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Abstract—The entropy power inequality (EPI) provides lower
bounds on the differential entropy of the sum of two indepen-
dent real-valued random variables in terms of the individual
entropies. Versions of the EPI for discrete random variables
have been obtained for special families of distributions with
the differential entropy replaced by the discrete entropy, but
no universal inequality is known (beyond trivial ones). More
recently, the sumset theory for the entropy function provides a
sharp inequality H(X + X ′) − H(X) ≥ 1

2
− o(1) when X,X ′

are i.i.d. with high entropy. This paper provides the inequality
H(X + X ′) − H(X) ≥ g(H(X)), where X,X ′ are arbitrary
i.i.d. integer-valued random variables and where g is a universal
strictly positive function on R+ satisfying g(0) = 0. Extensions to
non identically distributed random variables and to conditional
entropies are also obtained.

Index Terms—Entropy inequalities, Entropy power inequal-
ity, Mrs. Gerber’s lemma, Doubling constant, Shannon sumset
theory.

I. INTRODUCTION

For a continuous random variable1 X on Rn, let h(X) be
the differential entropy of X and let N(X) = 2

2
nh(X) denote

the entropy power of X . If X and Y are two i.i.d. continuous
random variables over Rn, the EPI states that

N(X + Y ) ≥ N(X) +N(Y ), (1)

with equality if and only if X and Y are Gaussian with
proportional covariance matrices. A weaker statement of the
EPI, yet of key use in applications, is the following inequality
stated here for n = 1,

h(X +X ′)− h(X) ≥ 1

2
, (2)

where X,X ′ are i.i.d., and where equality holds if and only
if X is Gaussian.

The EPI was first proposed by Shannon [1] who used a
variational argument to show that Gaussian random variables
X and Y with proportional covariance matrices and specified
differential entropies constitute a stationary point for h(X +
Y ). However, this does not exclude saddle points and local
minima. The first rigorous proof of the EPI was given by Stam
[2] in 1959, using the De Bruijin’s identity which connects
the derivative of the entropy with Gaussian perturbation to
the Fisher information. This proof was further simplified by
Blachman [3]. Another proof was proposed by Lieb [4] based
on an extension of Young’s inequality.

1All continuous random variables are assumed to have well-defined differ-
ential entropies.

While there is a wide range of inequalities involving union
of random variables, the EPI is the only general inequality
in information theory estimating the entropy of a sum of
independent random variables by means of the individual
entropies. It is used as a key ingredient to prove converse
results in coding theorems [8]–[12].

There have been numerous extensions and simplifications
of the EPI over the reals [6], [7], [13]–[21]. There have also
been several attempts to obtain discrete versions of the EPI,
using Shannon entropy. Of course, it is not clear what is meant
by a discrete version of the EPI, since (1), (2) clearly do no
hold verbatim for Shannon entropy.

Several extensions have yet been developed. First, there
have been some extensions using finite field additions, for
example, the so-called Mrs. Gerber’s Lemma (MGL) proved
in [23] by Wyner and Ziv for binary alphabets. The MGL
was further extended by Witsenhausen [24] to non binary
alphabets, who also provided counter-examples for the case
of general alphabets. More recently, [28] obtained EPI and
MGL results for abelian groups of order 2n. Second, con-
cerning discrete random variables and addition over the reals,
Harremoes and Vignat [25] proved that the discrete EPI holds
for binomial random variables with parameter 1

2 , which later
on was generalized by Sharma, Das and Muthukrishnan [26].
Yu and Johnson [27] obtained a version of the EPI for discrete
random variables using the notion of thinning.

More recently, Tao established in [29] a sumset theory for
Shannon entropy, obtaining in particular the sharp inequality

H(X +X ′)−H(X) ≥ 1

2
− o(1),

where o(1) vanishes when H(X) tends to infinity. Further
results were obtained for the differential entropy in [30].

In this paper, we are interested in integer-valued random
variables with arithmetic over the reals. We show that there
exists an increasing function g : R+ → R+, such that g(x) =
0 if and only if x = 0, and

H(X +X ′)−H(X) ≥ g(H(X)),

for any i.i.d. integer-valued random variables X,X ′. Although
we have provided an explicit characterization of g, we found
that proving the existence of such a function (even without
explicit characterization) is equally challenging. We further
generalize the result to non identically distributed random
variables and to conditional entropies. We also discuss some
open problems in Section IV, in particular, a closure convexity
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conjecture which would strengthen the conditional entropy
result.

The results obtained in this paper were used in [22] to prove
a polarization coding result for discrete random variables using
Hadamard matrices over the reals.

Notation: The set of integers and reals will be denoted
by Z and R. Similarly, Z+ and R+ will denote the set of
positive integers and positive reals. We will use large letters
for random variables and small letters for their realizations
(the random variable X can have realization x). The natural
logarithm and the logarithm in base 2 will be denoted by ln
and log2 respectively and for x ∈ [0, 1], h2(x) = −x log2(x)−
(1−x) log2(1−x) will denote the binary entropy function with
the convention that 0 log2(0) = 0. The entropy of a discrete
random variable X in base 2 (bits) will be denoted by H(X).
We will interchangeably use H(p) or H(X), where p is the
probability distribution of X . The conditional entropy of a
random variable X given another random variable Y will be
denoted by H(X|Y ). For a, b ∈ R, we will use a∨b and a∧b
for the maximum and minimum of a and b. Also a+ = a ∨ 0
will denote the positive part of a.

II. RESULTS

In this section, we will give an overview of the results
proved in the paper. The first theorem gives a lower bound
on the entropy gap of sum of two i.i.d. random variables as a
function of their entropies.

Theorem 1. There is a function g : R+ → R+ such that
for any two i.i.d. Z-valued random variables X,X ′ with
probability distribution p,

H(p ? p)−H(p) ≥ g(H(p)).

Moreover, g is an increasing function, limc→∞ g(c) =
1
8 log2(e) and g(c) = 0 if and only if c = 0.

Remark 1. The function g in Theorem 1 is given by

g(c) = min
x∈[0,1]

{(cx− h2(x)) ∨

(1− x)2((1− x) ∨ (4x− 2)+)2

8 ln(2)
}.

Remark 2. As we mentioned in the introduction, a recent
result by Tao [29] implies that for a discrete Z-valued random
variable of very large entropy H(p ? p) − H(p) ≈ 1

2 . In
comparison with this result, we only get an asymptotic lower
bound of 1

8 log2(e) ≈ 0.18. We will see later that, the
asymptotic lower bound 0.18 is also valid for independent
but not necessarily identically distributed random variables
provided that the entropy of both random variables approaches
infinity.

The next theorem extends the i.i.d. result to the general
independent case.

Theorem 2. There is a function g : R2
+ → R+ such that for

any two independent Z-valued random variables X,X ′ with

probability distributions p1, p2,

H(p1 ? p2)−
H(p1) +H(p2)

2
≥ g(H(p1), H(p2)).

Moreover, g is a positive and doubly-increasing2 function of its
arguments, lim(c,d)→(∞,∞) g(c, d) =

1
8 log2(e) and g(c, d) =

0 if and only if c = d = 0.

Remark 3. One might be tempted to prove the stronger bound

H(p1 ? p2)−max{H(p1), H(p2)} ≥ g(H(p1), H(p2)), (3)

for some doubly-increasing function g. However, this fails
because, for example, assume that p1, p2 are uniform dis-
tributions over {1, 2, . . . ,M} and {1, 2, . . . , NM}, for some
number N ≥ 2. It is not difficult to show that

H(p1 ? p2)−max{H(p1), H(p2)} ≤ log2(
N + 1

N
),

which decreases to 0 with increasing N . Therefore, there is no
hope to get a stronger result as in (3), which holds universally
for all distributions.

The next theorem extends the results in Theorem 1 to the
conditional case.

Theorem 3. There is a function g̃ : R+ → R+ such that for
any two i.i.d. Z-valued pairs of random variables (X,Y ) and
(X ′, Y ′),

H(X +X ′|Y, Y ′)−H(X|Y ) ≥ g̃(H(X|Y )).

Moreover, g̃ : R+ → R+ is an increasing function and g̃(c) =
0 if and only if c = 0.

Remark 4. The function g̃ is given by

g̃(c) = min
δ∈[0, 12 ]

{(g(c, c)− h2(δ)) ∨ δ2g(c, c)}, (4)

where g is as in Theorem 2 and h2(δ) is the binary entropy
function.

III. PROOF TECHNIQUES

In this part, we will try to give an overview and also some
intuition about the techniques used for proving the theorems.

A. EPI for i.i.d. random variables

We will start from the EPI for i.i.d. random variables. The
main idea of the proof is to find suitable bounds for H(p ?
p) − H(p) in two different cases: one case in which p is a
spiky distribution, namely, there is an i ∈ Z such that pi is
substantially high, and the other case where p is a quite flat and
non-spiky distribution and then to combine these two bounds
together.

Lemma 1. Assume that p is a probability distribution over Z
with H(p) = c and let x = ‖p‖∞. Then

H(p ? p)− c ≥ cx− h2(x),

2A function g : R2
+ → R+ is doubly-increasing if for any value of one of

the arguments, it is an increasing function of the other argument.



where h2 is the binary entropy function.

Proof: In appendix A.

Remark 5. Notice that Lemma 1, gives a very tight bound for
spiky distributions for which ‖p‖∞ is very close to 1, namely,
for H(p) = c, we get H(p ? p)− c ' c, which is the best we
can hope.

The next step is to give a bound for non-spiky distributions.
The main idea is that in this case, it is possible to decompose
the probability distribution p into two different parts p1, p2
with disjoint non-interlacing supports such that p ? p1 and p ?
p2 are sufficiently far apart in `1-distance. We formalize this
through the following lemmas.

Lemma 2. Let c > 0, 0 < α < 1
2 and n ∈ Z. Assume that p

is a probability measure over Z such that α ≤ p((−∞, n]) ≤
1− α and H(p) = c, then

‖p ? p1 − p ? p2‖1 ≥ 2α,

where p1 = 1
p((−∞,n])p|(−∞,n] and p2 = 1

p([n+1,∞))p|[n+1,∞)

are scaled restrictions of p to (−∞, n] and [n + 1,∞)
respectively.

Proof: In appendix A.

Lemma 3. Assume that p1, p2 and p are arbitrary probability
distributions over Z such that p1 and p2 have non-overlapping
supports and ‖p‖∞ = x. Then

‖p ? p1 − p ? p2‖1 ≥ 2(2x− 1)+.

Proof: In appendix A.

Lemma 4. Assuming the hypotheses of Lemma 2,

H(p ? p)− c ≥ α2

2 ln(2)
‖p ? p1 − p ? p2‖21.

Proof: In appendix A.

Lemma 5. Assume that p is a probability distribution over Z
with H(p) = c and ‖p‖∞ = x. Then

H(p ? p)− c ≥ (1− x)2

8 ln(2)
((1− x) ∨ (4x− 2)+)2.

Proof: In appendix A.

Now that we have the required bounds in the spiky and
non-spiky cases, we can combine them to prove Theorem 1.

Proof of Theorem 1: Assume that p is a probability
distribution over Z with H(p) = c and ‖p‖∞ = x. It is easy
to see that x ≥ 2−c. Also setting α = 1−x

2 , there is an integer
n such that α ≤ p((−∞, n]) ≤ 1 − α. Using Lemma 1 and
Lemma 5, it results that H(p ? p)− c ≥ l(c), where

l(c) = min
x∈[2−c,1]

{(cx− h2(x)) ∨

(1− x)2((1− x) ∨ (4x− 2)+)2

8 ln(2)
}.

We will use a simpler lower bound given by

g(c) = min
x∈[0,1]

{(cx− h2(x)) ∨

(1− x)2((1− x) ∨ (4x− 2)+)2

8 ln(2)
},

where obviously l(c) ≥ g(c). It is easy to check that g(c)
is a continuous function of c. The monotonicity of g follows
from monotonicity of cx− h2(x) with respect to c, for every
x ∈ [0, 1]. For strict positivity, note that (1 − x)2((1 − x) ∨
(4x− 2)+)2 is strictly positive for x ∈ [0, 1) and it is 0 when
x = 1, but limx→1 cx−h2(x) = c. Hence, for c > 0, g(c) > 0.
If c = 0 then

{(cx− h2(x)) ∨
(1− x)2((1− x) ∨ (4x− 2)+)2

8 ln(2)
}

=
(1− x)2((1− x) ∨ (4x− 2)+)2

8 ln(2)
,

and its minimum over [0, 1] is 0.
For asymptotic behavior, notice that at x = 0, cx−h2(x) =

0 and (1−x)2((1−x)∨(4x−2)+)
8 ln(2) = 1

8 ln(2) . Hence, from continuity,
it results that g(c) ≤ 1

8 ln(2) for any c ≥ 0. Also for any
0 < ε < 1

2 there exists a c0 such that for every c > c0 and
every x, ε < x ≤ 1, cx− h2(x) ≥ 1

8 ln(2) . Thus for any ε > 0
there is a c0 such that for c > c0, the outer minimum over x
in the definition of g(c) is achieved on [0, ε], which is higher
than (1−ε)4

8 ln(2) . This implies that for every ε > 0,

1

8 ln(2)
≥ lim sup

c→∞
g(c) ≥ lim inf

c→∞
g(c) ≥ (1− ε)4

8 ln(2)
,

and limc→∞ g(c) = 1
8 ln(2) .

Figure 1 shows the EPI gap. As expected, the asymptotic
gap is 1

8 log2(e) ≈ 0.18.
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Fig. 1: The EPI gap for discrete random variables over Z

B. EPI for non-i.i.d. random variables

Theorem 2 is an extension of Theorem 1 to independent
but non identically distributed random variables. Similar to
the i.i.d. case the idea is to distinguish between the spiky and
non-spiky distributions.



Lemma 6. Assume that p and q are two probability distri-
butions over Z with H(p) = c and H(q) = d. Suppose that
x = ‖p‖∞ and y = ‖q‖∞. Then,

2H(p ? q)− c− d ≥ dx− h2(x) + cy − h2(y), (5)

where h2 is the binary entropy function.

Proof: In appendix B.
When at least one of the distributions is spiky, Lemma 6

gives a relatively tight bound. Hence, we should try to find a
good bound for the non-spiky case.

Lemma 7. Let p, q be two probability distributions over Z.
Assume that there are 0 < α, β < 1

2 and m,n ∈ Z such that
α ≤ p((−∞,m]) ≤ 1−α and β ≤ q((−∞, n]) ≤ 1−β. Then

‖q ? p1 − q ? p2‖1 + ‖p ? q1 − p ? q2‖1 ≥ 2(α+ β),

where p1 = 1
p((−∞,m])p|(−∞,m], p2 = 1

p([m+1,∞))p|[m+1,∞),
q1 = 1

q((−∞,n])q|(−∞,n], and q2 = 1
q([n+1,∞))q|[n+1,∞).

Proof: In appendix B.

Lemma 8. Assume that the hypotheses of Lemma 7 hold and
let H(p) = c and H(q) = d. Then

H(p ? q)− d ≥ α2

2 ln(2)
‖q ? p1 − q ? p2‖21,

H(p ? q)− c ≥ β2

2 ln(2)
‖p ? q1 − p ? q2‖21,

Proof: Proof in appendix B.

Lemma 9. Let p and q be probability distributions over Z
with H(p) = c, H(q) = d, ‖p‖∞ = x and ‖q‖∞ = y. Then

2H(p ? q)− c− d ≥ l(x, y),

where

l(x, y) = min
(a,b)∈T (x,y)

(1− x)2a2 + (1− y)2b2

8 ln(2)
,

and T (x, y) is a subset of (a, b) ∈ R2
+ parameterized by

(x, y) ∈ [0, 1]× [0, 1] and given by the following inequalities

a ≥ (4y − 2)+, b ≥ (4x− 2)+, a+ b ≥ 2− x− y.

Moreover, l(x, y) is a continuous function of (x, y), l(x, y) ≥ 0
and l(x, y) = 0 if and only if (x, y) = (1, 1).

Proof: Proof in appendix B.

Proof of Theorem 2: Let x = ‖p‖∞ and y = ‖q‖∞. It is
easy to check that x ≥ 2−c, y ≥ 2−d. Using Lemma 6 and
Lemma 9, we obtain that

H(p ? q)− c+ d

2
≥ s(c, d),

where s(c, d) is given by

1

2
min

(x,y)∈R(c,d)

{
(dx− h2(x) + cy − h2(y)) ∨ l(x, y)

}
,

for R(c, d) = [2−c, 1]× [2−d, 1]. We will use a simpler lower
bound given by

g(c, d) =
1

2
min

(x,y)∈R

{
(dx− h2(x) + cy − h2(y)) ∨ l(x, y)

}
,

where R = [0, 1] × [0, 1]. It is easy to see that g(c, d) is a
continuous function. It is also a doubly increasing function of
its arguments. To prove the last part, notice that the l(x, y)
in the definition of g is strictly positive except for (x?, y?) =
(1, 1). But lim(x,y)→(1,1) dx − h2(x) + cy − h2(y) = c + d,
which is strictly positive unless c = d = 0. Therefore, for
(c, d) 6= (0, 0), g(c, d) > 0.

The function dx − h2(x) + cy − h2(y) is an increasing
function of (c, d) over R, which implies that g(c, d) must be an
increasing function of (c, d). Also, using an argument similar
to what we had in the proof of Theorem 1, it is possible to
show that for high values of c and d, the outer minimum in
the definition of g is achieved in a small enough neighborhood
of (0, 0), namely, [0, ε]× [0, ε] for some small enough ε > 0.
From the continuity of l(x, y), it can be shown that in this
range the value of l(x, y) is very close to

min
(a,b):a,b≥0,a+b≥2

a2 + b2

8 ln(2)
=

1

4 ln(2)
.

This implies that

lim
(c,d)→(∞,∞)

g(c, d) =
1

8 ln(2)
.

This completes the proof of the EPI result for the general
independent case.

C. Conditional EPI

In this part, we will prove the EPI result for the conditional
case, where we try to find a lower bound for the conditional
entropy gap, H(X+X ′|Y, Y ′)−H(X|Y ), for i.i.d. Z-valued
pairs (X,Y ) and (X ′, Y ′) assuming that H(X|Y ) = c, for
some positive number c. Notice that as Y and Y ′ only appear
in the conditioning, we do not lose generality by assuming
them to be Z-valued. Let us denote the probability distribution
of Y by q then the conditional entropy gap can be written as∑

i,j∈Z
qiqjH(pi ? pj)− c,

where pi is the conditional distribution of X given Y = i.
Notice that we are interested to the infimum of this gap

over all possible q, pi satisfying
∑
i∈Z qiH(pi) = c. Even if

the minimizing q exists, it may not be finitely supported and
in general, finding the corresponding gap requires an infinite
dimensional constrained optimization.

To cope with this problem, we will show that it is possible
to restrict the support size of q to 2 provided that instead of
the i.i.d. case we consider the general independent and non
identically distributed one. Of course, at the end we get a
looser bound at the price of simplifying the problem.

To be more specific, let (X,Y ) and (X ′, Y ′) be independent
Z-valued pairs with H(X|Y ) = H(X ′|Y ′) = c and let



tn(c) be the infimum of H(X + X ′|Y, Y ′) − c over all
(X,Y ), (X ′, Y ′) having a conditional entropy equal to c with
Y and Y ′ having a support size at most n. Also, assume
that t∞(c) is the corresponding infimum when there is no
constraint on the support size. We first prove the following
lemma.

Lemma 10. For every n ≥ 2, t∞(c) = tn(c).

Proof: Obviously, tn(c) ≥ t∞(c). Moreover, given any
ε > 0 there is an ε-optimal independent pair (X,Y ) and
(X ′, Y ′) such that

H(X +X ′|Y, Y ′)− c ≤ t∞(c) + ε.

Let q, q′ denote the distribution of Y, Y ′ and let pi, p′j be the
conditional distribution of X,X ′ given Y = i, Y ′ = j. Let

V = {vij ∈ R3 : vij = (H(pi ? p
′
j), H(pi), H(p′j)), i, j ∈ Z}.

It is easy to see that∑
i,j∈Z

qiq
′
jvij = (H(X +X ′|Y, Y ′), c, c) := h,

which implies that the three dimensional vector h := (H(X+
X ′|Y, Y ′), c, c) can be written as a convex combinations of the
vectors vij ∈ V with weights qiq′j . Let vi =

∑
j q
′
jvij . Then

we have
∑
i qivi = h. Notice that the second component

of vi is equal to H(pi). Also, the third component is equal
to c independent of i, which implies that there are only two
components depending on i in vi. Therefore, by Carathèodory
theorem, it is possible to write h as a convex combination
of at most three vi, i ∈ Z, which without loss of generality,
we can assume to be {v0,v1,v2}. In other words, there are
positive γi, i = 0, 1, 2,

∑2
i=0 γi = 1 and h =

∑2
i=0 γivi.

Also, note that if we change the distribution of Y from q to γ,
the resulting (X,Y ), (X ′, Y ′) is again an ε-optimal solution.
Now, we claim that we can simplify the problem further and
find a probability triple ψ = (ψ0, ψ1, ψ2) with at most 2 non-
zero elements such that

∑2
i=0 ψiH(pi) = c and at the same

time
2∑
i=0

ψiv
(1)
i ≤

2∑
i=0

γiv
(1)
i =

2∑
i=0

qiv
(1)
i = H(X +X ′|Y, Y ′),

where v
(1)
i denotes the first coordinate of the vector vi. This

implies that if we replace the distribution γ for Y by ψ, which
has a support of size 2, we get a lower H(X +X ′|Y, Y ′).

To prove the claim, let us consider the following optimiza-
tion problem

minimize
2∑
i=0

ψiv
(1)
i s.t.


∑2
i=0 ψi = 1,∑2
i=0 ψiH(pi) = c,

ψi ≥ 0.

First of all, notice that as
∑2
i=0 γiH(pi) = c, γ is in the

feasible set. Therefore, the feasible set is a non-empty subset
of the three dimensional probability simplex. Also, as the
objective function is linear in ψ, the optimal point must be

at the edge of the feasible set which implies that there is an
optimal solution with at most two non-zero components and
this proves the claim.

By symmetry, we can apply the same argument to the
probability distribution q′ of Y ′ to get an ε-optimal solution
in which the support of both q and q′ has at most size 2.
Hence, this implies that for any ε > 0 and any n ≥ 2,
tn(c) ≤ t2(c) ≤ t∞(c) + ε. In other words, tn(c) = t∞(c).
This completes the proof.

Lemma 10 allows us to simplify finding the lower bound.
However, we might get a looser bound because we relaxed the
condition that (X,Y ) and (X ′, Y ′) be identically distributed.
From now on, we will assume that Y and Y ′ are binary valued
random variables. We will use the following two lemmas to
get a lower bound for the conditional entropy gap.

Lemma 11. Let (X,Y ), (X ′, Y ′) be an independent pair of
random variables, where Y and Y ′ are binary valued with
P(Y = 0) = α, P(Y ′ = 0) = β and H(X|Y ) = H(X ′ =
Y ′) = c. Then

H(X +X ′|Y, Y ′)− c ≥ g(c, c)−min{h2(α), h2(β)},

where g is the same function as in Theorem 2.

Proof: Proof in appendix C.

Lemma 12. Assume that all of the conditions of Lemma 11
hold. Suppose there is a 0 ≤ δ ≤ 1

2 such that δ < α, β < 1−δ.
Then

H(X +X ′|Y, Y ′)− c ≥ δ2g(c, c).

Proof: Proof in appendix C.

Proof of Theorem 3: The proof follows by combining the
results obtained in Lemma 11 and 12. Let δ = min{α, 1 −
α, β, 1 − β}. Then 0 ≤ δ ≤ 1

2 and using Lemma 12, we
get the lower bound δ2g(c, c). Similarly, from Lemma 11 and
using the fact that min{h2(α), h2(β)} = h2(δ), we get the
lower bound g(c, c) − h2(δ). Combining the two, we obtain
the desired lower bound

g̃(c) = min
δ∈[0, 12 ]

{(g(c, c)− h2(δ)) ∨ δ2g(c, c)}.

The monotonicity of g̃ follows from the monotonicity of
g(c, c). Also, notice that δ2g(c, c) is strictly positive unless
δ = 0 but limδ→0 g(c, c) − h2(δ) = g(c, c), which is strictly
positive if c > 0. Therefore, for c > 0 we have g̃(c) > 0. This
completes the proof.

IV. OPEN PROBLEMS

A. Closure convexity of the entropy set H
As we saw in the proof of Theorem 3, the conditional

EPI does not directly follow from the unconditional one. In
particular, we had to relax the i.i.d. condition in order to get a
relatively weak lower bound. In this part, we propose another
approach to the problem which uses the closure convexity of
the entropy set as we will define in a moment.



Definition 1. The entropy set H is defined as follows

H := {(H(p ? q), H(p), H(q)) ∈ R3
+ :

p, q are probability distributions over Z}.

Remark 6. Notice that multiple (p, q) pairs may be mapped to
the same point in H space. For example, if (p, q) is mapped
to a point v ∈ H, then any distribution (p̃, q̃) in which p̃ and
q̃ are shifted versions of p and q is also mapped to v.
Remark 7. Some of the boundaries of the setH trivially follow
from the properties of the entropy, i.e., for any v ∈ H,

v(1) ≥ v(2),v(1) ≥ v(3),

v(1) ≤ v(2) + v(3),

where v(i) denotes the i-th coordinate of the vector v. Also
the boundary v(1) = v(2)+v(3) is achievable. To show this, let
v(2),v(3) ∈ R+ and consider two finite support distributions
p and q of support {0, 1, . . . ,M − 1} and {0, 1, . . . , N − 1}
for appropriate M and N such that H(p) = v(2) and H(q) =
v(3). Now, fix p and define a new distribution q̃ as follows

q̃(i) =

{
0 i

M /∈ Z,
q( iM ) i

M ∈ Z.

It is not difficult to show that H(q̃) = H(q) = v(3) and
H(p ? q̃) = H(p) +H(q̃) = v(2) + v(3).

We propose the following conjecture about the set H.

Conjecture 1. The closure of the set H is convex.

Using this conjecture, we can prove the following lemma,
which is a stronger version of the conditional EPI.

Theorem 4. Assume that Conjecture 1 holds. Let (X,Y ) and
(X ′, Y ′) be independent pairs of Z-valued random variables
with H(X|Y ) = c,H(X ′|Y ′) = d. Then

H(X +X ′|Y, Y ′)− c+ d

2
≥ g(c, d),

where g is the same function as in Theorem 2.

Proof: Let us assume that the distribution of Y, Y ′ is
q, q′ respectively. Also assume that pi, p′j is the distribution of
X,X ′ when Y = i, Y ′ = j. Let

vij = (H(pi ? p
′
j), H(pi), H(p′j)), i, j ∈ Z.

Notice that vij ∈ H. We also have

(H(X +X ′|Y, Y ′), c, d) =
∑
i,j∈Z

qiq
′
jvij ,

which is a convex combination of the vectors vij . By the
closure convexity of H, for any ε > 0 it is possible to find
an h ∈ H in ε-neighborhood of (H(X +X ′|Y, Y ′), c, d). In
other words, for the given ε > 0, there are two distributions
µ1, µ2 over Z such that

H(µ1 ? µ2)− ε ≤ H(X +X ′|Y, Y ′) ≤ H(µ1 ? µ2) + ε,

H(µ1)− ε ≤ c ≤ H(µ1) + ε,

H(µ2)− ε ≤ d ≤ H(µ2) + ε.

In particular, this implies that

H(X +X ′|Y, Y ′)− c+ d

2

≥ H(µ1 ? µ2)−
c+ d

2
− ε

≥ H(µ1 ? µ2)−
H(µ1) +H(µ2)

2
− 2ε

≥ g(H(µ1), H(µ2))− 2ε

≥ g(c− ε, d− ε)− 2ε,

where we used the monotonicity of g with respect to both
arguments. As ε > 0 is arbitrary and g is a continuous function,
it results that H(X +X ′|Y, Y ′)− c+d

2 ≥ g(c, d).

Remark 8. In the case that (X,Y ) and (X ′, Y ′) are i.i.d. pairs
with H(X|Y ) = H(X ′|Y ′) = c, this result reduces to

H(X +X ′|Y, Y ′)− c ≥ g(c, c),

which is tighter than the bound (4) obtained in Theorem 3.
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APPENDIX A
EPI FOR I.I.D. RANDOM VARIABLES

Proof of Lemma 1: Assume that X is a Z-valued
random variable with probability distribution p. Let i ∈ Z
be such that p(i) = ‖p‖∞ = x. Let pi be the probability
distribution p shifted by i, i.e., pi(k) = p(k − i) for every
k ∈ Z. Assume that P := pi. Note that H(p ? p) = H(P ?P )
and H(P ) = H(p) = c. Let B be a binary random variable
with P{B = 0} = x = 1 − P{B = 1}, and let R be a
random variable defined by P{R = k} = pi(k)/(1 − x)
for every k ∈ Z \ {0} and P{R = 0} = 0. Note that
X = BR for independent B and R. We also have H(X) =
h2(x) + (1− x)H(R). Let X ′ be an independent copy of X .
Then, we have

H(P ? P ) = H(BR+X ′)

≥ H(BR+X ′|B)

= xc+ (1− x)H(X ′ +R)

≥ xc+ (1− x)H(R)

= xc+ c− h2(x).

This yields H(p ? p)− c ≥ xc− h2(x).

Proof of Lemma 2: Let α1 = p((−∞, n]) and α2 =
p([n + 1,∞)) = 1 − α1. Note that p = α1p1 + α2p2. We
distinguish two cases α1 ≤ 1

2 and α1 >
1
2 . If α1 ≤ 1

2 then we

have

‖p ? p1 − p ? p2‖
= ‖α1p1 ? p1 − (1− α1)p2 ? p2 + (1− 2α1)p1 ? p2‖1
≥ ‖α1p1 ? p1 − (1− α1)p2 ? p2‖1 − (1− 2α1)‖p1 ? p2‖1
= α1 + (1− α1)− (1− 2α1) = 2α1 ≥ 2α,

whereas if α1 >
1
2 we have

‖p ? p1 − p ? p2‖
= ‖α1p1 ? p1 − (1− α1)p2 ? p2 + (1− 2α1)p1 ? p2‖1
≥ ‖α1p1 ? p1 − (1− α1)p2 ? p2‖1 − (2α1 − 1)‖p1 ? p2‖1
= α1 + (1− α1)− (2α1 − 1) = 2(1− α1) ≥ 2α,

where we used the triangle inequality, 1 − α1 ≥ α and the
fact that p1 ?p1 and p2 ?p2 have non-overlapping supports, so
the `1-norm of the sum is equal to sum of the corresponding
`1-norms.

Proof of Lemma 3: Let n0 ∈ Z be such that p(n0) =
‖p‖∞ = x. We have

‖p ? p1 − p ? p2‖1 =
∑
i∈Z
|p ? p1(i)− p ? p2(i)|

=
∑
i∈Z
|
∑
j∈Z

p(j)(p1(i− j)− p2(i− j))|

≥
∑
i∈Z

p(n0)|p1(i− n0)− p2(i− n0)|

−
∑
i∈Z

∑
j 6=n0

p(j)|p1(i− j)− p2(i− j)|

= x‖p1 − p2‖1 − (1− x)‖p1 − p2‖1
= 2(2x− 1),

where we used the fact that p1 and p2 have non-overlapping
supports thus ‖p1 − p2‖1 = ‖p1‖1 + ‖p2‖1 = 2. As ‖p ? p1 −
p ? p2‖1 ≥ 0, we have ‖p ? p1 − p ? p2‖1 ≥ 2(2x− 1)+.

Proof of Lemma 4: Let α1 and α2 be the same as in
the proof of Lemma 2. Let ν1 = p1 ? p, ν2 = p2 ? p, and for
x ∈ [0, 1], define µx = xν1 + (1 − x)ν2 and f(x) = H(µx).
We have

f ′(x) = −
∑

(ν1i − ν2i) log2(µxi),

f ′′(x) = − 1

ln(2)

∑ (ν1i − ν2i)2

µxi
≤ 0.

Therefore, f(x) is a concave function of x. Moreover,

f ′(0) = D(ν1‖ν2) +H(ν1)−H(ν2),

f ′(1) = −D(ν2‖ν1) +H(ν1)−H(ν2).

Since p1 and p2 have different supports, there are i, j such
that ν1i = 0, ν2i > 0 and ν1j > 0, ν2j = 0. Hence D(ν1‖ν2)
and D(ν2‖ν1) are both equal to infinity. In other words,

f ′(0) = +∞, f ′(1) = −∞.

http://arxiv.org/abs/1207.6355
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Hence, the unique maximum of the function f must happen
between 0 and 1. Assume that for fixed ν1 and ν2, x? is the
maximizer. If 0 < α1 ≤ x? then

α1f
′
(α1) =

∑
α1(ν2i − ν1i) log2(µα1i) ≥ 0,

which implies that

f(α1) = −
∑

µα1i log2(µα1i)

= −
∑

(ν2i + α1(ν1i − ν2i)) log2(µα1i)

≥ −
∑

ν2i log2(µα1i)

= H(ν2) +D(ν2‖µα1
)

≥ H(p) +
1

2 ln(2)
‖ν2 − µα1

‖21

= H(p) +
α2
1

2 ln(2)
‖ν1 − ν2‖21,

where we used Pinsker’s inequality for distributions r and s,

D(r‖s) ≥ 1

2 ln(2)
‖r − s‖21.

Similarly, we can show that if x? ≤ α1 ≤ 1 then

f(α1) ≥ H(p) +
(1− α1)

2

2 ln(2)
‖ν1 − ν2‖21.

As α ≤ α1 ≤ 1− α and α ≤ 1
2 it results that

H(p ? p) = H(α1p ? p1 + (1− α1)p ? p2)

= f(α1)

≥ H(p) +
α2

2 ln(2)
‖ν1 − ν2‖21

≥ c+ α2

2 ln(2)
‖ν1 − ν2‖21.

Proof of Lemma 5: Let x = ‖p‖∞ and α = 1−x
2 .

It is easy to show that there is an n ∈ Z such that α ≤
p((−∞, n]) ≤ 1− α. Also let p1 and p2, as in Lemma 2, be
the restriction of p to (−∞, n] and [n+ 1,∞). As p1 and p2
have disjoint supports, using Lemma 2 and 3, it results that

‖p ? p1 − p ? p2‖1 ≥ (1− x) ∨ (4x− 2)+,

Therefore, using Lemma 4, we get

H(p ? p)− c ≥ (1− x)2

8 ln(2)
((1− x) ∨ (4x− 2)+)2.

APPENDIX B
EPI FOR NON-I.I.D. RANDOM VARIABLES

Proof of Lemma 6: Let X and Y be two independent
random variables with probability distribution p and q. Similar
to the proof of Lemma 1, there is a binary random variable
B, P(B = 0) = x and a random variable R independent of B
such that X̃ = BR, where X̃ is a suitably shifted version of X

such that P(X̃ = 0) = x. Also, H(X) = h2(x)+(1−x)H(R).
Then, we get

H(p ? q) = H(X + Y )

= H(X̃ + Y ) = H(BR+ Y )

≥ H(BR+ Y |B)

≥ P(B = 0)H(Y ) + P(B = 1)H(R+ Y )

≥ xd+ (1− x)H(R)

= xd+ c− h2(x),

which implies that H(p ? q)− c ≥ xd− h2(x). By symmetry,
we also obtain that H(p ? q) − d ≥ yc − h2(y). Combining
these two results we get

2H(p ? q)− c− d ≥ dx− h2(x) + cy − h2(y).

Proof of Lemma 7: Let α1 = p((−∞,m]), α2 = 1−α1,
β1 = q((−∞, n]) and β2 = 1−β1. Note that p = α1p1+α2p2
and q = β1q1 + β2q2. Thus we obtain

‖q ? p1 − q ? p2‖1 + ‖p ? q1 − p ? q2‖1
≥ ‖q ? p1 − q ? p2 + p ? q1 − p ? q2‖1
= ‖(α1 + β1)p1 ? q1 + (β2 − α1)p1 ? q2

+ (α2 − β1)p2 ? q1 − (α2 + β2)p2 ? q2‖1
≥ ‖(α1 + β1)p1 ? q1 − (α2 + β2)p2 ? q2‖1
− ‖(β2 − α1)p1 ? q2 + (α2 − β1)p2 ? q1‖1
≥ α1 + β1 + α2 + β2 − |β2 − α1| − |α2 − β1|
= 2(1− |1− (α1 + β1)|),

where we used the triangle inequality and the fact that p1 ? q1
and p2 ? q2 have non-overlapping supports. Now, two cases
can happen: if α1 + β1 ≤ 1 then (1 − |1 − (α1 + β1)|) =
(α1 + β1) ≥ (α+ β). Otherwise, α1 + β1 > 1 and we obtain

(1− |1− (α1 + β1)|) = 2− (α1 + β1)

= α2 + β2 ≥ α+ β.

Therefore, in both cases we get

‖q ? p1 − q ? p2‖1 + ‖p ? q1 − p ? q2‖1 ≥ 2(α+ β),

which is the desired result.

Proof of Lemma 8: Let α1 := p((−∞,m]), α2 :=
1 − α1, ν1 := p1 ? q, ν2 := p2 ? q, and for x ∈ [0, 1], let
µx := xν1 + (1− x)ν2 and f(x) := H(µx). By an argument
similar to what we had in the proof of Lemma 4, we can show
that

H(p ? q) = f(α1) ≥ d+
α2

2 ln(2)
‖ν1 − ν2‖21,

which implies that

H(p ? q)− d ≥ α2

2 ln(2)
‖q ? p1 − q ? p2‖21.

The other inequality in the lemma follows by symmetry.



Proof of Lemma 9: As ‖p‖∞ = x, ‖q‖∞ = y, setting
α = 1−x

2 and β = 1−y
2 and using Lemma 8, we obtain

2H(p ? q)− c− d ≥ α2a2 + β2b2

2 ln(2)

=
(1− x)2a2 + (1− y)2b2

8 ln(2)

where a = ‖q ? p1− q ? p2‖1 and b = ‖p ? q1− p ? q2‖1. Also,
from Lemma 7, we have

a+ b ≥ 2(α+ β) = 2− x− y. (6)

Furthermore, applying Lemma 3 to the distribution p with
‖p‖∞ = x and q1, q2 with disjoint supports, and similarly
to q with ‖q‖∞ = y and p1, p2 with disjoint supports, we get

b ≥ (4x− 2)+, a ≥ (4y − 2)+. (7)

Therefore,

2H(p ? q)− c− d ≥ l(x, y),

where

l(x, y) = min
(a,b)∈T (x,y)

(1− x)2a2 + (1− y)2b2

8 ln(2)
,

and T (x, y) is defined by the three inequalities derived in (6)
and (7).

The continuity of l(x, y) can be easily checked. For the last
part of the lemma, notice that if M := x ∨ y < 1 then it is
not difficult to show that

l(x, y) ≥ min
a+b≥2−2M

(1−M)2

8 ln(2)
(a2 + b2) ≥ (1−M)4

4 ln(2)
> 0,

which is strictly positive. Moreover, if x∨ y = 1 but (x, y) 6=
(1, 1) then, for example, y ∈ [0, 1), x = 1, which implies
that b ≥ 2. Therefore, we get l(x, y) ≥ (1−y)2

2 ln(2) , which is
strictly positive unless y = 1. A similar argument applies to
x ∈ [0, 1), y = 1. Therefore, over (x, y) ∈ [0, 1] × [0, 1],
l(x, y) ≥ 0 and l(x, y) = 0 if and only if (x, y) = (1, 1).

APPENDIX C
CONDITIONAL EPI

Proof of Lemma 11: To prove the lemma, notice that
we have the constraint H(X|Y ) = H(X ′|Y ′) = c and
the probability distribution of Y, Y ′ has a support of size 2.
We first prove that it is possible to modify the conditional
distribution of the random variables X and X ′ given Y
and Y ′ in a way that none of the constraints are violated,
H(X+X ′|Y, Y ′) remains fixed and simultaneously, H(Y |X)
and H(Y ′|X ′) become as small as we want. To show this , let
pi, p

′
j , i, j ∈ {0, 1} be the distribution of X,X ′ conditioned

on Y = i, Y ′ = j. Notice that if we shift any pi, p′j to the right
or to the left by as many steps as we want, the conditional
entropies remain unchanged so does H(X + X ′|Y, Y ′). We
claim that by suitable shift of distributions, it is possible to
make H(Y |X) as small as we want. The same is true for
H(Y ′|X ′).

To prove the claim, let ε > 0 and assume that Aε and Bε
are subsets of Z of minimal size such that p0(Aε) ≥ 1− ε/2
and p1(Bε) ≥ 1 − ε/2. In particular, for any i ∈ Aε, j ∈ Bε,
p0(i) > 0, p1(j) > 0. Moreover,

P(X ∈ Aε ∪Bε) ≥ αp0(Aε) + (1− α)p1(Bε)

≥ 1− ε

2
.

For n ∈ Z+, let us define B
(n)
ε = {i + n : i ∈ Bε}, to

be the right shift of Bε by n. Also assume that p(n)1 is the
probability distribution shifted to the right by n, namely, for
k ∈ Z, p(n)1 (k) = p1(k − n). Specially, this implies that

p
(n)
1 (B(n)

ε ) = p1(Bε).

Now let us replace p1, by p
(n)
1 and let us the denote the

resulting random variable by X̃ . This assumption does not
change H(X|Y ) and H(X + X ′|Y, Y ′). As Aε and Bε are
finite sets, there is N1 such that for all n > N1 , the two
sets Aε and B(n)

ε are disjoint. For a ∈ Aε and b ∈ Bε, let us
compute the conditional distribution of Y given X̃ = a and
X̃ = b+ n ∈ B(n)

ε . We have

P(Y = 0|X̃ = a) =
αp0(a)

αp0(a) + (1− α)p1(a− n)
,

P(Y = 1|X̃ = b+ n) =
(1− α)p1(b)

(1− α)p1(b) + αp0(b+ n)
.

It is not difficult to see that for all a ∈ Aε and all b ∈ Bε, both
of these numbers converge to 1 as n goes to infinity which
implies that both H(Y |X̃ = a) and H(Y |X̃ = b) converge to
0. In particular, there is an N2 such that for n > N2 these two
numbers are less than ε

2 . Therefore, for n > max{N1, N2}
we have

Hn(Y |X̃) =
∑
k∈Z

pX̃(k)H(Y |X̃ = k)

≤
∑

k∈Aε∪B(n)
ε

pX̃(k)× ε

2
+

∑
k/∈Aε∪B(n)

ε

pX̃(k)× 1

=
∑

k∈Aε∪Bε

pX(k)× ε

2
+

∑
k/∈Aε∪Bε

pX(k) ≤ ε,

which proves the claim. Now assume that we have selected
(X,Y ), (X ′, Y ′) such that H(Y |X), H(Y ′|X ′) < ε for some
positive small number ε. Then we have

H(X +X ′|Y, Y ′)− c
= H(X +X ′)−H(X)− I(X +X ′|Y, Y ′) + I(X;Y )

≥ H(X +X ′)−H(X)−H(Y, Y ′) +H(Y )−H(Y |X)

≥ H(X +X ′)−H(X)−H(Y, Y ′) +H(Y )− ε
≥ H(X +X ′)−H(X)−H(Y ′)− ε
≥ g(H(X), H(X ′))− h2(β)− ε
≥ g(c, c)− h2(β)− ε,

where we used the independence of Y, Y ′, increasing property
of g and the fact that H(X) ≥ H(X|Y ) = c and similarly



H(X ′) ≥ c. As this is true for any ε > 0, we obtain

H(X +X ′|Y, Y ′)− c ≥ g(c, c)− h2(β).

By symmetry, we also have

H(X +X ′|Y, Y ′)− c ≥ g(c, c)− h2(α).

Therefore, we get the desired result

H(X +X ′|Y, Y ′)− c ≥ g(c, c)−min{h2(α), h2(β)}.

Proof of Lemma 12: Assuming the hypotheses of Lemma
11, there must be i, j ∈ {0, 1} such that H(pi), H(p′j) ≥ c.
Therefore, we have

H(X +X ′|Y, Y ′)− c

=

1∑
k,l=0

qkq
′
l(H(pk ? p

′
l)−

H(pk) +H(p′l)

2
)

≥ qiq′j(H(pi ? p
′
j)−

H(pi) +H(p′j)

2
)

≥ δ2g(c, c).
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