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Abstract

Storage area networks, remote backup storage systemsjnaitel énformation systems frequently
modify stored data with updates from new versions. In thgseems, it is desirable for the data to not only
be compressed but to also be easily modified during updatesalkeable coding scheme considers both
compression efficiency and ease of alteration, promotimgesform of reuse or recycling of codewords.
Malleability cost is the difficulty of synchronizing com@msed versions, and malleable codes are of
particular interest when representing information and ifyody the representation are both expensive.
We examine the trade-off between compression efficiencyraalieability cost measured with respect
to the length of a reused prefix portion. The region of achitvsates and malleability is formulated as
an information-theoretic optimization and a single-let&pression is provided. Relationships to coded

side information and common information problems are aktaldished.
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. INTRODUCTION

Conventional data compression uses a small number of casgmtedomain symbols but otherwise picks
the symbols without care. This carelessness renders codswitterly disposable; little can be salvaged
when the source data changes even slightly. Such data cesigmds concerned only with reducing the
length of coded representations. In this paper and a corpauagper with a distinct formulation [1], we
adopt the mantra of the green ageduce, reuse, recycl&Ve formulate problems motivated not only by
reduction of representation length but also by the reuseaycting of compressed data when the source
sequence to be coded changes.

In Shannon’s original formulation of asymptotically loss$ block coding,“the high probability group
is coded in ararbitrary one-to-one way” into an index set of the appropriate sizés @rbitrariness may
seem to impede reuse, but it also suggests that many codesgj@ably good for compression, and one
may choose amongst them to optimize a reuse critgi@tme may also allow suboptimal compression
to improve reuse; this trade-off, under a specific model abeg is the focus of this paper.

Moving toward formalizing, suppose that after compressingandom source sequencél, it is
modified to become a new source sequeh¢eaccording to a memoryless editing processy. A
malleable codingscheme preserves some portion of the codewor&pfand modifies the remainder
into a new codeword from whiclk;* may be decoded reliably using the same deterministic cadebo

There are several possible notions of preserving a portidineocodeword ofX}*. Here we concentrate
on a malleability costdefined through the reuse of a fixed part of the old codewordeinetating a
codeword forY*. We call thisfixed segment reusgnce a segment is cut from the codeword fof
and reused as part of the codeword ¥gt. Without loss of generality, the fixed portion can be taken to
be the beginning of the codeword, so the new codeword is a fixefix followed by a new suffix.

The fixed reuse formulation is suitable for applications keftbe update information (new suffix) must
be transmitted through a rate-limited communication clehnihthe locations of changed symbols were
arbitrary, the locations would also need to be communigatechmunication which may be prohibitively
costly. This formulation is also suitable for informatiotorge systems that use linked lists such as the
FAT and NTFS systems. A contrasting scenario is for a costtinburred when a symbol is changed

in value, regardless of its location. We studied this in [1].
1From [2] with emphasis added.

2The arbitrariness of code mappings have also been explinitesiundancy-free methods for joint source channel coffihg
and for modulation [4], in a manner related to [1].
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Our main result is a characterization of achievable ratessisgle-letter expression. To the best of our
knowledge, this is among the first works connecting problemimformation storage—communication
across time—with problems in multiterminal informatioretnry. We relate the fixed reuse problem to
several previously-studied problems in multiterminaloimfation theory, some of which are exploited
in this work. In particular, a connection to the Gacs—Kgireommon information shows that a large
malleability cost must be incurred if the rates for the twosiens are required to be near entropy.

The remainder of the paper is organized as follows. Motvettifrom engineering practice in areas
such as database management and network information staraggiven in Section]ll. Sectionllll then
provides a formal problem statement for malleable coding fixed segment reuse. The region describing
the trade-off between the rates for the original codewandtte reused portion, and for the new codeword
is the main object of study. Sectibn B uses an implicitika property to simplify the analysis of the
rate—malleability region and Sectidn II-C describes tvesily achieved points. Using a random coding
argument, Theorei 1 in Sectibn]IV gives an achievable raadleability region in terms of an auxiliary
random variable. There is also a matching converse. Sdbfi@ilooks at the auxiliary random variable
in detail; TheorermI2 is a partial characterization of thenown auxiliary random variable when there is a
sufficient statistic for the new version based on the oldigarsSectiori Y connects this malleable coding
problem to other problems in multiterminal information ding Section_Vll closes the paper, drawing

comparison to the problem of designing side information.

Il. BACKGROUND

Our study of malleable coding is motivated by informatiorsteyns that store frequently-updated
documents. In such systems, storage costs include not balpuerage length of the coded signal, but
also costs in updating. We describe these systems and sotheio&pplications.

In information technology infrastructures, there is of@@rseparation between computer hosts used
to process information and storage devices used to stoceniation. Storage area networks (SAN)
and network-attached storage (NAS) are two technologiastthnsfer data between hosts and storage
elements. SAN and NAS systems comprise a communicatioasimércture for physical connections
and a management infrastructure for organizing connegtistorage elements, and computers for robust
and efficient data transfers [5], [6]. Grid computing andribsited storage systems also display similar
distributed caching [7], [8]. Even within single computespdating caches within the memory hierarchy
involves data transfers among levels [9].

Data may be dynamic, being updated or edited after some Segarate data streams may be generated,
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Distributed Database

H(X) | :
Oold: X Databasd: A
p(Y]X) . U|H({U)

H(Y]
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____________________________

Fig. 1. Distributed database access.

but the contents may differ only slightly [10]-[13]. Moresy old versions of the stream need not be
preserved. Examples include the storage of a computer fidkupasystem after a day’s work or graded
homework in distance learning [14]. Correlations amongsiears differentiates malleable coding from
write-efficient memories [15], where messages are assuntgbéndent; see [1] for further contrasts.

Storage of communication transcripts in email hosting isess/such as GMail provides another area
where different versions of snippets of text are stored i@ common access point. The problem there is
made more interesting by the presence of a large number of wb® have created different modifications
of original shared sources. We do not deal with such problexpdicitly.

Systems such as SAN and NAS have complicated interplayseleetatorage and transmission. Current
technological trends in transmission and storage teclgidcshow that transmission capacity has grown
more slowly than disk storage capacity [7]. Hence “new” essgntation symbols may be more expensive
than “old” representation symbols, suggesting tteatsemay be more economical thaaduce

Recent advances in biotechnology have demonstrated starfagrtificial messages in the DNA of
living organisms [16]; such systems provide another mttigaapplication. Certain biotechnical editing
costs correspond to the malleability costs defined for fixeade, as detailed in [1].

Here we describe several scenarios where malleable coglimgplicable. Consider the topology given
in Fig.[d. The first user has stored a codewdrdor documentX in databasd. Now the second user,
who has a copy ofX, modifies it to creat&”. The second user wants to save the new version to the
information system, but since the users are separatedyataa rather than databageserves this user.
Transmission costs for different links may be differenteTatural problem is to minimize the total cost
needed to create a codewoBdat database that losslessly represents

Consider two users who both have access to a distributedakdasystem that stores several copies

of the first user's document on different media at differargations. Due to proximity considerations,
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the users will access the document from different physittaks. Suppose that the first user downloads
and edits her document and then wishes to send the new vedostbe second user. There are different
ways to accomplish this. The first user can send the entireveegion to the second user or the second
user can download the old version from his local store andireghat the first user only send the
modification. In the former scheme, the cost of transmisgoborne entirely by the link between the
users, rendering distributed storage pointless. In therlacheme, there is a trade-off between the rate
at which the second user downloads the original version fiteendatabase system and the rate at which
the first user communicates the modification.

Even in a single user scenario, there may be similar coraides. The first user may simply wish
to update the storage device with her edited version. Thégoald be to avoid having to create an
entirely new version of the stored codeword by taking adag@tof the availability of the stored original

in the database.

[1l. PROBLEM STATEMENT AND SIMPLIFICATION

We are now ready to give the formal problem statement. Fatigwhe formal problem statement, we

deduce simplifications to the problem statement and quitikty two achievable points.

A. Formal Problem Statement

Let {(X;,Y3)}2, be a sequence of independent drawings of a pair of join#jritiuted random
variables(X,Y), X ¢ W, Y € W, where)V is a finite set anx y (z,y) = Pr[X = z,Y = y|. The

marginal distributions are
px(z) =Y plx,y)
yeW
and
py(W) =Y plx,y),
zeW
and the conditional distribution
pxy(z,9)
px(x)
describes anodification channelWhen the random variable is clear from context, we wpitg(x) as

PY\X(M”U) =

p(z) and so on.
Denote the storage medium alphabetihywhich is also a finite set. It is natural to measure all rates i
numbers of symbols fror. This is analogous to using baBé-logarithms in place of base-2 logarithms,

and all logarithms should be interpreted as such.
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Fig. 2. In malleable coding with fixed segment reuse, the cesged representations &f' andY;" have the first.J storage

symbols in common.

Our interest is in coding ofX} followed by coding ofY* where the firstn.J letters of the codes
are (asymptotically almost surely) in common. We show thisFig. [2, whereA € V'K is the
representation o7, B € VL is the representation df}*, andU/ € V"’ is the common initial
symbols. We thus define the encoding and decoding mappintidi@ass.

An encoder forX with parametergn, J, K) is the concatenation of two mappings:

fJE;X) _ fJE;U) % ng)’
where
£ wn oy
and

gX) W YE=),
An encoder forY” with parametergn, J, L) is defined as:
l(?Y) _ f](EU) o ng)1
where we use one of the previous encodfeg]s) together with
R )
Given these encoders, a common decoder with parameier
fp:VF =W

The encoders and decoder define a block code for fixed reusesaiitity. Although not strictly required, a

common decoder is a convenient way of expressing the regaireof a common deterministic codebook.
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A trio ( ,gX%ng),fD) with parametergn, J, K, L) is applied as follows. Let

A = fE0 ()

be the source code foX(', where the first part of the code is explicitly notated as
up’ = fi (X7).

Then the encoding of{" is carried out as
n Y n n

BlL = ](«; )(Y1 7U1J)-
We also let
(X7 Y7) = (fp(ATS), fp(B)).

We define the error rate
A =max(Ax,Ay),

where

Ax = PrX] # X7

and
Ay =Pr[Y)" # fﬂ"],

and we define the disagreement rate as
Ay = Pr[A}Y # BYY).

The fact that there is a disagreement rate rather than regure firstn.J symbols to always be equal
introduces the usual slack associated with Shannon rijalWe will require Ay to be arbitrarily small,
so the possibility ofA;; # 0 is ignored in Fig[R.)

We use conventional performance criteria for the code, Wwhie the numbers of storage-medium
letters per source letter

1
K=-1 nk
—logpy V|

and

1
L=-1 "
—logp, V|

and add as the third performance criterion the normalizadtlteof the portion of the code which does
not overlap
1
M =L—J=—logy V""",
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Fig. 3. Block diagram of malleable coding with fixed segmesse.

We call M the malleability rate

Definition 1: Given a source(X,Y), a triple (Ko, Lo, M)) is said to beachievabldf, for arbitrary e >
0, there exists (fon sufficiently large) a block code for fixed reuse with errorerat < ¢, disagreement
rate Ay <e, and lengthsk < Kg+¢, L < Lg+e¢€, andM < My + e.

We want to determine the set of achievable rate triples, wehasM. It follows from the definition
that M is a closed subset &2 and has the property that (o, Lo, Mo) € M, then (K + g, Lo +
91, Mo+ 62) € M for anyo; > 0,7 =0, 1,2. The rate region\ is thus completely defined by its lower
boundary, which is itself closed.

Rather than usingK, L, M), the triple (J, K, L) may be used to characterize the achievable region.
Equivalently, we can us€Ry, R1, Ry) in place of (K, L, M) as shown in Figl13. Using this notation is

more consistent with established work in multiterminabimfiation theory. The relation is:

1) J = Ry,
2) K = Ry+ Ry, and
3) L =Ry+ Ro.

B. Problem Simplification

A priori, it seems there are two approaches to trading offagfe rate for malleability rate in the fixed
reuse problem: expendinj greater tharnd (X) might allow a better side informatiofi to be formed,;
and expendind. greater than/ (Y') might allow greater flexibility in the design d@f. It turns out that
expanding the representation &f* provides no advantage, i.e., any extra bits used to engodal not
help in the representation far. This is due to the Markov relatioti <+ X < Y that holds due to the
ordering of the encoding procedure.

For the remainder of this paper, we focus on expendimgeater tharf{ (Y') and analyze the achievable

rate—malleability. We focus on how depends on the size of the portion to be reugethus establishing
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the malleability M. When proceeding in this regime, two constraints are imghose

1) H(U) =J, and

2) HU,X) = H(X).
The second constraint states thats a subrandom variable of, which is implicit in the formal problem
statement in Section 1l and the block diagram, FEig. 3.

Rather than characterizing the entire region of achievaiplkets M, we consider fixing/ and finding
the bestL (thus fixing M = L — J). We want to characterize the achievable rateas a function of/.

The smallest sucli is denotedZL*(.J).

C. Two Achievable Points

It is easy to note the values of the corner points correspondi / = 0 and.J = H(X). For J =0,
the lossless source coding theorem yield$0) = H(Y'). For.J = H(X), since the lossless compression
of X7 has to be preserved, we will nedd (H (X)) = H(X,Y). This follows from noting that since
the first H(X) symbols have to be fixed, we need to be able to losslesslyseprehe conditionally
typical set, which requireg/ (Y| X) additional symbols, for a total off (X) + H(Y|X) = H(X,Y).
SinceH (Y |X) < H(Y), this is better than discarding the old codewordXjf and creating an entirely

new codeword foY*; unlessX andY are independent, this is strictly better.

IV. MAIN RESULTS

We cast the fixed reuse malleable coding problem as a sintjg ieformation theoretic optimiza-
tion, providing matching achievability and converse stegats. Unfortunately, this is not computable in
general. Later we will give a computable partial charaztgion for cases where there exists a sufficient
statistic for the estimation of the new version of the sodroen the reused part of the compressed old
version. The basic concepts are also applicable to a logeyufation with Gaussian sources.

The achievability proof for the boundary of the fixed reuse r@gion uses definitions and properties

of strongly typical sets (Lemmas [1-4), given in Apperldix A.

A. The Fixed Reuse Malleability Region

We consider the trade-off betwedhand .J. From the previous section, it is clear that for a given
malleability, the compression efficiency &f" is determined by the quality of the binning assignment

for the typical strings ofX]. We capture this assignment by a (probabilistic) functigftr|X). Then,
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we can formulate the following information theoretic opittation problem:

L*(J)—J= p(ngl()H(Y‘U) (1)

st.  HU)+ H(X|U) = H(X),
HU) =J.

Theorem 1:The optimization probleni{1) provides a boundary to the ratgon R = (Ry, R1, R2)
whenK = Ry + Ry = H(X).

Proof: Achievability: The constraints requiré/ (U) = J and that there is a Markov condition
U + X < Y. Codebooks forX] andY;" are randomly generated accordinggte:) andp(y). These
codebooks are of siz&|"X = |Y|"(X) and |V|"L respectively. Each codebook is partitioned into
[V|["H(U) pins with a corresponding bin lab&lP’. SinceU7” is a function of X7, it may be written as
Up/(X1). Clearly, we can choos# (U) = J and useJ symbols to assign the bin lab&l?’. For the
X7 codebook,H (X) — J symbols are used to assign labels to members of each binntitaehin label
is denoted/x. Similarly for the Y] codebook,L — J symbols are used to assign labels to members of
each bin; the intra-bin label is denotéd.

The encoder forX 7, éX) = f](EU) X gx), operates by generating a lab&}* = [U7"/, I'x] according
to which z7 is realized. The encoder far}", f,gy) = fg]) X ng> generates the same bin latigf”
and also generates the intra-bin laklel, based on whichy} is realized; the resulting encoding is
B = [UY | Iy]. Since both encoders use the identical bin lagl, it is clear that the disagreement
rate Ay can be made arbitrarily small.

The common decodefp operates according to strong typicality in the usual way.

By the direct part of Shannon’s source coding theorem (seenh@1) and the splitting possible due to

the entropy chain rule [17], it follows thak x = Pr[X] # fp(A)] is arbitrarily small with increasing

block length.
Now consider recoveringy® from the codewordB}l = [UP/|Iy], which uses the same prefix
but different suffix. The encoder had found the index such that(UP/ (XT), Y") € Tifrr y15° The

probability of successful encoding is determined by twaesvents. The first is tha/7’, ") does
not belong to the typical set; the second is th&t’ is jointly typical with X but not with Y;*. The
first event has arbitrarily small probability of error by tfj@nt AEP, LemmaR. The second event has

arbitrarily small probability of error by applying Lemnia d theU «+ X «+ Y Markov chain.
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Decoding error happens when there is another tyﬁ?’cfal;é Y7* that is jointly typical withU*/. The
probability goes to zero almost surely whén- J > H(Y'|U) by an AEP argument [18, (14.278)].

Thus Ay and alsoA may be made arbitrarily small, as required for achievapilit

Converse: The converse for the encoding and decodingXdf via [UP/, Ix] as a tree-based label
follows directly from the converse to Shannon’s source egdheorem.

We focus on the encoding 6&f onto [Iy] and the decoding of}* from [U7/, Iy]. By the encoding

strategy,U is a function of X7'. We then have a chain of inequalities:

(a)
n(L - J) = TLRQ > H(Iy)

(b)
> H(Iy|UT)

= I(Y{" Iy|U}) + H(Iy |V}, UT)

9 v iy|up)

= H(Y{"|UT) — H(Y{"| Iy, U}")

@ J
> H(Y'|UTY) — ne

© nH(Y|U) — ne.

Step (a) follows from dimensionality considerations; s{bp from noting that conditioning can only
decrease entropy; step (c) from the fact thgt and U7’ determinely; step (d) by applying Fano's
inequality; and step (e) from the chain rule of entropy ardkpendence in time. Thus we have obtained

the desired inequality. [ |

B. Further Characterizations

As in the source coding with side information problem [12]H and several other problems in
multiterminal information theory, Theorefd 1 left us to opize an auxiliary random variabl& that
describes the method of partitioning. Here we will provid@e bounds onl*(.J) and then further
characterization in terms of a sufficient statistic.offor Y.

Theorenl ]l demonstrated that we require
L(J)> H(Y|U) + J.

The easily achieved corner points discussed previouslyaafev simple bounds are shown in Fig. 4.

The bounds, marked by dotted lines, are as follows:
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HX)+HY) =+

@

(b

Fig. 4. Characterizations of the fixed reuse malleabiliioe boundaryL* (J). Each{ is a point determined in SectignTIIC,
and the dotted lines are simple bounds from Sedfion]IV-BhWit defined as a minimal sufficient statistic &f for Y, the
solid line shows the unit-slope boundary determined by Tém@2. The dashed line represents a portion of boundary shat i

unknown (but known to be convex by TheorEin 3).

(a) The lossless source coding theorem applietf talone givesL*(J) > H(Y).
(b) Another trivial lower bound from the construction is(.J) > J.
(c) Since one could encodg™ without trying to take advantage of the symbols already available,
L*(J)<J+H(Y).
In evaluating the properties af*(.J) further, let W be a minimal sufficient statistic ok for Y.
Intuitively, if J is large enough that one can encddein the shared segmebt*/, it is efficient to do
so. Thus we obtain regimes based on whethés larger thanH (W).

For the regime of/ > H (W), the boundary of the region is linear by the following theore
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Theorem 2:Consider the problem of{1). Lét” be a minimal sufficient statistic ok for Y. For

J > H(W), the solution is given by:
L*(J)—J=H(Y|W). 2

Proof: By definition, a sufficient statistic contains all informatiin X aboutY. Therefore any rate
beyond the rate required to transmit the sufficient statistinot useful. Beyond{ (1¥), the solution is
linear. [ |
A rearrangement of{2) is

L*(J) = H(Y,W) +[J — H(W)].

This is used to draw the portion of the boundary determinedsgyoreni 2 with a solid line in Fid.] 4.

For the regime of/ < H(WW), we have not determined the boundary but we can showilihat) is
convex.

Theorem 3:Consider the problem of(1). Léf” be a minimal sufficient statistic ok for Y. For
J < H(W), the solutionL*(.J) is convex.

Proof: Follows from the convexity of conditional entropy, by migipossible distributiong/. =

The convexity from Theorein 3 and the unit slopeld{.J) for J > H(W) from Theorem R yield the
following theorem by contradiction. An alternative prosfdiven in Appendix_B.

Theorem 4:The slope ofL*(.J) is bounded below and above:

d
< —L* <1.
0= dJ (/) <

The following can be seen as extremal cases for the theorben W andY” are independent,*(J) =
J+ H(Y) and so£L*(J) = 1. WhenX =Y, L*(J) = H(Y) for any J, and so-L.L*(J) = 0.

Without regard to the constraint oh it is known that the sufficient statistic faf upon the observation
X =z is p(Y|X = x). Therefore for the regime where> H(p(Y|X = z)), this is the best knowledge
of Y we can endow to the decoder for decodirig

The challenge lies whed < H(p(Y'|X = z)): this is an estimation problem with limited communi-
cation budget. In a lossy setting, for the special case otljopiGaussianX andY this problem may be
entirely solved by casting it as a linear least-squaresnesiton problem.

In fact, (1) can be stated as follows:
max H(Y|H(f(X))) ©
st. H(f(X)=m
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It is clear that[(ll) and (3) are equivalent. In this problera tlesign of the label is cast as the problem
of designing a sufficient statistic &f given X, consistent with our previous discussion. The fact that in

this statement/ equalsf(X) ensures that/ is a subrandom variable of .

V. CONNECTIONS

An alternate method of further analyzing the rate—malléghiegion for fixed segment reuse is to
make connections with solved problems in the literaturereHee connect our problem and the lossless
source coding with coded side information problem [19]H&burce coding with coded side information
problems provide achievable rate regions for fixed reusdemtaility. We also discuss relations to a
common information problem [22]. K = H(X) and L = H(Y) are required, then the length of
the common portion of the source code is less than or equél(f;Y), the Gacs—Korner common

information.

A. Relation to the Coded Side Information Problem

In this section, we show that rate regions for the coded siftgrnation problem (also called the helper
problem) are achievable rate regions for the malleabiligbfem. Results are expressed in terms of the
rate triple’R rather than the rate—malleability triple1.

Definition 2: Let

(Ro, R1, R2) : Ry > H(U)
Rhelp, = Ro+R1 > H(X) :
Ry > H(Y|U)
whereU is any auxiliary random variable.
Theorem 5:The rate region for the coded side information problRgy, is an achievable rate region
for the fixed reuse malleability problem, i.Bnep, € R.

Proof: The result follows simply by noting that the malleabilityopiem has a more extensive
information pattern than the coded side information prob(see Fig[b) and by the achievability result
for the coded side information problem [20, Theorem 2.1].néAs rate region in the case where the
side information need not be compressed satisgs> H(U), Ry > H(X|U), andRy > H(Y|U),
which impliesRpelp, - [ |

For the malleable coding problem, the auxiliary randomalale U may be generated frolX and
will be given to the encoder foy". Lossless source coding is always successively refinaBlg it it

is unclear how to split off some of the information from into U.
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Fig. 5. The fixed reuse malleable coding problem (left, Elgh&s a more extensive information pattern than the codesl sid
information problem (right). For fixed reuse, the side infiation may be designed frofd and this side information is available

at the encoder fok".

x_Jr] Ko Ro

’F

Y—> ](.;Y) R2 fD —>Y Y—> ](.;Y) R2 fD —>Y

Xf

Fig. 6. The fixed reuse malleable coding problem (left) haseenextensive information pattern than the coded side nmdgion

problem (right). For fixed reuse, the coded side informatfavailable at the encoder faf.

In the result just given, the side information was not corapeel and so the rate region was actually a
Slepian—Wolf region [23] rather than a true coded side imfaion rate region, even though the coded side
information theorem was invoked in the proof. An alternatsomparison leads to the side information
actually being compressed. In particular, consider theedaglde information problem whet¥ is side
information to be compressed, aidis the source to be compressed. There is a decoder that tedess t
two things and tries to reprodudé. This describes only the lower branch of the fixed reuse syside
upper branch would produce a code to allow lossless reaanistn of X at total rateRy + Ry ~ H(X).

We focus on the lower branch, studying the trade-off betwgand R,. This is equivalent to looking
at L*(J), as in previous sections. In order to cast an equivalendeet@added side information problem,
assume that the side information code is not available toYthencoder. Since the malleable coding
problem has a more extensive information pattern, this igsplhat the derived rate region will be an
achievable region. The lower branch as described, is nowtlgxthe coded side information problem
[19], [20].

Definition 3: Let

(Ro,R2): Ry > H(Y|U)
Ry > I(X;U)

Rhelpz =

whereU is any auxiliary random variable that satisfies the Markomdition U <+ X < Y.
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Theorem 6:The rate region for the coded side information problRgy,, is an achievable rate region
for the lower branch of the malleable coding with fixed reusebfem, i.e.Rnep, € Proj z, g, R-

Proof: The result follows simply by noting that the malleable cagproblem has a more extensive
information pattern than the coded side information prob(see Fig[6) and by the achievability result
for the coded side information problem [19, Theorem 2]. |

Since we are interested in the lower boundary of the rateoredinding Rpeip, may be reduced to
optimizing the auxiliary random variablg for the coded side information problem, which is also the
reused segment of the source code for the malleable codotgeon. This is usually difficult, but see

[21], [24]. The optimization problem foR, as a function ofR; is

F(Ry) = p(ngl()H(Y!U) (4)

s.t. I(U; X) < Ry.

Interestingly, a problem in machine learning called thetinfation bottleneck problem formulates a
similar optimization function and provides an alternatofgerational interpretation dRpel,, [25], [26]

The optimization problem is

B(Rg) = pr(nUelt§)I (Y;0) (5)

St I(U; X) < Ry,

which clearly satisfied'(R2) = H(Y') — B(Rz), sinceH(Y') is not open to optimization [26].

One can notice that the optimization probldfi) is closely related to the optimization problems that
arise for the coded side information problem and the infaimnabottleneck problem. In particular, it
can be noted that the constraint is a subset of the consfairthe coded side information problems.
Since[(U; X) = H(U) — H(U|X), it follows that {p(U|X) : I(U; X) < Ry} 2 {p(U|X) : H{U) <
Ry and H(U|X) = 0}.

B. Relation to Gcs—Korner Common Information

We have found that rate regions for lossless coding with dalde information are achievable for
malleable coding, however computing these regions ingwetimizing auxiliary random variables. It

turns out that for particular ranges of rates, the rate reggoactually known in closed form [21]; the

®New developments in computing the rate region for the codeel imformation problem [21], [24] also have implications

for computing the information bottleneck function [25]6]2 though these do not appear to have been exploited.

October 24, 2018 DRAFT



16

range is partially delimited by the common information ftiooal of Gacs and Korner [22], [27, pp.
402-404]. The Gacs—Kdrner common information also wedharacterization of malleable coding with
fixed segment reuse.

Definition 4: For random variableX andY, letU = f(X) = g(Y") where f is a function of X and
g is a function ofY" such thatf(X) = ¢(Y') almost surely and the number of values taken fbyor
g) with positive probability is the largest possible. Ther tBacs—Korner common information, denoted
C(X;Y),is HQU).

Definition 5: The joint distributionp(z, y) is indecomposablé there are no functiong and g each
with respect to the domain/ so that

« Pr[f(X) = g(Y)] = 1, and

o f(X) takes at least two values with non-zero probability.
It can be shown thaC(X;Y) = 0 if X andY have an indecomposable joint distribution. Further
properties of indecomposable joint distributions are giwe [27, p. 350] and [21]. In particular, an
auxiliary random variablé/ that satisfies the Markov relatidin <+ X <« Y is used for characterization.

Gacs and Korner show that the maximal length of the comnseginming portion of entropy-achieving
source codes foX and forY, the operational definition of common information, coiregdwith the
informational definition of common information. The basksult, [22, Theorem 1], is that it is not
possible in general to code two sources so that the resuitidgs have some common fixed length of
ordern. This is because in general(z, y) is indecomposable and so the common information is zero.
Such a negative result also carries over to the fixed reudseumo

Consider the block diagram for the coding problem that imeslthe common information in its solution
[27, Fig. P.28 on p. 403], Figl 7. If it is required th&{ = H(X)— Ry and thatR, = H(Y')— Ry, then the
largest possibleR, is C(X;Y"). Since entropy is being achieved, it follows thiat = H(Y'|U) through
Slepian—Wolf or conditional entropy meansf%iy) [17]. Since the distributed system does as well as
a centralized system, eveniif is given tofgy), this will not improve things. In particular, the system
shown in Fig.[8 will have the same relationship to the commuormation. Showing this rigorously
involves modifying the converse of the common informatiosogd and seeing that the arguments follow
through. Now one can observe that this block diagram is aamegd version of the fixed reuse malleable
coding block diagram, redrawn as Fig. 9.

Theorem 7:The Gacs—Korner common information rate triple providgsartial converse to the rate—

malleability triple.
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R N
X gX) 1 (DX) X

L
E

Ry

U

R N
Y gY) 2 (DY) Yy

Fig. 7. Block diagram for the Gacs—Korner common inforigrafproblem.

R >
X 1 X

B
E

Ry

X

U

R N
)% IE(Y) 2 (DY) Y

Fig. 8. Block diagram for the Gacs—Korner common inforieraiproblem when givind/ to ng>. This additional information

does not help in coding.

Proof: The result follows from the fact that the common informatfmoblem has a more extensive
information pattern than the fixed reuse malleable codirgplem (see Fig.19) and the converse for the
enhanced common information problem [22]. |
This theorem gives an outer bound to go with the achievalg®mmedefined in Definitiod 2. Thus for
the malleable coding problem, if we waif = H(X) and L = H(Y), then M must be badM >
H(Y)-C(X;Y), whereC(X;Y) is often zero. Since there is almost no overlap possible wéeguiring
L = H(Y), allowing largerL in Section IlI-B was a good approach.

VI. DIscuUssIiONS ANDCLOSING REMARKS

Phrased in the language of waste avoidance and resourceergcalassical Shannon theory shows
how to optimallyreduce we have here studieadtuseand in [1] studiedrecyclingand have found these
goals to be fundamentally in tension.

We have formulated an information-theoretic problem naigéd by the transmission of data to up-
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X A% fo X

L
E

Ry

U

Y IE(Y) R2 fD Y

Fig. 9. Block diagram for malleable coding with fixed segmexuse. This has a reduced information pattern as compared to

the Gacs—Korner common information problem when givingo fgy).

date the compressed version of a document after it has betd.edny technique akin to optimally
compressing the difference between the documents wouldreethe receiver to uncompress, apply the
changes, and recompress. We instead reqeuseof a fixed portion of the compressed version of the
original document; this segment cut from the compressediaerof the original document is pasted
into the compressed version of the new document. This reopgnt creates a trade-off between the
amount of reuse and the efficiency in compressing the newndent Theoren]1 provides a complete
characterization as a single-letter information-thdoreptimization.

We established relationships to several previously-sthidiultiterminal information theory problems.
Perhaps the most interesting is with the Gacs—Korner cominformation problem. Through that
relationship one can see that if the original and modifiedcsihave an indecomposable joint distribution
and are required to be coded close to their entropies, themeaihsed fraction must asymptotically be
negligible. We also showed through a Markovianity arguntéat there is no benefit from coding the
original source above its entropy. Our focus was thereforeases where the modified source is encoded

with excess rate.

A. On the Effectiveness of Binning

We informally describe the ineffectiveness of independantform binning. Place the codewords of

Tk that have the same firstJ symbols into the same bin. There amg|”’ bins, each of which
has [V|"(H(X)=/) elements. Let the bins be labeled by’ = 1,...,|V|*’. For each of the bins/}’

containing some sequencesuf create a corresponding bin to contain the conditionaftycy! sequences
Y7, given thatz} € u}’. This gives the smallest sized bins fgf given that the first2J symbols of

the representation of are the same as the firat/' symbols used to represegt. It is clear that the
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representation off’ is not unique, as the samg may be represented in more than one bin.
For eachz?] € Tix)s there are aboufy|"’(V1X) conditionally typical members ()T&X]é(QC?) by

Lemmal3B. Through the union bound (Boole’s inequality) weaoht

i x6 (21 € up”’)| < ’U?JHT[T}HX}(S(“?)’

— ’V’n(H(X)—J) ’V’nH(Y\X)

note that there ar@)|™” such binsu?’. Although this may suggest that the compressiory’sf may
require up tonH(X,Y) = n(H(X) + H(Y|X)) regardless of the value af, this is not the case.

The union bound is tight if and only if it consists of indepentevents, but it is difficult to examine
the tightness or to find a tighter bound. One might believé tina union bound is tight for any > 0,
implying a rate requirement off (X) + H(Y|X) = H(X,Y) symbols for the compression a&f" to
have any nontrivial malleability. With the upper bound ofcsen [IV-B], we have shown that this belief

is false. Thus the union bound is not tight, and independeritprm binning [23] fails.

B. Designing Side Information

Even after characterization by a coding theorem, rate nsgio multiterminal information theory
are notoriously difficult to examine because of optimizasionvolving auxiliary random variables. For
several source coding problems with coded side informatiohievable rates are characterized by product-
space characterizations with implicit optimizations oirdimite-letter mappings. One can think of these
optimizations as problems of designing useful side infdroma For malleable coding problems, the
design of side information takes central importance.

For the Slepian—Wolf problem [23], side information forntbcbugh random binning is good. For point-
to-point problems, (side) information formed through dtiEation binning is good. For other problems,
however, there is no intuition about optimal auxiliary randvariables and the nature of good binning.
Recent work on the source coding with coded side informatiailem [19], [20] provides some insight
into regimes where side information generated through £déte random-binning works and where it
does not [21], however there is no general theory.

One fundamental difference between coding with side infdiom problems and the malleable coding
problem is the time ordering of when codes are applied. Hbheefirst source is compressed and then the
second source is compressed with access to a portion of thal aealization of the compressed version

of the first source, not just a statistical description.
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APPENDIXA

STRONG TYPICALITY

Definition 6: The strongly typical sef}”

[X]
ﬂ%éz{

where N (z; 1) is the number of occurrences ofin z{ andé > 0.

s With respect top(z) is

:L':L'l

—p(z)

<},

Definition 7: The strongly jointly typical sefl\yis with respect top(x,y) is

1’ yawlﬂyl) p(m,y)' Sé}

Definition 8: For anyz} € T&]é, define a strongly conditionally typical set

T[’)l(y](s = {(ﬂf?a yr)

Ty xgs(et) = {0t € T | (@1, 01) € Thiys ) -

Now that we have definitions of typical sets, we put forth sdemmas.
Lemma 1 (Strong AEP)Let n be a small positive number such that— 0 asé§ — 0. Then for

sufficiently largen,

)+n)

Proof: See [28, Theorem 5.2]. [ |
Lemma 2 (Strong JAEP)Let A be a small positive number such that— 0 asé — 0. Then for
sufficiently largen,
Pr{(X7, Y1) € Tixyjsl > 1 -0

and

(1 o 5)|V|n(H(X,Y)—)\) < ‘ < |V|n(H(X,Y)+)\)_

Proof: See [28, Theorem 5.8]. |
n (@ )(21,men

’V’n(H(Y|X)—1/ < ‘V‘”(H(Y‘X)‘H’)’

) < ‘T[?/|X}5(w?)

whererv — 0 asn — oo andé — 0.
Proof: See [28, Theorem 5.9]. |
Lemma 4 (Berger's Markov Lemmalet (X,Y,Z) form a Markov chainX < Y « Z. Then for

sufficiently largen,

Pr((XT, 21) € T{x 73215l (Y1",21) € Ty 5] > 1 =0
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for any § > 0 and any realization?.

Proof: See [29, Lemma 4.1]. |

APPENDIX B

ALTERNATE PROOF OFTHEOREM[4

Proof of upper boundiet J; > J, be any two values of/. Let V; and V, be the corresponding
auxiliary random variable& that solve the optimization probleml (1). Then by the sudeesgfinability
of lossless coding [17], it follows thdt; and V5 will satisfy the Markov chain, <+ V; <+ X < Y.

By the data processing inequality,
I(Y;Ve) < I(Y; 1)
HWY) = HWV,|Y) < H(V1) — H(V2).
By definition,
L*(h) = L7 () = HY V1) + HWV) — H(Y|V2) — H(V2)
= HW[Y) — H(A|Y).
Therefore,
L*(J1) = L* () < HW) - H(V2) = J1 — Js
which implies

L*(1) = L*(J2) _
J1— Jo -

Proof of lower boundWe want to show thatf (V1 |Y) — H(V2|Y") > 0. This property may be verified

using Yeung's ITIP [28] after invoking the Markov chaly <> V; «++ X « Y and the subrandomness

conditions,H (V1| X) = H(V2|X) = 0.
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