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On Space-Time Code Design with A Conditional
PIC Group Decoding

Tianyi Xu and Xiang-Gen Xialellow, |IEEE

Abstract—Space-time code designs based on a partial inter- conditional PIC group decoding that can be stated as follows
ference cancellation (PIC) group decoding have been recdmt For each trial of a fixed group of information symbols, the
proposed. The PIC group decoding complexity depends on the yemaining information symbols are decoded with the PIC

group size and is between the lowest linear receiver complix . . . . .
and the highest ML decoding complexity. The symbol rate for 9rOUP decoding. The final decoding is the optimal solution

a space-time code achieving full diversity with the PIC grop @mong all the trials of the fixed group of symbols. It is clear
decoding is also between those for the linear receivers andié that the complexity of this conditional PIC group decoding
ML decoding. In this paper, we propose a new decoding, called js between those of the PIC group decoding in [26] and the
conditional PIC group decoding, that is between the PIC grop 1) gecoding. We obtain a new design criterion for space-time
decoding and the ML decoding. With the proposed new decoding . . . . o
we obtain a new design criterion for space-time codes to adhie codes.to achieve full .dlv.ersﬂy with the conditional P,IC gpo
full diversity, which is also between the one with the PIC grap ~decoding. The new criterion is also between those with tia PI
decoding and the one with the ML decoding. We then present group decoding and with the ML decoding. We then propose
some designs that satisfy the new criterion and in the meantie  some designs that satisfy the new criterion, i.e., achielle f
have higher symbol rates than that for the PIC group decoding diversity with the conditional PIC group decoding, and ie th
meantime, their symbol rates are higher than those designed
I ndex Terms—full diverfsity, partial ilnterference. cancellation,  for the PIC group decoding in [26], [28].
group decoding, cyclotomic lattice design, space-time bit codes. This paper is organized as follows. In Section II, we describ
the system model and the PIC group decoding. In Section lll,
we introduce the conditional PIC group decoding and present
. INTRODUCTION the new design criterion. In Section IV, we propose some code
ULL diversity achieving space-time code designs witblesigns. In Section V, we show some simulation results.
low complexity decodings include orthogonal space-time

codes (OSTC) [1]-{7], quasi OSTC type codes with simplified ||, SysTeEmM MODEL AND PIC GROUP DECODING
ML decoding [8]-{16], extended OSTC with conditional ML We consider an MIMO transmission with, transmit and

detection [17]-[20], codes with linear receivers [21][25 . . . . .
and codes[ wi]th[ PI]C group decoding [26], [28]. D[ue];](g thir receive antennas over a quasi-static Rayleigh block-fadin

orthogonality constraint, the symbol rates for OSTC typeeso channel. The channel model is written as follows,
decrease ta/2 [4] when the number of transmit antennas gets Y — \/ZXH N 1
large. When the orthogonality is relaxed so that the fulediv ny ’

sity can be achieved with linear receivers, the symbol rat%
can still be close td when the number of transmit antenna;
gets large [23]. When the linear receiver is generalizéaiesl
to the PIC group decoding, the symbol rates for full diversi
achieving codes can be increased to be more thiaunt upper
bounded by the group size [26]. It is known that the symbg\gf
rates for full diversity codes with the ML decoding can bd,ful

l.e., ny, forn; transmit antennas [29}-[33], including perfect | "y, paper, for convenience we only consider that in-

codes [31], [32]. A natural question is whether there aré fL\‘Iormation symbolss, | = 1,--- L, are coded by linear
diversity achieving codes with symbol rates higher thart thaispersion STRC [3lS’] [36] a’s T
with the PIC group decoding, and with a decoding of a lower '
complexity than the ML decoding. L

Motivated from the results in [17]-[20] on extended OSTC X =X(s1,,50) = > _Ausi, 2
with conditional ML detection, in this paper we propose a =1

. . . , _ whereA; € C™*™ is a linear STBC weight matrix. When
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xxi a}@e. udel . edu. [s1,82,+--,s.]T atthe receiver, the system model in (1) needs

ereY € Ct*" is the received signal matrix intime slots,

X e C**™ is a codeword matrix from a space-time block
code (STBC), or simplyX is an STBC,H = (hi;)n, xn,. IS
tthe ns X n, channel matrix whose entries are assumed i.i.d.
ith distribution CA/(0,1), N € C'*"r is an additive white
aussian noise matrix with i.i.d. entries ; ~ CN(0,1) and

is the average signal-to-noise-ratio at the receiver.
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to be rewritten as Theorem 2.1: For an STBCX with the PIC group decoding,
y =/pGs+n, (3) the full diversity is achieved when the code satisfies the

full rank criterion, i.e., it achieves full diversity whehe ML

_ i : o receiver is used; and for a fixéd 1 < k£ < N, any nonzero

is an equivalent channel matrix [23], [26), € C™ IS the jinear combination over\ A of the vectors in theith group

additive white Gaussian noise vector. _ _Gz, does not belong to the space linearly spanned by all the
_ We now ‘_’esc”b? the PIC group decoding algorithm StUd'Wathors in the remaining vector groups over the complex field
in [26]. Define the index sef asZ = {1,2,---, L}, whereL

is th ber of inf . bols & First (it i.e., Vg, defined in (12) in [26], for anyH # 0.
IS € humber of information Symbo’s B Frst We partiion — yqtice that in the PIC group decoding algorithm, we ma:
7 into N groups:Zy,Z,--- ,Zn. Each index subsef; can : ! group Ing algori W y

. use successive interference cancellation (SIC) strategjic
be written as follows, the decoding process. We call the SIC-aided PIC group decod-
T = {ig1sing - ik b k=1,2,--- N, ing as PIC-SIC group decoding [26]. The basic idea of this
method is to remove the already-decoded symbols from the
where ny, 2 |Zx| is the cardinality of the subsef,. We received signals to reduce the interferences. For a degodin
call Z = {71,7,,--- ,Zn} a grouping scheme. For such arder, for example(sr,,sr,, - ,Sry), first, we can decode
grouping scheme, we have the following two equations  symbol groupsz, by the PIC group decoding to obtas, .
Remove the components of the already-detected symbol group

wherey € C'" is the received signal vectog ¢ C!n*r

N N
I=JZ; and > ni=L. Sz, from (4):
=1 i=1 A
= — /pG7,57,. 6
Define sz, as the information symbol vector that contains . Y= VPGnsn ©
the symbols with indices iy, i.e., Then, decodsz, from (6) by the PIC group decoding. Repeat

T this process until all symbols are decoded. Then, the full
] diversity criterion for the PIC-SIC group decoding can be
Let the column vectors of an equivalent channel maBive Stated as follows2€], [27].

Sz, = [Sik,l 3 Sig o0 Sk n,

01,0, -+ ,d,. Similarly, we can defin&z, as Theorem 2.2: For an STBCX with the PIC-SIC group

decoding, the full diversity is achieved when the code

Gz, =9, ,» 9300 9iy |- satisfies the full rank criterion, i.e., it achieves full disity
In this case, the STBX in (2) can be also written % = when th(_a ML receiver is used; and at each decoding stage, for
X(sz,, - ,sz,). With these notations, equation (3) can pb&z,., which corresponds fto the curre_nt t(_)-be decoded symbol

rewritten as group sz, , any nonzero linear combination ovér4 of the
N vectors inGz, does not belong to the space linearly spanned

y=+vp> Grsr +n. (4) by all the vectors in the groufGz, . ,,--- ,Gz,] over the

i=1

complex field for anyH # 0.
Suppose we want to decode the symbols embedded inVe next propose a new decoding algorithm called condi-
group sz,. The PIC group decoding first implements lineational PIC group decoding.
interference cancellation with a suitable choice of ma@ix
in order to completely eliminate the interferences fromeoth
groups [26],i.e.Q7,Gz, =0,Vj #iandi =1,2,--- ,N. To
satisfy this, we can, for example, chod3e. as the following
zero-forcing filter Motivated from the conditional detection in [17]-[20] on
. e NH e Nl /me NH the conditional fast ML decoding for orthogonal codes, we
Qz, =lm, —GL,((G7,)"Cz,) (Cz,)", =12 N, propose a conditional PIC group decoding. Our proposed

IIl. CONDITIONAL PIC GRoOUPDECODING AND A NEW
DESIGN CRITERION

when the following matrix has full column rank: conditional PIC group decoding method is implemented in
. two major steps. First, estimate the information symbols in
Gz, =[Gz, ,Gz,,,Gzpys o+, Gy the first N — 1 groupssz, , Sz,, - - , Szy_, Using the PIC group
Then we have _decodmg for every possible trial of the mformaﬂon_symbol
in the last groupsz,,: for everysy,, € A"~, whereA is the
zz, = Qz,y=./pQz,Gz;s1, +Qz,n, i=1,2,--- ,N. constellation used, cancel it from the received signal:

The symbols in groupsz, can be decoded with the ML N—-1
decoding as follows [26]: Y = VPGz1ySry =P ¥ Gr.S1, + N+ /PGy (Sry — S14)-
1=1

% ®) 7
Apply the PIC group decoding to decodg, 1 <i < N —1,
whereA is a signal constellation for the information symbolsirom the abovey — ., /pGz, Sz, for everyss,, and denote the
In [26], [27], an STBC design criterion was derived talecoding results by,/“(sz, ), which are functions ofy, .
achieve full diversity with the PIC group decoding, whicmcaThis first major step is named as the PIC group decoding step.
be stated as follows. Then, the second major step is to chosgg to minimize the

S = i Z7. — G .St
S, =arg_min, lzz, — /PQz,Gz.5z,
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N—-1
Sy —arg miy, V- VP <Z; G5y (sry) + GzNézN> ®)
ML metric from all the results in the first step as (8) aboveProof: Suppose information symbol vector%, i =
and fori=1,2,--- ,N — 1, 1,2,---, N, are transmitted. Then, there are two types of
S%(mdplc _ s}”c (S%mdpm) ) errors as follows. The first type of errors appear in the PIC
‘ ‘ N ' group decoding step when we &gf, = §}N. In this case, the

This second major step is named as the ML step. equation (7) becomes
Suppose thatd™~ = {a1,as,--- ,a4}. Then, the condi- N1
gonql PICT‘ group decoding algorithm can be described in y =y /pGr, 51, = \/ﬁz GL.S_% 1.
etails as: p
1) Lett=1;
2) Letsz, = at, cancel it from the received signal as (7)
3) Treatn + ,/pGz, (Szy — Szy) @s noise, and decode
Sr,, -+ ,SIy_, Using the PIC group decoding. The de
coding results are?’’“ (sz,,);
4) Calculate the ML metric

N—-1
y— \/ﬁ (Z GL:SQIC(SYZN) + GZNSIN>

=1

Since the conditions in Theorem 2.1 are satisfied by
Gr,, - ,Gz,_,, the pairwise error probability of the de-
tection of s7,,i = 1,2,---,N — 1, when sy, = s}

is given, is upper bounded by (10) in the next page,
for a positive constantC; and (s}, ,s},,---,S7, ) #

. (7O (). SO (S8, ), -+ SEIC, (s8,))-

The second type of errors appear in the ML step of the
decoding, but in the PIC group decoding step, when we set
7y = Sy, the detection results are correct, s/ (s} ) =
s% fori = 1,2,---,N — 1. In this step, for anysz,, from
1=1,2,---, N — 1. Define set

b

5) If t < ¢, then sett := ¢+ 1, go to Step 2; otherwise, go
to Step 6; inePIC (&
6) Choosesz, with the minimal ML metric in Step 4, (7) we obtainsz ™ (Sz),
and the conditional PIC group decoding results are _ _ _ _ n
St 2 R 10, group 00000 ESUS W _{(s1C(ag,). 1, )30 )5 €4

1 ! YYIN-1 ’ )

The decoding complexity of the PIC group decodingue to the above error pattern, the above skt con-
step isO(].A|**), where¢; is the maximum cardinality of tgins the truely transmitted) for i = 1,2,--- N, ie.,
T1,Ts,-- ,In_1, i.€.,¢; = max{ni,ng,--- ,ny_1}. In the Q?O Sy, s ) e AL i
ML step, since we need to enumerate all possible trials 0fThe ‘detection of the remaining symbols can be processed
the groupsy,, its complexity isO(|A["~). Thus, the total a5 (11) in the next page, whefe || is the Frobenius norm
decoding complexity isO(|.A|*"~). Comparing with the of 3 matrix. Letsy, = SE7C (&7, ) fori = 1,2,--- , N—1. Itis
complexity, O(JA|" Fn=tnv), of the ML decoding, the easy to see thaby,, 5z, - .57, ) € A’ and it is the solution
above complexity is much lower. Comparing with the PIGs the ML decoding overA’.
group decoding, the complexity of this conditional PIC grou  ginceX satisfies the full rank criterion or”, it is obvious
decoding method is higher. As shown in the following thegnatx satisfies the full rank criterion o’ that is a subset of

rem, the full diversity criterion is weaker, which impliesat =~ 4z Thus, the pairwise error probability in the ML step above
we can design a higher rate code achieving the full diversigan pe pounded by

than that using the PIC group decoding. Our proposed method

is also different from the PIC-SIC group decod_ing methode Thp,. ] ML, [5,,80,, - ,%N]) < Cyp~ ™,

PIC-SIC group decoding method cancels the interference fro

the already decoded symbol groups, but the proposed method, . (12)

for any possible trial of a group of symbols, removes thef@ @ Positive constantCy and (sz,,sp,,---,s7,) #

from the received signal and decodes other symbol groups Wit » 52+~ STy )- 3

the PIC group decoding, and then chooses the best squtiqns-l.-he total pairwise error probability for the proposed decod
Theorem 3.1; For an STBCX with the above conditional N9 Mmethod,

PIC group decoding, the full diversity is achieved when the 0 O .. O

code X satisfies the full rank criterion, i.e., it achieves full Prls sz o8] — 8080 50)

diversity when the ML receiver is used; and for a fixed for (s} ,sy,,---,s},) # (S},,S7,, - ,S,), can be ex-

1 <k < N —1, any nonzero linear combination ové&xA pressed in two parts. One is that when in the PIC

of the vectors in theékth groupGz, does not belong to the group decoding step, settingz, = s%N, the detection

space linearly spanned by all the vectors in the vector groap sz,,Sz,, - ,Szy_, has no error, i.e., the truely trans-

Gz,, - ,Gz,_,,Gz1,.,, - ,G1,_,] over the complex field mitted symbol (sz,,sz,, -+ ,sz,) is in the set.A’. And

for anyH # 0, where a nonzero linear combination ov®4 in the ML step, we decode the symbols erroneously to

means that all the coefficients in the linear combination af€ ,s; ,---,s;,]. This part is due to the second type of

taken fromA.A and not all of them are zero. errors. The other is that error occurs in the PIC group dexpdi
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_ PIC group _ —nn
Pr (1 S o =1, ORI ) IO ) S (o = 1) £ G (10)
N—1 2
Stv = argSzNHéifrllnN y—- \/ﬁ <; Gziglc(slz\r) + GINSIN>
N—1 2
= ar min — Gr.s7. +G
g(5117"'7SIN)EA/ y \/ﬁ <; 7,57, INSIN>
2
= arg min Y — ﬁX(Szl, <+ ,STn_1, Sz )H (12)
(Sz1,sSzy )EA’ ny F

step, whersz,, =
type of errors.

g%N

is given. This part is due to the first

This proves that the code can achieve full diversity with the
proposed decoding method. ]

For the first part, the pairwise error probability can be We similarly propose a conditional PIC-SIC group decoding

expressed as
Py =Pr ([S.(%]’%g"” 7S%N]

S%gv"' vs.%N,1|§IN :S%N] & [s_/Zlvg.ng"' 7S_IZN]>7

which means that in the PIC group decoding step, with =
s, the detection resultigs} ,s ,---,s} ), and, then, in

PIC group
—— s

17

the ML step, we decode the symbols (& ,s;,,- - ,S;, )
Thus, we have
0 0 0 0 PIC group
P = Pr|lsg,Sp, Sty ISty =S5 ————
[glasozga T 7§N71|SZN = %N])
ML
-Pr <[S.%17£25"' ,§N71,$N] -
[S_,Zps_/lgv"' 7S_IZN])
0 0 ML
< Pr ([51155%27"' 7SIN,155_%N] -
[%1’%2"” 7%]\7])
< Cop

where the last inequality comes from (12).
The second part of the pairwise error probability can

written as (13) in the next page. Each component in (13) can ™
be bounded as (14) in the next page, where the last inequality

comes from (10). Thus,

. 5
(glll 73/1’2 73’I’N71)€AL*nN7
(57,7, STy JA(SE, 51,82y )

= (AT = 1CpT

Cip~ ™"

Based on these two parts, we have the pairwise error G

probability of the conditional PIC group decoding as
Pr ([S.(%l’s.%g?" ! ’S_(%N] - [g_Zlvg_Zza' v ag_ZN])

= P+P
(C2 + (JAIT"

IN

— D)

by replacing the PIC group decoding with the PIC-SIC group
decoding [26] in the first step. We have the following theorem
which can be similarly proved.

Theorem 3.2: For an STBCX with the conditional PIC-SIC
group decoding, the full diversity is achieved when the code
X satisfies the full rank criterion, i.e., it achieves full ergity
when the ML decoding is used; and at each decoding stage, for
Gz,., which corresponds to the current to-be decoded symbol
group sz, , any nonzero linear combination ovér4 of the
vectors inGz, does not belong to the space linearly spanned
by all the vectors in the groujGz,, ,,---,Gz,_,] over the
complex field for anyH # 0.

The full diversity criteria in Theorems 3.1 and 3.2 only
require a kind of linear independences (the second comdlitio
of the first N — 1 vector groups, which is weaker than the
requirement of the same kind of linear independences (the
second condition) of all théV vector groups in Theorems
2.1 and 2.2 [26], [27]. With this reduced requirement in the
criteria, we may add more symbol groups with the same
number of time slots using the conditional PIC (or PIC-SIC)
group decoding to achieve full diversity, as we shall seesixtn
section. Thus, it is possible to design a higher rate fulbdiity
code than using the PIC (or PIC-SIC) group decoding.

Example 1: Consider the full rat@ x 2 STBC proposed in

ass + bsy
csy + dsj

as1 + bss
—csh — ds}

X = (15)
where (s1, s2, s3,54) are information symbols and the star
stands for the complex conjugate,b, c andd are complex-
valued design parameters with the same magnityd&, i.e.,
la| = |b] = |c¢| = |d| = 1/+/2. Suppose we use one receive
antenna. The equivalent channel mat@xcan be written as

1
ﬁ[glv 2,93, 04)

o L Cth CLhQ bhl bhg (16)
V2 | ¢hy —c*hy d*hy —d*h} |
It is easy to verify thay, L g,, and, consequentlg, andg,
are linearly independent and thus satisfy the second dondit
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PIC group ,
PT‘([#I,S%,---,#N] [5,1175,12""75,1N,1|SIN:S%N]
Py = > (13)
(57,82 Sy JEATTY, (85 7%]) '
(#113%27"'7 ,1\771)?é S%I’S%2’“.’S%N—1)
PIC grou , ML
PT([S%NS%Qa"'vsgN] g B %pgly' '7%1\71|SIN_S%N]—)[%13§127"'7%N]>
PIC grou ,
= Pr ([%155925"'7§N1|SIN_§N] g B %17%27"'7%N1|51N_§%N])
/ ’ / ML
'PT<[§IN 27"'a§IN13§%N]—>[%135127"'3%N]>
PIC grou ,
< Pr(Ehdh ol — 4] PR g e = 4,])
< Chp ™, (14)

in Theorem 3.1. Therefore, with the grouping schefe= channel coefficients. It is not difficult to see that this code
{1}, Z, = {2} andZ; = {3, 4}, we can decode this code bydoes not satisfy the criterion for the PIC group decodindwit
the conditional PIC group decoding. This algorithm is thethe group schem&; = {1,2}, Z, = {3,4} andZ3 = {5,6}.
the same as the one proposed in [17]. Actually, for every group, any vector in this group can be
Before the ending of this section, we have a remarknearly expressed by the vectors in the other two groupssTh
Regarding to the decoding complexity for the conditionahis code does not satisfy the criterion to achieve full diitg
PIC group decoding, we may use sphere decoding [3Alith the PIC group decoding in [26], [27].
[43] to reduce the complexity. We only need to search the Suppose the conditional PIC group decoding is used to
information symbols in the last groups,, in a hypersphere decode the cod¢l7): first, estimates;, so, 3,54 Using the
around the received signal, not every possible trialsdiit".  PIC group decoding for every possible trial @f, s¢); then,
Using the sphere decoding method in the ML step similghoose(ss, ss) to minimize the ML metric from all results
to [19], the decoding complexity is much lower than beforén the first step. Sincéan 6 is an irrational number, we have
Moreover, in the PIC group decoding step, we can also uggh; cos + axhy sin # 0 for hy # 0 and anya, as € Z[i],
sphere decoding in each group instead of the ML decodinghereZ[i] is the number ring generated by the integer rihg
in (5). For an MIMO system with independent and identifyndi. Similarly, —byho sin + byhg cos@ # 0 for hy # 0 and
distributed channel coefficients, it has been shown that theyb,, b, € Z[i]. This implies that foh; andh, are not all 0,
average complexity of sphere decoding is in polynomial grdeainy nonzero linear combination ov&fi] of vectors fromGz,
roughly cubic, of the number of unknown variables, for @oes not belong to the space linearly spanned by all the rgecto
wide range of SNR and a moderate number of antennas drshn Gz, over the complex field, since any complex linear
constellation sizes, although the exact complexity dep@&md combination of the first components of the vectorsGa, is
the channels [41], [42]. Detailed complexity analysis far o always0 and any complex linear combination of the second
proposed conditional PIC group decoding combined with thi@mponents of the vectors @z, is always0 if h; = 0. This
sphere decoding can be similarly done as [41], [42]. In $@cti conclusion similarly holds when the order G, andGz, is
V, we show some simulation performances of the conditionalitched. SinceAA is a subset of[i], we have proved that,
PIC group decoding combined with the sphere decodin@r Gz, andGz,, any nonzero linear combination ovAtA of
which are similar to the performances of the conditional Pl¢ectors from one vector group can not be linearly expressed
group decoding. by the vectors in the other vector group over the complex
field. The following property can guarantee that this code ha
IV. NEw CODE DESIGNS full rank property when a QAM constellation is used. Thus,
Let us first consider 2 transmit antennas. The propos@m the new criterion we obtained in Theorem 3.1, this code
code is (17) in the next page, whefle= % arctan2 [26], can achieve full diversity with a QAM constellation and the
i = /=1, ands;, so,- - - , 56 are information symbols chosenconditional PIC group decoding.
from a QAM constella‘uonA This code is transmitted over Property 4.1: The matrixX in (17) has full rank whes; €
3 time slots and has a symbol rate of 2. For conveniendj] and at least one of; is not 0, whereZ[i] is the number
we only consider the case of one receive antenna. Accordiigg generated by the integer rir#g andi.
to the codeword structure, we can calculate the equivald®rbof: To prove this property, we need to verify that at least
channel matrix (18) in the next page, whéete and ho are one of the2 x 2 minors of matrixX is not 0.



JOURNAL OF ETEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

51 cos8 + sosinf e /4 (—s5sin 6 + s cos )
X = s3cost + sy sinf —s81sinf + s9 cosf a7
e 1™/4(s5 cos B + s¢ sin 6) —538in6 + s4cosd
1 hicosf  hisin@ 0 0 —e /4hysing e ™/ 4hy cos O
G=— | —hgsinf hgcosf hyicosf hisinf 0 0 (18)
V2 0 0 —hosin® hocos e /*hycos® e 1™/4hysind

Suppose all the x 2 minors of matrixX are 0. For example, we can easily prove that; = s, = 0 or s5 = s¢ = 0.
]) Similar to Case 1, now we havwg = sy = s3 = s4 = 0 Or

- <3 —im/4(_ <3 “
det<[ s1cosf + sgsinf e (—s5sind + sg cosb) 51 = 59 — 85 — 55 = 0,

53080 + 545in 0 —s18in6 + s cosd For another2 x 2 minor of matrix X
=0. ’
. det s3cost + sy sinf —818in 6 + s5 cos @
Denotesing, cosf, tand and e="/4 by s, ¢, t ande, "\ | e717/4(s5 cos0 + sesind) —s3sind + s4c0s0
respectively, we have =0.
0 = (s1¢+ 528)(—s15+ s2c) — €(—s58 + s¢c)(s3c + s45)  Similar to the proof above, we havg = s4 = 51 = s5 =0
— 02[—(8182—68485)t2 or s3 = s4 = s5 = sg = 0.

Hence, if all the minors of matriX are zeros, we have
s1 = s9 = 83 = s4 = s5 = sg = 0, which contradicts to that
Sincet = tan 6 ¢ Q, whereQ is the rational number field, andat least one of; is not 0. The matrixX, consequently, has

+(—52 4 52 — €(—5355 + 5456) )t + 5150 — €535¢).

the minimal polynomial ot over Z[i] is f(z) = 2 + = — 1, full rank. 1
we have thats;, i = 1,2,---,6, satisfy —(s152 — €s455) = For a general case, consider aftlayer code (19), in the
—5% 4 52 — €(—5355 + 545¢) = —(s182 — €s356) # 0 or next page, fom, transmit antennas witt® time slots, where
—(s187 — €5485) = —57 + 55 — €(—5355 + s486) = s159 — P —mng+1 < M < P, wherepy,---,py are M fixed
esssg = 0. complex numbers, théth descending diagonal from left to
Case 1. —(s182 — €84585) = —s%—f—s% —e(—s355+5486) = right, denoted byX; = [X; 1, X; 2, - ,Xiynt]T is given by

S§182 — €538 = 0.

. X; = Os;, 20

Sincee = e '™/* ¢ Q(i), whereQ(i) is the number field S (20)
generated by the rational number figldandi, equationa + Wwhere then, x 1 information symbol vectos; is

eb = 0 holds fora, b € ZJi] if and only if a = b = 0.

; ; Si = [S(i—1)ni+1> S(i—1)ns42: "+ Sin ]Ta
Thus, in this case, we havgsy = sys5 = 0, —s7 + 53 = ¢ t ¢
—5385 + 8486 = 0 and syso = s3sg = 0, which implies ¢ = 1,2,--- M, and © is a chosen constellation rotation
8§81 =83 =83 =84 =00rs; =89 =55 =56 =0. matrix [34]. The symbol rate for this code MI%
Case 2. —(s152 — €5485) = —57 + 55 — €(— 8355 + 5456) = We can choose the rotation matrix from [34], Table I.
—(s182 — es3s6) #£ 0. For a pair of integergl,m) and K = lm, n; = %, where
From the equation-(s1s2 —e€s485) = —s?+s3—e(—s3s5+ ¢ is the Euler totient function, a vaild rotation matrix is giv
s486), we have by
2 2 _ _ _ CK CQ . Ny
s2 5152 = 1+ €(5385 — 5455 — 5456) = 0. 14+mal Cz(lfmﬂ) o nt(l{(kmzl)
Sincee ¢ Q(i), the above equation holds if and onlysf + o= | ~. K R (1)
5182 — 57 = 0 and s3ss5 — sys5 — 5486 = 0. If s1 # 0, then : : : :
(%—3)2 + 32 — 1 = 0. We know that the roots of polynomial e 20kmad) (e
x*+x—1=0aret and—1—t ¢ Q(i). Thus, the equation where (i — exp(2mi/K) andma, ms, -+, mn, are distinct

(£2)? + £ — 1 = 0 does not hold for any, s, € Z[i] with
s1 # 0. Otherwise,s; = 0, thenss should also be 0.

From —(8182 — 68485) = —(8182 — 68386), we have9455 =
$3586. SUPPOSEsyss = s3sg £ 0, let z—i = z—z =k € Q(i),
and substitutingss and s5 by kss and ksg in the equation
S§3585 — S455 — S45¢ = 0, we have

integers such that 4+ m;l and K are co-prime for any2 <
i < ny. A signal constellation for this code can b, (or
a subsetd of A¢,), a subset ofZ[(;] that is the number ring
generated by the integer ririg and (;, i.e., A¢, C Z[(;]. Ac,
can also be thought of as tiedimensional real lattice with
the generating matrix

sase(k* —k —1)=0. { 1 cos(2m) ]
Similarly, k> — k — 1 # 0 for k € Q(i), so one ofs, and 0 sin(%)
sg equals to 0, which contradicts to the assumption. Thudefined in [34]. For example, when= 4, the constellation is
s485 = s3s¢ = 0. Together withszss — s485 — s486 = 0, located on the square lattice, i.e., a QAM constellationeWwh
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X =
p1X11 0 e 0 PMX M, P— M2 o pP—n42XP_n,42,m; |
p2X2 1 p1X1,2 : 0 :
: p2X2 2 0 ; P X M,
pr-1Xp-1,1 : P1X1,P—M+1 0 : 19)
prX pv—1Xm-12 - p2Xo p— 41 P1X1,P—M+2 0
0 Py X2 ; p2X2 P42 P1X1,n,
; : pPM—1XM_1,P—M+1 : :
L 0 0 e P XM, P— M1 pr—1XM-1,P-Mt2 PP t1XPntln,

I = 3, the signal constellation is located on the equal literd > M.
triangular lattice. Comparing with the code proposed in [28], whéh =
To decode this code with the conditional PIC-SIC group — n; + 1, the last groufr_,,, > does not appear and the
decoding, we first define the group ordering schefe= proposed code is the same that in [28]. Bdr> P —n; + 1,
{11,Z2, -+ ,Zp—_n,+2}, Where the symbol rate of the proposed cod%;l—t, is always greater
. . _ . than the symbol rate of the code in [28] with the same numbers
Ti = {(=Dnet L, (= Dnet 2, simeb i = 1,20 Ponatd et antennas and time slots, whicH4§?="+1)  The
andZp_pn,42 = {(P —ny + 1)ny + 1,(P — ny + 1)n, + decoding complexity of the proposed code with the condéion
2, , Mn.}. PIC-SIC group decoding is, however, higher than that of the
When P = n,, the matrixX in (19) is a square matrix, andcode in [28] with the PIC-SIC group decoding.
this code is exactly the multilayer cyclotomic code progbise  The following property guarantees that the coXleabove
[33]. In this case, we split the information symbols into twachieves the full diversity with the conditional PIC-SIGgp
groups as abovel = {7;,7,}, whereZ; = {1,2,--- ,n,} decoding.
andZ; = {n: + 1,n: +2,--- , Mn:}. When we use the con- Property 4.2: Forthe STBCX in (19), if the received signal
ditional PIC-SIC group decoding with this grouping schemés decoded using the conditional PIC-SIC group decodinb wit
the decoding is equivalent to the ML decoding. the group ordering schene= {7;,75, - ,Zp_p,+2}, then
When P > mn., with M layers, the symbol rate the codeX achieves the full diversity, whep;, = pf{l, 1=
of this code is %. With the grouping schem& = 1,..., M, satisfy one of the following conditions:
{11, Z5,--- ,Zp_n,+2} as above, we use the conditional PIC- 1) py = (, with n = ngK andng = p}'ph?---pie, ng >
SIC group decoding to decode the information symbols ag(M — 1) + 1, wherep,--- ,p, are some prime factors of
follows: first, for every possible trail of the symbols in thek;
last groupsz,. _,,, ,,, estimate the information symbols in other 2) p, = ¢/* for an algebraic numbek # 0, i.e., po is
symbol groupsy,, Sz,, -, Szp_,,,., With the PIC-SIC group transcendental;
decoding; then choose the begf_, ., to minimize the ML 3) po = \/Bl/”tgn, with a proper integed andn’ < n
metric from all results in the first step. The decoding complewith the samen as in 1).
ities of the codeX in (19) in the first step and second steferoof: Suppose that only one receive antenna is used and
are O(|A[™) and O(|A|™(M+ne=F=1)  respectively. Thus, the channel matrixH = [h1, ha, -, hn,]T. For multi-
the total decoding complexity i© (| A"+ (M +m=F)) For the ple receive antennas, the proof is similar. Let the ro-
multilayer cyclotomic space time code proposed in [33] witthtion matrix © = er ef, ... 7@&]? where ©;, =
the ML decoding, if the decoding complexity is the same atgumil 2(14+mgl) nt(1+mil)] with m; = 0, i.e., ©; be

- : s (Mtre— : : K K IRRELS '
Xin (19), i.e.,O(| A"+ =P)), the multilayer cyclotomic e jth row vector of®; andg;, = h;©;,i=1,2,--- ,n,. The

space time code should havd + n, — P layers withn:  gquivalent channel matrix is (22) in the next page, where for

transmit antennas and, time slots. So the corresponding;, _ | o ... P—n+1
symbol rate isM + n; — P. It is not hard to see that this Y '
symbol rate is less than the symbol rate of the proposed code 0(§71)Xnt
in (19), since Gz, = pidiag H)© ,
0 .
Mny, 1 9 (P—n¢—i4+1)xXng
M —P) - = —(MP P—P - M .
(M ny ) P P( o ni) andGz,_,, ., can be expressed as (23) in the next page.

_ i(P —n)(M - P)<0 For a nonzero codeword, since the symmetry structur_e of the
codeword, we can suppo3é in (19)-(20) is nonzero. First,
where the last inequality is obtained frofh > n, and M < to prove the cod& has full rank, we want to show that the
P. The above less than sigd holds strictly, i.e.,<, when determinant of the first; rows of X does not equal to zero. It
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1
G= \/—n—t[GINGIw T vGIP—nt+2] =
P19 0 0 PP—n,+20n, PMOp_prt2 |
P19 P29 0 :
' pals 0 PV,
1 P19, 1 . PP—n+19; 0 . (22)
A/ T
¢ p19,, P20, 1 PP—n,+19 PP—n,+20; 0
0 P29, : PP—ni+20 pMG
: 0 e pPon+10,, 1 : :
L O 0 ot pP—n+10n,  PP—ni+20,, 1 PMIp_pr41
PP—ni+29,,  PP—n4+30n,—1 PMOp_nrt2 ]
0 PP—n,+30n, :
0 PMYy,
0 .
GIantﬁ»Z = (23)
pP—ni+29 0 0
pP—n,+293 PP—n,+3% PmY
L PP—n+20n,—1 PP—n+30n, 2 PMI9p_pry1 J

is not hard to see that the determinant is a nonzero polydomia symbols from the last layer in cod€. In this case, we
of po of order no more tham:(M — 1) with coefficients in have the following simplified result.
Q(¢k), whereQ((k) is the number field generated by the Property 4.3: For the STBCX in (19), if the received signal
rational number field) and(x . Thus, the full rank property is is decoded using the conditional PIC-SIC group decodinb wit
equivalent to stating that, is not a root of such a polynomial.the group ordering schen®= {7,,7Z5, - ,Zp_n,+2}, then
The proof of this property is the same as the proof of Theoretime codeX achieves the full diversity, wheh! = P —n; + 2,

2 in [33].
Second, suppose the channel coefficignts= hy = - - -

pi=1,1=1,2,--- ,M—1,andpy = ¢, with n = noK and

ng = pi'psy? -+ -pie, wherepy, - - - | p,, are some prime factors

hj—1 = 0 andh; # 0. By Theorem 2 in [34], any nonzeroof K, such thatiqg > n; — M + 3 for n; > M or ng > 2 for
linear combination oveA A, of the entries 0©; is not zero, n; < M.

ie.,
a1+ a0 GO 20,
for [a1,a2, - ,an,] # [0,0,---,0] and a1,as, - ,a,, €

AA¢,. Thus, any nonzero linear combination ov&r\;, of
the entries of théi + j — 1)-th row Gz,, p;h;0;, is nonzero.
At the same time, the entries in the same rowGyf, are
either pkngrifk = pkhj+ifk®j+i7k with hj+i7k = 0,
ie., 0, for k i+ 1,9+2,---,5j+i—1or 0 for

k=j+ij+i+1,---,P—mn; + 1, which implies that X =

any nonzero linear combination oveéyA., of the vectors in
Gz, does not belong to the space linearly spanned by all the
vectors in the groupGz, ., -+ ,Gz,_,,,,] over the complex
field for anyH # 0.

Thus, this code can achieve the full diversity using the
conditional PIC-SIC group decoding, since the two condgio
in Theorem 3.2 are satisfied. ]

Xi1
Xo1

Xm—-1,1
pPr X1
0

0

0
X2
Xa2

Xpr—1.2

pPr X2

0

0

0
Xim—1
Xon,—1

XM—1,m—1
PMX M1

Proof: Similar to the proof of Property 4.2, we can show that
this code satisfies the second condition in Theorem 3.2. So we
only need to prove that the codeword matrix,

PMX M, |

0

0
Xl,nt
X2,nt

Xv-1n, |
(24)

has full rank with the information symbols; € Z[(;], for

When M = P — n; + 2, the last group of information ¢ =1,2,---, Mn,;, where at least one of; is not zero.

symbol indices isZp; = {(M — 1)n, +1,--- , Mn,} that has

If X1 =[X11,X12,,X1,,]7 =0, by the row permu-
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tation, we can express the codein (24) as follows: performance than Guo-Xia code in [26], while its decoding
complexity is higher. We also show the performances of the

X21 0 o 0 0 proposed code (17) with two different decoding methods: the
: X222 : : conditional PIC group decoding with sphere decoding in the
: . ML step marked by and the conditional PIC group decoding
Xar-1,1 : : 0 0 with sphere decoding in both the ML step and the PIC group
“ pvXars Xaro1o Xom, 1 0 decoding step mar_k_ed by. These performgnces are similar
) . to that of the conditional PIC group decoding.
0 puXar2 : Xon, For Case (i), we compare our proposed code (19)
: : : Xato1m—1 : with the parameters in Property 4.3 withy = 4 and
_ K = 16 of symbol rate8/3, with the perfect code in
0 0 “ puXmn—1 Xum-1m, |[31] of symbol rate4, and with the codeC, ¢ 3 in [28] of
L 0 0 0 pmXnmn, Isymbol rate2. In both Fig.2 and Fig.3, the group ordering

o ) (25) schemes of the conditional PIC-SIC group decoding are
Similarly to the code”, ¢ 3 in [28], we can show that the code{{l 2,3,4},{5,6,7,8},{9,10,11,12}, {13, 14, 15,16} }
X in (25) has the full rank property. _ for the proposed code and the perfect code and
Ot_herW|se_, wherX; # 0, if ny > M_, consider the square r11 2 3 4}, {5,6,7,8},{9,10,11,12}} for the code
matrix (26), in the next page, of .the firag rows pf .the code Cies, respectively. In Fig.2, the cod€,ss gives the
X in (24)_. The determinant of this square matrix is a nonzegp,gt performance, mainly because it has a lower bandwidth
polynomial of py, of the order no more tham, — M + 2 efficiency than the proposed code. We can see that the perfect
with the coefficients inQ(Cx ). By the definition ofn, we  code cannot achieve the full diversity with the conditional
have thatQ(Cx) C Q(¢n). The dimension of the vector spacep|c-siC group decoding. Even with a higher bandwidth

Q(¢n) over the fieldQ(Cx) is efficiency, the proposed code has a better performance than
d(n) the perfect code with the same conditional PIC-SIC group
[Q(¢n) : QCK)] = oK)~ >ny — M+ 3. decoding. We also show the performances of the proposed

. ] . code using the conditional PIC group decoding with sphere
Thus, we have that the minimal polynomial gf over field gecoding in the ML step marked by and in both the ML
Q(Ck ) is of the ordem,, which implies that the determinantyecoding and the PIC group decoding steps marked by
of this square matrix does not equal to zero. Hence, the code |5 Fig.3, the bandwidth efficiencies for all codes are

X has the full rank property. _ bits/s/Hz. The perfect code with the ML decoding has the best
It n; < M, the square matrix of the firsi; rows of the performance. However, without the full diversity, the etf
codeX in (24) can be expressed as code with the conditional PIC-SIC group decoding performs
X, 0 0 prXaim, ] worse than the proposed code at high SNRs. Comparing to
i : the codeCy 6,3 with the ML decoding, the proposed code
X2 X1, . : 0 with the conditional PIC-SIC group decoding has a better
. Xo s 0 ; . (27) performance. As a result, the propos_ed code wi.II. give a
] better performance than the codg ¢ 3 with the conditional
KXnp—1,1 : o X1 0 PIC-SIC group decoding, whil€, ¢ 3 is proposed in [28]
Xong1 Xp—12 0 Xog,1 Xin, | for the PIC-SIC group decoding that has a lower complexity

an the conditional PIC-SIC group decoding proposed in

The determinant of this square matrix is a nonzero polynbmia’:
this paper does.

of pps of the order at most with the coefficients inQ((x).
Similarly, the square matrix has the full rank witly > 2.

) VI. CONCLUSION
Thus, we have proved that the code in (24) has the hi d ditional PIC decodi
full rank property. Therefore, this code can achieve thé ful In this paper, we proposed a conditional PIC group decoding

di it ina th ditional PIC-SIC decodina i whose complexity is between those of the PIC group decoding
versity using the conditiona grotip decoding and the ML decoding. We then obtained a new STBC design

criterion for full diversity achieving STBC with the conihal

PIC group decoding, which is also between those of the PIC
In this section, we present some simulation results for tlygoup decoding and the ML decoding. Finally, we proposed

cases of (i) two transmit and three receive antennas, aswme new STBC designs that satisfy the new criterion and

(i) four transmit and four receive antennas. The channel tiserefore achieve full diversity with the conditional PIGr (

assumed quasi-static Rayleigh flat fading. PIC-SIC) group decoding and in the meantime, have higher
For Case (i), we compare our proposed code (17) with tkgmbol rates than those designed for the PIC (or PIC-SIC)

code (called Guo-Xia code for convenience) in [26]. In Fig.group decoding.

the bandwidth efficiencies are 8 bits/sec/Hz for all the sode

For Guo-Xia code, we use the PIC group decoding. For our ACKNOWLEDGMENT

proposed code, we use the conditional PIC group decodingThe authors would like to thank one of the reviewers to

From Fig.1, it is easily observed that the new code offertebetsuggest them to consider combining sphere decoding with the

V. NUMERICAL SIMULATIONS
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X141 0 0 0 P XM, ]
X221 Xip 0
Xo9 0
Xn—11 X —M+1 (26)
pv X Xar—12 Xon,—~M+1
0 P X2 : 0
: : XM—1,n—M+1 Xin—1 0
L 0 0 o pMX M- M1 Xon,—1 X1 n,

conditional PIC group decoding.
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Fig. 1. Performance comparison of the new code and Guo-Xie eath
bandwidth efficiency 8 bits/sec/Hz, two transmit and threeeive antennas
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Fig. 2. Performance comparison of the proposed code (1®)péhfect code,
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6,3 using the conditional PIC-SIC group decoding with four

transmit and four receive antennas
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