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Abstract—We transpose the theory of rank metric and
Gabidulin codes to the case of fields of characteristic zero.The
Frobenius automorphism is then replaced by any element of the
Galois group. We derive some conditions on the automorphism
to be able to easily transpose the results obtained by Gabidulin
as well and a classical polynomial-time decoding algorithm. We
also provide various definitions for the rank-metric.

Index Terms—Space-time coding, Gabidulin codes, rank met-
ric, skew polynomials, Ore rings, algebraic decoding, number
fields.

I. M OTIVATION

Matricial codes with coefficients in a finite subset of the
complex field are particularly well-suited for the design of
space-time codes. When the metric of the code space is the
rank metric, its minimum distance is called the diversity. This
parameter is one of the crucial parameters in evaluating the
performance of Minimum Distance Decoding [3].

A problem in the field of space-time coding is to construct
codes with optimal rate/diversity trade-off. Lu and Kumar [7]
used an original approach by transforming optimal codes in
rank metric over finite fields, such as Gabidulin codes, into
optimal codes for space-time coding over different types of
constellations.

However a mappingFk
q → C is used, which is difficult

to reverse, yet its inverse is needed to recover information
bits when decoding. Another construction based on Gabidulin
codes over finite fields has been given in [8], using particular
properties of Gaussian integers.

We propose in this paper to construct optimal codes similar
to Gabidulin codes, with coefficients inC, completely bypass-
ing intermediate constructions using finite fields, using number
fields and Galois automorphims. We also provide a decoding
algorithm using with a polynomial number of field operations
(this is not the bit complexity).

Further work is needed to study the proper use of this
construction in the area of space-time coding.

II. CONTRIBUTION

In the original paper of Gabidulin, the constructed codes
are evaluation codes of linearized polynomials [5] with coeffi-
cients in a finite field. The associated metric is calledrank
metric and is of interest for correcting errors which occur

along rows or columns of matrices. Transposing the results in
characteristic zero fields is more tricky. Namely, in finite fields
the Galois groups are well known and the field extensions are
all cyclic. However in characteristic zero, it is abolutelynot the
case and one needs to be very careful and find some criteria
so that we can transpose Gabidulin construction in that case.

We call polynomials equivalent to linearized polynomialsθ-
polynomials, whereθ is an automorphism of a field extension
K →֒ L of degreem. The automorphismθ is of ordern,
which dividesm. In the first section we establish conditions
such that theθ-polynomials present robust properties, namely
that the root-space of aθ-polynomial has dimension less than
its degree. In a second section, we show that all the different
possible metrics that we could think of concerning rank metric
are in fact the same provided that the base field is exactly the
fixed field of θ. Under this condition, we can define therank
metric in a unique way.

In the final section we construct Gabidulin codes, showing
that they are optimal for the rank metric and that they can be
decoded by using some of the existing decoding algorithms.
And finally we give some examples. We refer the reader to
[4] for basics on Galois theory.

III. θ-POLYNOMIALS

In all the paper, we consider an algebraic field extension
K →֒ L with finite degreem, and an automorphismθ in the
Galois groupGal(K →֒ L), of ordern ≤ Gal(K →֒ L) ≤ m.
Given v ∈ L, we use the notationvθ

i

for θi(v). In the finite
field case, whenθ is the Frobenius automorphismx 7→ xq,
vθ

i

= vq
i

, and the similarity is nicely reflected in the notation.

We note B
def
= (b1, . . . , bm) a K-basis of L. For finite

fields, we use the notationFq →֒ Fqm . Similarly to linearized
polynomials, we defineθ-polynomials, which is a special case
of skew polynomials, namely, when there is no derivation.

Definition 1: A θ-polynomial is a finite summation of the
form

∑

i piX
θi

, with pi ∈ L. The greatest integeri < ∞ such
that pi 6= 0 is called itsθ-degree, and is denoted bydegθ(P ).
We denote the set ofθ-polynomials byL[X ; θ]. We have the
following operations on the setL[X ; θ]:

1) Componentwise scalar multiplication and addition;
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2) Multiplication: for P (X) =
∑

i piX
θi

and Q(X) =
∑

i qiX
θi

,

P (X) ·Q(X) =
∑

i,j

pi q
θi

j Xθi+j

;

3) Evaluation: Givenv ∈ L, andP (X) =
∑

i piX
θi

:

P (v) =
∑

piv
θi

.

The multiplication formula is motivated by the composition
law: P (X) ·Q(X) = P (Q(X)). The following is well known.

Proposition 1 ([9]): The set of θ-polynomials
(L[X ; θ],+, ·) is a non-commutative integral domain,
with unity Xθ0

. It is also a left and right Euclidean ring.
Such a ring is an Ore ring with trivial derivative. The proof
is the same regardless of the characteristic of the fields.
Considering the case whereK = Fq and L = Fqm are
finite fields, and whereθ is the Frobenius automorphism
x 7→ xq, we get the set oflinearized polynomials, also called
q-polynomials. In that particular case, one has the following
important proposition.

Proposition 2 ([10]): The roots of aq-polynomial with q-
degreet form aFq-vector space with dimension at mostt.
We define the root-space of aθ-polynomialP (X) to be the
set of v ∈ L such thatP (v) = 0. Then Prop. 2 does not
generalize to more generalθ-polynomials, whenθ is not well
behaved, as shown below.

Example 1:Here is an example of aθ-polynomial whose
root-space dimension is twice itsθ-degree. Let us consider the
field extension

K = Q →֒ L = Q[Y ]/(Y 8 + 1).

Let α be a root ofY 8 +1, such that(1, . . . , α7) is aK-basis
of L. Consider the automorphismθ defined byα 7→ α3. The
polynomialXθ1

−Xθ0

has a root-space of dimension 2, with
two K-generators:1 and α2 + α6. One can actually check
that the characteristic polynomial ofθ as aK-linear map is
Y 8 − 2Y 4 +1 = (Y 4 − 1)2, i.e. non square-free, which is the
cause of the problem.

Thus we have a simple criteria onθ to establish a property
equivalent to Prop. 2 in the general case.

Theorem 1:If the characteristic polynomial ofθ, consid-
ered as aK-linear application, is square-free, then the dimen-
sion of the root-space of aθ-polynomial is less than or equal
to its θ-degree.

Proof: Let P (X) =
∑

piX
θi

. Let us denoteP (X)
def
=

∑
piX

i. Let M be the matrix ofθ in the basisB. Let y be
an element ofL and YB the m-dimensional vector inKm

corresponding to its representation in the basisB. We have

P (y)
def
=
∑

i

piθ
i(y) = P (M) · YB.

Therefore the root-space ofP is equal to the right kernel
of the matrixP (M). Since by hypothesis the characteristic
polynomial of θ is square-free, all its roots are distinct. Let

α1, · · · , αm be its roots. Sinceθ is invertible 0 is not a
root of the polynomial. Therefore, there exists am × m-
non-singular matrixQ with coefficients in K, such that
M = Q−1 ·Diag (α1, · · · , αm)

︸ ︷︷ ︸

D

·Q. Hence

P (M)= Q−1 ·
∑

i

piD
i ·Q

= Q−1 ·Diag
(
P (α1), · · · , P (αm)

)
·Q.

Therefore the dimension of the root-space ofP is equal to the
number ofαi’s which are roots ofP . Since by hypothesis the
αi’s are distinct and since the degree ofP is the same as the
degree ofP , the dimension of the root-space ofP is at most
its degree.
Note that the condition that the characteristic polynomialis
square-free implies thatK = Lθ. We also need the following
theorem, which show that we can find annihilator polynomials
of K-subspaces ofL.

Theorem 2:Let θ have a square-free characteristic polyno-
mial. LetV be ans-dimensionalK-subspace ofL. Then there
exists a unique monicθ-polynomialPV with θ-degrees such
that

∀v ∈ V , PV(v) = 0. (1)

Proof: The result is proven by induction. Suppose first
thatV has dimension 1, withV = 〈v1〉, wherev1 is non-zero
element ofL. ThenPV = Xθ1

− θ(v1)
v1

Xθ0

satisfy Eq. 1. Sup-
pose now thatV has dimensioni+1, with V = 〈v1, . . . , vi+1〉.
The vectorspaceV ′ = 〈v1, . . . , vi〉 has dimensioni and

PV(X) =

(

Xθ1

−
θ(PV′(vi+1))

PV′(vi+1)
Xθ0

)

× PV′(X)

can be checked to satisfy Eq. 1. It is monic and hasθ-degree
i + 1. Nevertheless we need to ascertain thatPV′(vi+1) 6= 0:
Since by hypothesis the root-space ofPV′ has dimension less
than its degree and sincevi+1 is not in this root-space, we
get the desired result. To prove unicity, consider two monic
θ-polynomialsPV andQV and of degrees vanishing onV .
ThenPV − QV has degree less thans and admitsV among
its roots. This contradicts Th. 1.

IV. RANK METRIC

In this section we present four definitions for the rank
weight. We show that in fact they define only two different
weights. We also give a condition under which these two
weights are equal.

Definition 2: Let X = (x1, · · · , xN ) ∈ LN . We define

Xθ def
=






xθ0

1 · · · xθ0

N
...

. . .
...

xθn−1

1 · · · xθn−1

N




 ,

and

XB

def
=






x1,1 · · · xN,1

...
. . .

...
x1,m · · · xN,m




 ,



wherexi =
∑m

j=1 xi,jbj . We also define the left ideal

IX
def
= {P ∈ L[X ; θ] : P (xi) = 0, i = 1, . . . , N} .

The idealIX being a left ideal in a right Euclidian ring, it
admits a right generator, denoted bymin(IX).

For anyX ∈ LN , we define the following quantities:

• w0(X)
def
= degθ(min(IX)) ;

• w1(X)
def
= rankL

(
Xθ
)
= rank

(
Xθ
)
;

which are related toL-linear independance, while the follow-
ing definitions are related toK-linear independance:

• w2(X)
def
= rankK

(
Xθ
)
;

• w3(X)
def
= rankK (XB) = rank (XB);

where rankK stands for the maximum numberofK-linearly
independent columns.

Proposition 3: For all X ∈ LN , w0(X) = w1(X).
Proof: Let us denotew0(X) = w0, w1(X) = w1.

Since min(IX) has degreew0, then for any non zero
(c1, · · · , cw0−1) ∈ LN , we have

(c0, · · · , cw0−1) ·






xθ0

1 · · · xθ0

N
...

. . .
...

xθw0−1

1 · · · xθw0−1

N




 6= 0.

Thus the row rank overL of Xθ is larger than or equal tow1.
Thereforew0 ≤ w1.

Writing min(IX) =
∑w0

k=0 aix
θi

, we have

(a0, · · · , aw0
) ·






xθ0

1 · · · xθ0

N
...

. . .
...

xθw0

1 · · · xθw0

N




 = 0.

Therefore the(w0+1)-th row ofXθ is aL-linear combination
of thew first rows ofXθ. Applying θi, we have for alli:

(

aθ
i

0 , · · · , aθ
i

w

)

·






xθi

1 · · · xθi

N
...

. . .
...

xθw+i

1 · · · xθw+i

N




 = 0.

This implies that the(r+i)-th row is aL-linear combination of
thew0 preceeding rows, thus of thew0 first rows, by induction.
Thus theL-rank ofXθ is less thanw0, andw1 ≤ w0.

Proposition 4: For all X ∈ LN , w2(X) = w3(X).
Proof: Let w3 = w3(X) = rankK (XB), and w2 =

w2(X) = rankK
(
Xθ
)
. Without loss of generality, suppose

that the firstw3 columns ofXB areK-linearly independent.
Accordingly, consider thew3 first columns ofXθ, and suppose
that we have a dependence relation among them, i.e.

w3∑

i=1

λix
θj

i = 0, j = 0, . . . , n− 1,

with (λ1, · · · , λw3
) ∈ Kw3 . Considering onlyj = 0, and

rewriting xi =
∑m

j=1 xi,jbj over the basisB, we get

0 =

w3∑

i=1

λi

m∑

j=1

xi,jbj =

m∑

j=1

(
w3∑

i=1

λixi,j

)

bj .

Since thebi’s are aK-basis, we have, forj = 1, . . . ,m,

0 =

w3∑

i=1

λixi,j = XB · (λ1, · · · , λw3
)
T
.

By hypothesis the firstw3 columns ofXB are linearly in-
dependent, this impliesλi = 0, i = 1, . . . , w3. So the first
w3 columns of Xθ are K-linearly independent. Therefore
w2 ≥ w3.

To prove thatw2 ≤ w3, let (xi,j)
m
j=1 be thei-th column of

XB. Since the firstw3 columns ofXB generate the column
space, we havexi =

∑w3

k=1 λiuxu, i = 1, . . . , N . By K-
linearity of θj , we have

xθj

i =

w3∑

u=1

λiux
θj

u , j = 0, . . . , n− 1,

therefore theith column(xθj

i )n−1
j=0 of Xθ is generated by the

first w3 columns ofXθ, andw2 ≤ w3.
Proposition 5: For all X ∈ LN , w1(X) ≤ w2(X), with

equality whenK is the fixed subfield ofL, i.e. K = Lθ.
Proof: Let X = (x1, · · · , xN ) ∈ LN . It is clear that

a linear combination with coefficients inK is also a linear
combination with coefficients inL, hencew1(x) ≤ w2(x).

Let w1
def
= rankL

(
Xθ
)
. Noting the columns ofXθ

Ci =
(

xθ0

i , · · · , xθn−1

i

)T

,

suppose that the columnsCi1 , . . . , Ciw1
are L-linearly in-

dependent. Then anyi-th column can be writtenCi =
∑w1

j=1 λjCij , λj ∈ L. Applying θu, we get

Cθu

i =

w1∑

j=1

λθu

j Cθ
ij
, u = 1, . . . ,m,

which is the same as

Ci =

w1∑

j=1

λθu

j Cij , u = 1, . . . ,m,

sinceCθu

i is a cyclic shift ofCi. By summation, we get

Ci =

w1∑

j=1

(
m−1∑

u=0

λθu

j

)

Cij .

We have
(

m−1∑

u=0

λθu

j

)θ

=

m∑

u=1

λθu

j .

Howeverθ has ordern which dividesm. Thereforeλθm

j =

λθ0

j , therefore
∑m−1

u=0 λθu

j ∈ K whenK = Lθ. This implies
that the columnsCi1 , . . . , Ciw1

K-generate the column space
of Xθ: w2 ≤ w1.
It is easy to see that thewi’s provide distances defined by
di(X,Y )

def
= wi(X − Y ). In the following, we suppose that

we are in the case where all these metrics are equal, and the
induced distance is called rank metric. We use the notation



w(X), without indices. This definition is a generalization of
rank metric as defined in Gabidulin [1].

Example 2:Here is an example of a vector whose ranks
are different onK and onL. Let us consider again the field
extension

K = Q →֒ L = Q[Y ]/(Y 8 + 1).

Let α be a root ofY 8 + 1, such that(1, . . . , α7) is a K-
basis ofL. Consider again the automorphismθ defined by
α 7→ α3. Let x = (1, α, α2, α4, α5, 3α4 + 2). We have that
w0(x) = w1(x) = 4 ≤ w2(x) = w3(x) = 5

V. GABIDULIN CODES IN CHARACTERISTIC ZERO

For simplicity, we suppose in this section that the automor-
phismθ satisfies the following properties:

• θ generates the Galois group ofK →֒ L, that is θ has
orderm;

• The characteristic polynomial ofθ is square-free;
• Lθ = K.

The K-vector spaceLN is endowed with the rank metric
defined in the previous section. In this metric space, a linear
code is as usual anL-vector space of lengthN , dimensionk
and minimum rank distanced. It is denoted a[N, k, d](L,θ)

code.

A. Definition

Definition 3: Let g = (g1, · · · , gN) ∈ LN , be K-linearly
independent elements ofL. The generalized Gabidulin code,
with dimensionk and lengthN , denotedGabθ,k(g), as aL-
subspace ofLN , is L-generated by the matrix

G
def
=






gθ
0

1 · · · gθ
0

N
...

. . .
...

gθ
k−1

1 · · · gθ
k−1

N




 ,

For k ≤ N , the dimension ofGabθ,k(g) is indeedk. We can
show that the parity-check matrix ofGabθ,k(g) can be given
by

H
def
=






hθ0

1 · · · hθ0

N
...

. . .
...

hθd−2

1 · · · hθd−2

N




 ,

whered = N − k + 1 for somehi ∈ L which are alsoK-
linearly independent.

B. Maximum Rank Distance codes

Proposition 6: Let C be an [N, k, d](L,θ) code. We have
d ≤ N − k + 1.

Proof: Omitted due to lack of space.
An optimal code satisfying the property thatd = N −k+1

is called a Maximum Rank Distance (MRD) code.
Theorem 3:The generalized GabidulinGabθ,k(g) is an

MRD code.
Proof: Let C = (c1, · · · , cN ) ∈ Gabθ,k(g) be a non-zero

codeword. By definition of generalized Gabidulin codes, there
exists aθ-polynomialP (X) of θ-degree≤ k − 1 such that

∀i = 1, . . . , N, ci = P (gi).

Now,C has rankd if and only if theK-vector space generated
by its components hasK-dimensiond. Therefore, by Th. 2,
there exists aθ-polynomial ofθ-degreed such thatPC(ci) = 0
for all i. Hence

∀i = 1, . . . , N, PC × P (gi) = 0.

Since < g1, . . . , gN > has K-dimensionN , since P has
degree at mostk, and since we are in the case where the
dimension of the root-space of aθ-polynomial is at most its
degree, we haved+ k − 1 ≥ N therefored− 1 = N − k.

C. Unique decoding

Our version of the algorithm is inspired from Gemmel and
Sudan’s presentation of the algorithm of Welch-Berlekamp [2].
A more efficient variant can be used using [6], but we prefer to
present here a more intuitive version. Consider a vectorY =
(y, · · · , y) ∈ LN such that there existsE = (e, · · · , e) ∈ LN

such that

Y = C + E, (2)

C ∈ Gabθ,k(g), (3)

rank(E) ≤ (N − k)/2. (4)

Write t = ⌊(N − k)/2⌋. We define the following series of
problems related to this situation.

Definition 4 (Decoding):GivenY ∈ LN , find, if it exists, a
pair (f, E) such thatyi = f(gi)+ei, i = 1, . . . , N ; w(E) ≤ t
; degθ(f) < k.

Definition 5 (Nonlinear reconstruction):Given Y ∈ LN ,
find, if it exists, a pair ofθ-polynomials (V, f) such that
degθ(V ) ≤ t ; V 6= 0 ; degθ(f) < k ; V (yi) = V (f(gi)),
i = 1, . . . , N .
Note that this problem gives rise to quadratic equations,
considering as indeterminates the coefficients of the unknowns
(V, f) over the basisB. We thus consider a linear version of
the system.

Definition 6 (Linearized reconstruction):Given Y ∈ LN ,
find, if it exists, a pair ofθ-polynomials(W,N) such that
degθ(W ) ≤ t ; W 6= 0 ; degθ(N) < k + t ; W (yi) = N(gi),
i = 1, . . . , N .
Since we require the weight of the error to be less than or
equal tot = (N − k)/2, we have unicity of the solution for
the three above problems. Now the following propositions give
relations between the solutions of these problems.

Proposition 7: Any solution of Nonlinear reconstruction
give a solution ofDecoding.

Proof: Let (V, f) be a solution ofNonlinear reconstruc-

tion. We defineei
def
= yi−f(gi). Then we haveyi = f(gi)+ei,

i = 1, . . . , N ; degθ(f) < k ; w(E) ≤ t. Indeed, since the
ei’s are roots of aθ-polynomial with degree at mostt,we must
havedegmin(IE) ≤ t, thus,w(E) ≤ t.
Under an existence condition, we have the following state-
ment.

Proposition 8: If t ≤ (N − k)/2, and if there is a solution
to Nonlinear reconstruction, then any solution ofLinear
reconstructiongives a solution toNonlinear reconstruction.



Proof: Let (V, f) be a non zero solution ofNonlinear
reconstruction, and let (W,N) be a solution ofLinearized

reconstruction. Lettingei
def
= yi−f(gi), i = 1, . . . , N , we have

V (ei) = V (yi − f(gi)) = 0. ThusV ∈ IE , with degV ≤ t,
soE = (e1, · · · , eN) has rank at mostt.

We also haveW (ei) = W (yi) − W (f(gi)) so W (ei) =
N(gi) − W (f(gi)). Since W (ei) has rank at mostt, we
can find U with degree at mostt, such thatU(W (ei)) =
U(N(gi)−W (f(gi))) = 0.

Then (U × (N −W × f)) (gi) = 0, i = 1, . . . , N . As t ≤
(N−k)/2, degree computations show thatU×(N−W×f) is
a θ-polynomial with degree at mostN−1. Since it is zero atN
K-linearly independent values, it must be the zero polynomial:
U × (N −W ×f) = 0. As there is no zero divisor inL[X ; θ],
we conclude thatN = W × f . Then(W,N) = (W,W × f),
and (W, f) is a solution ofNonlinear reconstruction.
The above propositions imply that unique decoding is equiv-
alent to solvingLinearized reconstruction. Now we give the
explicit system of equations to be solved.

Theorem 4:Solving Linearized reconstructionamounts to
solving the following linear system of equations

S ·

(
N
−W

)

= 0,

where

S
def
=






gθ
0

1 · · · gθ
k+t−1

1 yθ
0

1 · · · yθ
t

1
...

. . .
...

...
. . .

...
gθ

0

N · · · gθ
k+t−1

N yθ
0

N · · · yθ
t

N






with unknowns

N= (n0, · · · , nk+t−1)
T ∈ Lk+t

W= (w0, · · · , wt)
T ∈ Lt+1.

Proof: Each row of the product corresponds to the eval-
uation ofN andW in the gi’s and in theyi’s.

Remark 1:The number of arithmetic operations used in this
method is easily seen to be ofO(N3), using for instance
Gaussian elimination for solving the linear system. However,
since the system is highly structured, a better algorithm
exists [6] whose complexity isO(N2).

Remark 2:Note that we only deal with the algebraic com-
plexity, i.e. the number of elementary additions and multipli-
cations inL. Since we may compute over infinite fields, this
does not reflect the bit-complexity, which shall be studied in
a longer version of the paper.

VI. EXAMPLES

We have previously seen the importance of the hypotheses
aboutθ and what happen when they are not satisfied. Now,
we will see that Kummer extensions always provide automor-
phisms with the good properties.

Example 3:Let us consider the Kummer extension

K = Q[X ]/(X4 + 1) →֒ L = K[Y ]/(Y 8 − 3).

Let h be a root ofX4+1, such that(1, h, h2, h3) is aQ-basis
of K, and letα be a root ofY 8−3, such that(1, . . . , α7) is a
K-basis ofL. Consider this time the automorphismθ defined
by α 7→ hα. Its characteristic polynomial isY 8 − 1, which is
square-free. Thus, we can define generalized Gabidulin codes
with symbols inL, of length8, and any dimension less than
or equal to8. Besides being simplyQ-linear, these codes are
alsoK-linear.
More generally, with Kummer extensions, we can design rank-
metric [N, k, d] codes, accomplishing the MRD conditionN−
k = d− 1. Below is also given a classical infinite family.

Example 4:Considerp an odd prime number, and letζ
be a primitivep-root of unity in C. ThenQ →֒ Q[ζ] is an
extension of degreep− 1, and its Galois group is isomorphic
to (Z/pZ)⋆, and is thus cyclic. We letK = Q, andL = Q[ζ].
For any u with gcd(u, p − 1) = 1, considerθ : ζ 7→ ζu.
Thenθ has orderp− 1 andQ is the subfield stable underθ.
Then, fork ≤ p−1, can buildQ-codes inLp−1, of dimension
k over L, such that theK-rank of any codeword is at least
(p− 1)− k + 1 = p− k.

VII. C ONCLUSION

For a θ-polynomial, we have seen the link between its
degree and the dimension of its kernel. Particularly, we gave
sufficient condition for the root-space dimension being at most
the degree of aθ-polynomial, namely.

Then, we have seen four different ways to define notions
related to the rank-metric. This reduces to only two metrics,
which are furthermore the same in the case ofθ having a
square-free characteristic polynomial.

We have also given a generalized definition of Gabidulin
codes, seen that they are MRD codes, and can be easily
decoded up to half the minimum distance. Since computations
are not carried over finite fields, the bit complexity will be
properly evaluated in the future.

Finally, properly applying this theory to space-time coding
needs further work.
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[10] Ö. Øre. On a special class of polynomials.Transactions of the American
Mathematical Society, 35(3):559–584, 1933.


	I Motivation
	II Contribution
	III -polynomials
	IV Rank metric
	V Gabidulin codes in characteristic zero
	V-A Definition
	V-B Maximum Rank Distance codes
	V-C Unique decoding

	VI Examples
	VII Conclusion
	References

