IEEE Int. Symp. Information
Theory. IEEE, 2010.

[11] É. Filiol. Reconstruction of punctured convolutional encoders. In Int.
Symp. on Information Theory and its Applications (ISITA’00), 2000.

[12] R. G. Gallager. Information theory and reliable communication. John
Wiley & Sons, 1968.

[13] B. Rice. Determining the parameters of a rate1

n
convolutional encoder

over GF (q). In Third International Conference on Finite Fields and
Applications, Glasgow, 1995.

[14] A. Valembois. Detection and recognition of a binary linear code.
Discrete Applied Mathematics, 111(1-2):199–218, July 2001.

