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Abstract—We transpose the theory of rank metric and along rows or columns of matrices. Transposing the results i
Gabidulin codes to the case of fields of characteristic zerdlhe  characteristic zero fields is more tricky. Namely, in finiteldis
Frobenius automorphism is then replaced by any element of # 1o Gaj0is groups are well known and the field extensions are
Galois group. We derive some conditions on the automorphism . . o g
to be able to easily transpose the results obtained by Gabidia all cyclic. However in characteristic zero, it is at_)olutelyt the_ _
as well and a classical polynomial-time decoding algorithmwe case and one needs to be very careful and find some criteria
also provide various definitions for the rank-metric. so that we can transpose Gabidulin construction in that. case
_ Index Terms—Space-time coding, Gabidulin codes, rank met-  \ve call polynomials equivalent to linearized polynomiéis
;ilgid:kew polynomials, Ore rings, algebraic decoding, numer v omials whered is an automorphism of a field extension

' K — L of degreem. The automorphisnd is of ordern,
which dividesm. In the first section we establish conditions

o ) o ) o such that thé&-polynomials present robust properties, namely
Matricial codes with coefficients in a finite subset of thenat the root-space of @&polynomial has dimension less than

complex field are particularly well-suited for the design ofts degree. In a second section, we show that all the differen
space-time codes. When the metric of the code space is fisible metrics that we could think of concerning rank foetr
rank metric, its minimum distance is called the diversithisT are in fact the same provided that the base field is exactly the
parameter is one of the crucial parameters in evaluating tfig.d field of 9. Under this condition, we can define trenk
performance of Minimum Distance Decodirig [3]. metricin a unique way.

A problem in the field of space-time coding is to construct |, the final section we construct Gabidulin codes, showing
codes with optimal rate/diversity trade-off. Lu and Kumi@l [ 4t they are optimal for the rank metric and that they can be
used an original approach by transforming optimal codes facoded by using some of the existing decoding algorithms.

rank metric over finite fields, such as Gabidulin codes, intg,q finally we give some examples. We refer the reader to
optimal codes for space-time coding over different types fﬁ] for basics on Galois theory.

constellations.

However a mapping?’; — C is used, which is difficult
to reverse, yet its inverse is needed to recover information
bits when decoding. Another construction based on Gatiduli |, 4| the paper, we consider an algebraic field extension
codes over finite fields has been givenlin [8], using particula- ., 1 with finite degreem, and an automorphist in the
properties of Gaussian integers. _ _Galois groupGal(K < L), of ordern < Gal(K < L) < m.

We propose in this paper tq qonstruct optimal codes similaf, € L, we use the notation? for ¢(v). In the finite
to Gabidulin codes, with coefficients @, completely bypass- 4|4 case, wher is the Frobenius automorphism s 9,

ing intermediate constructions using finite fields, usinmber o' _ o' -4 the similarity is nicely reflected in the notation.
fields and Galois automorphims. We also provide a decodingWe ' def

algorithm using with a polynomial number of field operation? i note B T] (b, .. -, bm) %K_t?sﬁ Olf L. ll_zor f'.mtz
(this is not the bit complexity). lelds, we use the notatioR, < F,. Similarly to linearize

Further work is needed to study the proper use of th olynomials we d_efinee—polynomialswhich is aspgcial_ case
construction in the area of space-time coding. 0 ske_vv. polynommlmamely,_when the_re IS "o der_|vat|on.
Definition 1: A -polynomial is a finite summation of the
[I. CONTRIBUTION formy", piX?", with p; € L. The greatest integér< oo such
In the original paper of Gabidulin, the constructed codd@@tri 7 0is called its¢-degree, and is denoted biye, (P).
are evaluation codes of linearized polynomials [5] withftiee V& denote the set @f-polynomials byL[.X; 6]. We have the
cients in a finite field. The associated metric is caltadk Ollowing operations on the set[.X; 6]:
metric and is of interest for correcting errors which occur 1) Componentwise scalar multiplication and addition;

I. MOTIVATION

IIl. 0-POLYNOMIALS
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2) Multiplication: for P(X) = ZipiX"i and Q(X) = aq, - ,q,, be its roots. Sincd is invertible 0 is not a

> a XY, root of the polynomial. Therefore, there existsna x m-
b it non-singular matrix@) with coefficients in K, such that
P(X)-Q(X)=> pig! X*; M = Q™' Diag (a1, --- ,a,) Q. Hence
1,7

D
3) Evaluation: Giverv € L, and P(X) = 3. p; X?": — N ;
) ( >) 2P P(M)=@Q 1'ZPiD -Q
Pv) = Zpivel. i

=0 !.Diag (P ... P . 0.
The multiplication formula is motivated by the composition @ o (P(al)’ ’P(am)) <
law: P(X)-Q(X) = P(Q(X)). The following is well known. Therefore the dimension of the root-spacefois equal to the
number ofa;’s which are roots off. Since by hypothesis the
Proposition 1 ([9]): The set of  #-polynomials «;'s are distinct and since the degreePfis the same as the
(L[X:6],+,-) is a non-commutative integral domaindegree ofP, the dimension of the root-space Bfis at most

with unity X% . It is also a left and right Euclidean ring.  its degree. N o u
Such a ring is an Ore ring with trivial derivative. The proofNote that the condition that the characteristic polynorsal

is the same regardless of the characteristic of the fiel@§uare-free implies thak’ = L. We also need the following
Considering the case whet& = F, and L = F,. are theorem, which show that we can find annihilator polynomials

finite fields, and whered is the Frobenius automorphismOf K-subspaces of. o
z — 27, we get the set ofinearized polynomialsalso called _Theorem 2:Letd have a square-free characteristic polyno-
g-polynomials In that particular case, one has the followingnial. Let) be ans-dimensionali’-subspace of.. Then there

important proposition. exists a unique monié-polynomial P, with 6-degrees such
Proposition 2 ([10]): The roots of ag-polynomial withg- that
degreet form aF,-vector space with dimension at mdst YoeV, Py(v)=0. (1)

We define the root-space of apolynomial P(X) to be the
set ofv € L such thatP(v) = 0. Then Prop[2 does not
generalize to more gener@polynomials, wher is not well

begaved,lasl.s:own.below. le of 6-0ol ial wh pose now tha¥’ has dimensiori+1, with V = (V15 Vig1)-
xample _. Here IS an example ot -polynomial Wnose T, vectorspac®’ = (v1,...,v;) has dimension and

root-space dimension is twice ifisdegree. Let us consider the

Proof: The result is proven by induction. Suppose first
thatV has dimension 1, with’ = (v;), wherev; is non-zero
element ofL. ThenP, = X' — %0 x6° satisfy Eq1L. Sup-

v

field extension Po(X) = (X91 B G(wa((viH)))Xeo) % Py (X)
’ ’Ui
K=Q< L=0Q[Y]/(Y®+1). C o ,
. - ~can be checked to satisfy Hd. 1. It is monic and Gakegree
Let a be aroot ofy™ +1, such that(1,...,a") is aK-basis ;4 1. Nevertheless we need to ascertain tRat(v;;1) # O:

of L. Consider the automorphisthdefined bya — o®. The ~ since by hypothesis the root-spaceRf has dimension less
polynomial X" — X% has a root-space of dimension 2, withhan its degree and sineg.; is not in this root-space, we
two K-generatorsl and o® + . One can actually check get the desired result. To prove unicity, consider two monic
that the characteristic pOlynomial of as aK-linear map is 9_p0|ynomia|spv and QV and of degreg Vanishing onV.

Y8 —2Y*+1 = (Y*—1)? ie. non square-free, which is therhen P, — ), has degree less thanand admitsy among

cause of the problem. its roots. This contradicts Th 1. m
Thus we have a simple criteria ¢hto establish a property

equivalent to Prof.]2 in the general case. IV. RANK METRIC
Theorem 1:1f the characteristic polynomial of, consid-  In this section we present four definitions for the rank

ered as a-linear application, is square-free, then the dimenweight. We show that in fact they define only two different
sion of the root-space of &polynomial is less than or equalweights. We also give a condition under which these two

to its f-degree. v weights are equal.
Proof: Let P(X) = S p;X?". Let us denoteP(X) &' Definition 2: Let X = (zy,--- ,zy) € L~. We define

> piX". Let M be the matrix off in the basisB. Let y be 0 90

an element ofL and Yz the m-dimensional vector ink™ et oo Iy

corresponding to its representation in the b&sidVe have X7 = : : 5
en—l en—l

def 7 - X x
P(y) =Y pif'(y) = P(M) - V. ! N
i and

1,1 TN,

Therefore the root-space d? is equal to the right kernel ; _
of the matrix P(M). Since by hypothesis the characteristic Xz : : g
polynomial of § is square-free, all its roots are distinct. Let Tim ' TN.m



wherez; = Z;”:l x;,;b;. We also define the left ideal Since theb;'s are aK-basis, we have, fof = 1,...,m,

IxE{PeL[X;0: Plx;)=0,i=1,...,N}. Ozi)\imi,j X O )
The idealIx being a left ideal in a right Euclidian ring, it i=1
admits a right generator, denoted by (/). By hypothesis the firstu; columns of X are linearly in-
For any X € L™, we define the following quantities: dependent, this implies; = 0, i = 1,...,ws. So the first
o wo(X) dzafdege(min(lx)) ; ws columns of X? are K-linearly independent. Therefore
o wi(X) dZEfrankL (Xe) = rank (X‘g); w2 = w3.

To prove thatws < ws, let (xiyj);”:l be thei-th column of
Xp. Since the firstws columns of Xz generate the column
space, we have; = Y %, Niyzy, @ = 1,...,N. By K-
linearity of #7, we have

which are related td.-linear independance, while the follow-
ing definitions are related t&’-linear independance:

o wa(X) dZEfrankK (Xe);
o w3(X) dZEfrankK (Xp) = rank (Xg);

w3
whereranky stands for the maximum numberdéf-linearly zfj = Z )\iuiﬁzj, j=0,...,n—1,
independent columns. =l
Proposition 3: For all X € LY, wy(X) = w1 (X). _ I .

Proof: Let us denotewy(X) = wo, wi(X) = wi. therefore theith column (a )j:0 of X? is generated by the
Since min(Ix) has degreew,, then for any non zero firstws columns ofX?, andws; < ws. -
(1, ,cwg—1) € LY, we have Proposition 5: For all X € LY, w;(X) < wa(X), with

40 50 equality whenkK is the fixed subfield of, i.e. K = L°.
xy Ty Proof: Let X = (x1,---,xyn) € LY. It is clear that
(€oy 4 Cuwg—1) : : #0. a linear combination with coefficients iK is also a linear
ST gt combination with coefficients id, hencew: (z) < ws(x).

_ Let w; & rank, (X?). Noting the columns of{*
Thus the row rank ovef of X? is larger than or equal te, .

Thereforewy < w;. C.— (xf?o x(’"’l)T
s i 2 i i i
Writing min(Ix) = Y .2, a;2% , we have ! !
L0 e suppose that the columns;,,...,C;, are L-linearly in-
! N dependent. Then any-th column can be writtenC; =
(g, -+, Qug) - : : =0. Zf:ll AiCi;, Aj € L. Applying 0, we get
9o 9o
wl .. :CN wq
Th 0; ; . Cf =N\ =1
erefore thgwg+1)-th row of X is a L-linear combination i 5 Cip U yeney My,
of the w first rows of X¢. Applying 6?, we have for alli: J=l1
=T61) o x?\/ which is the same as
(aei “ee aleq) . : .. : — 0 k™ Qv
0> s Y 1_u+i . 1_u+i . Cl:Z)\J C'ij’u:l,._.ﬂfn7
.T? e ‘T‘?V j=1

This implies that thgr+i)-th row is aL-linear combination of Sincecfu is a cyclic shift ofC;. By summation, we get
thew, preceeding rows, thus of the, first rows, by induction. .
Thus theL-rank of X? is less thanwy, andw; < wo. [ | C— = (% V') o
Proposition 4: For all X € LY, wy(X) = w3(X). b Z J b
Proof: Let w3 = w3(X) = rankg (Xp), andwy = =t
wy(X) = rankg (X?). Without loss of generality, supposeWe have .
that thg firstws cqlumns of)_(B are K-linearly independent. ml AT iR~
Accordingly, consider the; first columns ofX ?, and suppose Z A - Z Aj -
that we have a dependence relation among them, i.e. u=0 u=l

u=0

ws , Howeverd has ordem which dividesm. ThereforeX?” =

Dol =0, j=0,...,n—1, X2, therefore>"" ' \?" € K whenK = L’. This implies

i=1 that the columng”; ,...,C;, K-generate the column space
with (A1, -+, Aw,) € K™, Considering only; = 0, and of X%: wy < w;. [ |
rewriting z; = Z;”:l x;,;b; over the basid3, we get It is easy to see that the,’s provide distances defined by

ws m m / ws d;(X,Y) def w;(X —Y). In the following, we suppose that

— . b= | b we are in the case where all these metrics are equal, and the
’ ;)\l;xmbj ; <; Alxm) % induced distance is called rank metric. We use E[qhe notation



w(X), without indices. This definition is a generalization oNow, C' has rankd if and only if the K -vector space generated

rank metric as defined in Gabidulin/[1]. by its components ha&’-dimensiond. Therefore, by Th[12,
Example 2:Here is an example of a vector whose rankihere exists &-polynomial ofd-degreel such thatPc(c;) = 0

are different onK and onL. Let us consider again the fieldfor all i. Hence

extension )

Let o be a root of Y8 + 1, such that(L,...,a7) is a K- Since < ¢g1,...,9n8 > has K-dimens_ionN, since P has

basis of L. Consider again the automorphisindefined by degree at most, and since we are in the case where the

a— o’ Letz = (L,a,a2,a4,a° 30" + 2). We have that dimension of the root-space oféapolynomial is at most its

wo(z) = w1 (z) = 4 < wa(z) = w3(z) = 5 degree, we havé + k — 1 > N therefored —1 =N —k. &

V. GABIDULIN CODES IN CHARACTERISTIC ZERO C. Unique decoding
For simplicity, we suppose in this section that the automor- Our version of the algorithm is inspired from Gemmel and
phism ¢ satisfies the following properties: Sudan’s presentation of the algorithm of Welch-BerlekaBjp [
« 0 generates the Galois group &f < L, that is@ has A more efficient variant can be used using [6], but we prefer to
orderm; present here a more intuitive version. Consider a vektos
« The characteristic polynomial @f is square-free; (y,--- ,y) € LN such that there exist®8 = (e,--- ,e) € LV
o« LY =K. such that
The_ K—yector spac_eLN is e_ndowed _With the rank met_ric Y =C+E, @)
defined in the previous section. In this metric space, a finea C € Gabg (g) 3)
code is as usual ah-vector space of lengtiv, dimensionk 0.k\9);
and minimum rank distancé. It is denoted &N, k, d] o) rank(E) < (N —k)/2. 4)
code. Write ¢t = |[(N — k)/2|. We define the following series of
A. Definition problems related to this situation.

Definition 3: Let g = (g1,--- ,gn) € LV, be K-linearly Definition 4 (Decoding):GivenY € L, find, if it exists, a

independent elements @f. The generalized Gabidulin code P (f; E) suchthay; = f(gi)+ei, i =1,.... N w(E) <t

with dimensionk and lengthN, denotedGaby 1(g), as aL- deg@f.(f,)_ < k. i . . N
subspace of.", is L-generated by the matrix Definition 5 (Nonlinear reconstruction)Given Y € L*,

find, if it exists, a pair off-polynomials (V, f) such that

0 0
gk degg(V) < ¢V # 05 degy(f) < k5 Vi) = V(F(9)),
q % : . : 7 i=1,...,N.
gh—1 ' gh—1 Note that this problem gives rise to quadratic equations,
91 9N considering as indeterminates the coefficients of the uwkiso

For k < N, the dimension ofZabs 1(g) is indeedk. We can (V, f) over the basig3. We thus consider a linear version of
show that the parity-check matrix @fabg 1(g) can be given the system.

by . . Definition 6 (Linearized reconstructionGiven Y ¢ LV,
Ry R4 find, if it exists, a pair off-polynomials (W, N) such that
o S : : degg(W) <t ; W #0; degy(N) < k+t; W(y:) = N(g:),
ae imz i=1,...,N.
hf{ h?\[

Since we require the weight of the error to be less than or
whered = N — k + 1 for someh; € L which are alsoK- equal tot = (N — k)/2, we have unicity of the solution for
linearly independent. the three above problems. Now the following propositionggi
relations between the solutions of these problems.

- Proposition 7: Any solution of Nonlinear reconstruction
Proposition 6:Let C be an[N,k,d].) code. We have gje a solution ofDecoding

B. Maximum Rank Distance codes

d< N — k_JF L Proof: Let (V, f) be a solution ofNonlinear reconstruc-
A Pro?.f' Olmlttded dl:.e o lai'r(] of spac?. thate N — & T tion. We definee; & yi— f(g:). Then we havey; = f(g;)+ei,
n optimal code satisfying the property Rl 1,...,N ; degy(f) < k; w(E) < t. Indeed, since the

is called a Maximum Rank Distance (MRD) code. B > o
Theorem 3:The generalized GabidulirZabg 1(g) is an Ei/:gz;;if(?f §9<ptzl)$3rsnil(gl)th<dtegree at mosjwe mu.st
E — 1 1 — .

MRD code. . i .
) Under an existence condition, we have the following state-
Proof: Let C' = (¢1, -+ ,en) € Gabg k(g) be a non-zero ment

cerword. By deflr_utlon of generalized Gabidulin codesrehe Proposition 8:If ¢ < (N — k)/2, and if there is a solution
exists ag-polynomial P(X') of §-degree< k — 1 such that : : . )
to Nonlinear reconstruction then any solution ofLinear

Vi=1,...,N, ¢ = P(gi)- reconstructiongives a solution tdNonlinear reconstruction



Proof: Let (V, f) be a non zero solution dlonlinear
reconstruction and let (W, N) be a solution ofLinearized
reconstructionLettinge; def yi—f(gi),i=1,..., N, we have
Viei) = V(yi — f(g:)) = 0. ThusV € Ig, with degV < ¢,
SO E = (e1,--- ,en) has rank at most

We also havelV(e;) = W(y;) — W(f(g:)) so W(e;) =
N(g:;) — W(f(g:)). Since W(e;) has rank at most, we
can findU with degree at most, such thatU(W(e;)) =
U(N(gi) = W(f(g:))) = 0.

Then(U x (N =W x f))(g:) =0,i=1,...,N. Ast <
(N —k)/2, degree computations show that (N —W x f) is
a f-polynomial with degree at mog{ — 1. Since it is zero atVv

Let h be a root ofX*+ 1, such that(1, h, h?, h3) is aQ-basis

of K, and leta be a root ofy’® — 3, such that(1,...,a7) is a

K-basis of L. Consider this time the automorphighdefined

by o — ha. Its characteristic polynomial i%® — 1, which is

square-free. Thus, we can define generalized Gabidulinscode

with symbols inL, of length8, and any dimension less than

or equal to8. Besides being simpl@-linear, these codes are

also K-linear.

More generally, with Kummer extensions, we can design rank-

metric[ N, k, d] codes, accomplishing the MRD conditidh—

k =d— 1. Below is also given a classical infinite family.
Example 4:Considerp an odd prime number, and lgt

K-linearly independent values, it must be the zero polynomi®€ a primitivep-root of unity in C. ThenQ — QI¢] is an

Ux (N —-W x f)=0. As there is no zero divisor ia[X; 6],
we conclude thalv = W x f. Then(W,N) = (W, W x f),
and (W, f) is a solution ofNonlinear reconstruction |

extension of degreg — 1, and its Galois group is isomorphic
to (Z/pZ)*, and is thus cyclic. We leK = Q, andL = Q[(].
For any u with ged(u,p — 1) = 1, considerf : { — ("

The above propositions imply that unique decoding is equiVhené has ordep — 1 andQ is the subfield stable undér

alent to solvingLinearized reconstructianNow we give the
explicit system of equations to be solved.

Then, fork < p—1, can buildQ-codes inL?~!, of dimension
k over L, such that the/{-rank of any codeword is at least

Theorem 4:Solving Linearized reconstructiommounts to (» —1) —k+1=p—Fk.

solving the following linear system of equations

N
s (%) -0
where
0 k+t—1 0] t
9! g? vt oyl
s€| .
0 k+t—1 0 t
9% 9% v o Uk
with unknowns
N: (no,... 7nk+t71>T6Lk+t
W= (wo,---,w)" € L'+,

VIl. CONCLUSION

For a #-polynomial, we have seen the link between its
degree and the dimension of its kernel. Particularly, weegav
sufficient condition for the root-space dimension being asn
the degree of @&-polynomial, namely.

Then, we have seen four different ways to define notions
related to the rank-metric. This reduces to only two metrics
which are furthermore the same in the casefodfiaving a
square-free characteristic polynomial.

We have also given a generalized definition of Gabidulin
codes, seen that they are MRD codes, and can be easily
decoded up to half the minimum distance. Since computations
are not carried over finite fields, the bit complexity will be
properly evaluated in the future.

Proof: Each row of the product corresponds to the eval- Finally, properly applying this theory to space-time caglin

uation of N and W in the g;’s and in they;’s. [ |

needs further work.

Remark 1:The number of arithmetic operations used in this
method is easily seen to be 6¥(N?3), using for instance
Gaussian elimination for solving the linear system. Howeve[1)
since the system is highly structured, a better algorithm
exists [6] whose complexity i©(N?). [2]
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