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Feedback Does Not Increase the Capacity of

Compound Channels with Additive Noise

Sergey Loyka, Charalambos D. Charalambous

Abstract

A discrete compound channel with memory is considered, where no stationarity, ergodicity or

information stability is required, and where the uncertainty set can be arbitrary. When the discrete noise

is additive but otherwise arbitrary and there is no cost constraint on the input, it is shown that the causal

feedback does not increase the capacity. This extends the earlier result obtained for general single-state

channels with full transmitter (Tx) channel state information (CSI) to the compound setting. It is further

shown that, for this compound setting and under a mild technical condition on the additive noise, the

addition of the full Tx CSI does not increase the capacity either, so that the worst-case and compound

channel capacities are the same. This can also be expressed as a saddle-point in the information-theoretic

game between the transmitter (who selects the input distribution) and the nature (who selects the channel

state), even though the objective function (the inf-information rate) is not convex/concave in the right

way. Cases where the Tx CSI does increase the capacity are identified.

Conditions under which the strong converse holds for this channel are studied. The ergodic behaviour

of the worst-case noise in otherwise information-unstablechannel is shown to be both sufficient and

necessary for the strong converse to hold, including feedback and no feedback cases.

I. INTRODUCTION

Many channels, especially wireless ones, are non-erogodic, non-stationary in nature [1] so

that the standard tools developed for stationary ergodic channels do not apply and new methods

are needed for such channels. A powerful method to deal with general channels, for which
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stationarity, ergodicity or information stability are notrequired, is the information density (spec-

trum) approach [2][3]. In this method, the key quantity is the inf-information rate rather than the

mutual information since the latter does not have operational meaning for information-unstable

channels.

In real systems, channel state information (CSI) may be inaccurate or limited due to a number

of reasons such as the limitations of channel estimation or feedback link [1]. The concept of

compound channel is one way to address this issue whereby a codebook is designed to work for

any channel in the uncertainty set, without any knowledge ofwhat channel state is currently in

effect [4]. A number of results have been obtained for the capacity of compound channels, see [4]

for a detailed review. While most of the studies do not consider feedback, the compound capacity

of a class of finite-state memoryless (and hence information-stable) channels with deterministic

feedback was established in [5].

While most of the known results require some form of information stability for any channel

in the uncertainty set, a general formula for compound channel capacity has been established in

[6][8] where no stationarity, ergodicity or information stability is required, and the uncertainty

set can be arbitrary. The key quantity in this setting is the compound inf-information rate, which

is an extension of the inf-information rate of [2][3] to the compound setting.

In this paper, we extend the study in [6][8] and consider a general compound channel with

memory and additive noise (no information stability is required so that the channel can be non-

stationary, non-ergodic; the uncertainty set can be arbitrary), where all alphabets are discrete,

there is no cost constraint and a noiseless, causal feedbacklink is present, where all past channel

outputs are fed back to the transmitter. We consider a scenario where no CSI is available at the

transmitter but full CSI is available to the receiver. Underthis setting, we demonstrate that the

feedback does not increase the compound channel capacity1. This extends the earlier result in

[7] established for single-state fully-known channels (full CSI available at both ends) to the

compound setting. Since noisy feedback cannot outperform noiseless one, this also holds for the

former case.

Under a mild technical condition on the additive noise, we further show that the availability

1In this paper, we consider the classical compound setting [1][4][5] where a fixed-rate code is designed to operate on any

channel in the uncertainty set and its decoding regions are allowed to depend on the state (but not the encoding process);

variable-rate coding, while being interesting, is beyond the paper’s scope.
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of the full Tx CSI does not increase the capacity either: the worst-case and compound channel

capacities are the same. This fact is remarkable since achieving the worst-case capacity allows

for the codebooks to depend on the channel state while the compound channel capacity requires

the codebooks to be independent of the channel state (and hence no feedback to the Tx is

needed). This can also be expressed as the existence of a saddle point in the information-

theoretic game between the transmitter (who selects the input) and the nature (who selects the

channel state): neither player can deviate from the optimalstrategy without incurring a penalty.

This result is rather surprising since the underlying objective function (the inf-information rate)

is not convex/concave in the right way and the uncertainty set can be non-convex as well (e.g.

discrete) so that the celebrated von Neumann’s mini-max Theorem [15] or its extensions [16]

cannot be used to establish the existence of a saddle-point.This shows that neither convexity

of the feasible set nor of the objective function are necessary for a saddlepoint to exist in this

information-theoretic game. This saddlepoint result extends the earlier results established for

stationary and ergodic (and hence information-stable) channels, e.g. in [17]-[22], where mutual

information is a proper metric, to the realm of information-unstable scenarios, where the inf-

information rate has to be used as a metric since the mutual information does not have operational

meaning anymore.

Next, we consider some cases when the Tx CSI does increase thecapacity. This turns out to be

somewhat surprising since, in all such cases, the optimal input distribution is uniform, regardless

of the channel state (a common wisdom suggests that the Tx CSIincreases the capacity via proper

selection of the input distribution tailored to the channelstate; our results indicate that this does

not have to be the case). Examples are provided to facilitateunderstanding and insights.

Finally, conditions under which the strong converse holds for this channel are studied. The

ergodic behaviour of the worst-case noise in otherwise information-unstable channel is shown

to be both sufficient and necessary for the strong converse tohold, including feedback and no

feedback cases. Examples are given to illustrate scenarioswhen the strong converse holds and

when it does not.

The rest of the paper is organized as follows. Section II introduces the channel model and

notations. Section III discusses the capacity of general (information-unstable) compound channels

without feedback. The impact of feedback is included in Section IV. The impact of the channel

state information at the transmitter and the existence of a saddlepoint are studied in Section V.
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Examples are given in Section VI. Sufficient and necessary conditions for the strong converse

to hold are given in Section VII.

II. CHANNEL MODEL

Let us consider the following discrete-time model of a compound discrete channel with additive

noise:

yn = gns (x
n) + ξns (1)

wherexn, yn, ξns are the input, output and noise sequences of lengthn, xn = {x1, .., xn} and

likewise foryn andξns ; the functionsgns (x
n) = {gs1(x1), gs2(x

2), .., gsn(x
n)} model the channel’s

impulse response and are required to induce one-to-one mapping xn ↔ zn = gns (x
n). All

alphabets as well as operations areM-ary, s ∈ S denotes the channel (noise) state, andS is

the (arbitrary) channel uncertainty set. The compound sequenceξns = {ξ1s, .., ξns} represents

arbitrary additive noise, e.g. non-ergodic, non-stationary in general, independent of the channel

input when used without feedback.

Note that the channel is not memoryless, it may include inter-symbol interference (ISI) via

gns (·), e.g.

zk = gsk(x
k) =

ls
∑

i=0

xk−i (2)

where ls is the depth of the ISI and where we setxi = 0 for i < 0. The noise is also allowed

to have arbitrary memory.

The channel is not required to be information stable (in the sense of Dobrushin [12] or Pinsker

[13]). We assume thats is known to the receiver but not the transmitter, who knows the (arbitrary)

uncertainty setS. This is motivated by the fact that channel estimation is done at the receiver;

M may be small, e.g. binary alphabets, while the cardinality of S can be very large (in fact,S

can be a continuous set) so it is not feasible in practice to feed s back to the transmitter via e.g.

a binary feedback channel.

The channel has noiseless feedback with 1-symbol delay (which can also be extended to noisy

feedback - see Remark 3), so that the transmitted symbolxk at time k = 1..n is selected as

x
(n)
k = f

(n)
k (wnyk−1)2, wheren is the blocklength,wn denotes the message to be transmitted

2our result will also hold for a more general feedback of the form uk = βk(y
k), where{βk} are arbitrary feedback functions,

see Remark 4.
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Effective channel

Fig. 1. A general channel with additive noise and causal feedback{wnyk−1} → xk → yk and the effective channelwn → yn

(dashed box), wherezk = gsk(x
k), xk = fk(wnyk−1).

via n-symbol block,xn = {x
(n)
1 ...x

(n)
n } and likewise foryn and ξns ; f (n)

k denotes the encoding

function at timek, which depends on the selected messagewn and past channel outputsyk−1

(due to the feedback);fn = {f
(n)
1 ...f

(n)
n }. This induces the input distribution of the form:

p(xn||yn−1) =
n
∏

k=1

p(xk|x
k−1yk−1) (3)

where|| denotes causal conditioning [10]. No cost constraint is imposed on the input.

Notations: To simplify notations, we usep(x|y) to denote conditional distributionpx|y(x|y)

when this causes no confusion (and likewise for joint and marginal distributions) and shortcut

x
(n)
k as xk with understanding that all sequences and distributions depend on blocklengthn

and may be different for different blocklengths. Capitals (X) denote random variables while

lower-case letters (x) denote their realizations or arguments of functions;X = {Xn}∞n=1.

III. CAPACITY WITHOUT FEEDBACK

First, we briefly review the relevant capacity result in [6][8], which apply to general compound

channelsps(yn|xn), not only those in (1); channels can be information-unstable, e.g. non-

stationary, non-ergodic, but without feedback, i.e.xk = fk(wn) (the input depends only on

the message and the past inputs, not the outputs). The compound channel capacity is defined

operationally as the maximum achievable rate for which the error probability can be made

arbitrary small and uniformly so over the whole set of channels and where the codewords are

independent of channel state (see e.g. [4][8] for details).
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Theorem 1 ([6][8]) . Consider a general compound channel where the channel states ∈ S

is known to the receiver but not the transmitter and is independent of the channel input; the

transmitter knows the (arbitrary) uncertainty setS. Its compound channel capacity (without

feedback) is given by

CNFB = sup
X

I(X;Y ) (4)

where the supremum is over all sequences of finite-dimensional input distributions andI(X;Y )

is the compound inf-information rate,

I(X;Y ) = sup
R

{

R : lim
n→∞

sup
s∈S

Pr {Zns ≤ R} = 0

}

(5)

whereZns = n−1i(Xn; Y n|s) is the normalized information density under channel states.

This theorem was proved in [6][8] using the Verdu-Han and Feinstein Lemmas properly

extended to the compound channel setting.

For future use, we need the following formal definitions, which extend the respectiveinf and

sup operators introduced for regular (single-state) sequences [2][3] (see (75)) to the compound

setting.

Definition 1. Let {Xsn}
∞
n=1 be an arbitrary compound random sequence wheres is a state

(i.e. a random sequence indexed by the states). The compound infimum{·} and supremum{·}

operators are defined as follows:

X = {Xsn} = sup

{

x : lim
n→∞

sup
s

Pr {Xsn ≤ x} = 0

}

(6)

X = {Xsn} = inf

{

x : lim
n→∞

sup
s

Pr {Xsn ≥ x} = 0

}

(7)

Roughly,X and X represent the largest lower and least upper bounds to the asymptotic

support set ofXsn over the whole state set (notesups in the definitions).

The following definitions extend the respective information-theoretic quantities in [2][3] to

the compound setting.

Definition 2. Let X = {Xn
s }

∞
n=1 andY = {Y n

s }
∞
n=1 be two compound random sequences with

distributionspsxn and psyn wheres is a state. The compound inf-divergence rate is defined as

D(X;Y ) = {dsn(X
n
s ||Y

n
s )} (8)

July 23, 2018 DRAFT
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wheredsn(xn||yn) = 1
n
log psxn(x

n)
psyn(xn)

is the divergence density rate. The compound inf and sup-

entropy ratesH(X) andH(X) are defined as

H(X) = {hsn(X
n
s )}, H(X) = {hsn(Xn

s )} (9)

wherehsn(x
n) = −n−1 log ps(x

n) is the entropy density rate. The compound conditional inf-

entropy rateH(Y |X) and sup-entropy rateH(Y |X) are defined analogously via the conditional

entropy density ratehsn(y
n|xn) = −n−1 log ps(y

n|xn) (with respect to the joint distribution

ps(x
n, yn)), and I(X;Y ) is similarly defined.

The proposition below gives the properties of the compound inf-information rateI(X;Y )

and other relevant quantities [6][8], which will be instrumental below.

Proposition 1. Let X andY be (arbitrary) compound random sequences. The following holds:

D(X||Y ) ≥ 0 (10)

I(X;Y ) ≥ I(X;Y ) ≥ 0 (11)

I(X;Y ) = I(Y ;X) (12)

I(X;Y ) ≤ H(Y )−H(Y |X) (13)

I(X;Y ) ≤ H(Y )−H(Y |X) (14)

I(X;Y ) ≥ H(Y )−H(Y |X) (15)

H(Y ) ≥ H(Y |X) (16)

H(Y ) ≥ H(Y ) ≥ H(Y |X) (17)

July 23, 2018 DRAFT
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If the alphabets are discrete, then

0 ≤ H(X|Y ) ≤ H(X) ≤ H(X) ≤ logNx (18)

0 ≤ I(X;Y ) ≤ min{H(X), H(Y )}

≤ min{logNx, logNy} (19)

I(X;Y ) = min{H(X), H(Y )}

if min{H(Y |X), H(X|Y )} = 0 (20)

0 ≤ I(X;Y ) ≤ min{H(X), H(Y )}

≤ min{logNx, logNy} (21)

where the last inequalities in(18)-(21) hold if the alphabets are of finite cardinalityNx, Ny.

Note that many of these properties mimic the respective properties of mutual information and

entropy, e.g. ”conditioning cannot increase the entropy” and ”mutual information is non-negative,

symmetric and bounded by the entropy of the alphabet”.

IV. CAPACITY WITH FEEDBACK

In this section, we consider a discrete compound channel with feedback and general additive

noise. Instead of dealing with the feedback channel{wnyk−1} → xk → yk, k = 1...n, directly,

one can consider an effective channelwn → yn without feedback, see Fig. 1. Applying Theorem

1 to the effective channel, the capacity with the feedback can be expressed as3

CFB = sup
W ,F

I(W ;Y ) (22)

whereY = {Y n}∞n=1 and likewise forW , I(W ;Y ) is the compound inf-information rate:

I(W ;Y ) =
{

n−1i(W n; Y n|s)
}

(23)

wherei(W n; Y n|s) is the information density:

i(wn; yn|s) = log
ps(y

n|wn)

ps(yn)
(24)

3see also [11] for a formulation based on the directed information for the case of full CSI and a proof of equivalence of these

two formulations in the latter case.
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The maximization in (22) is over all possible encoding functions F = {fn}∞n=1 and all pos-

sible message distributions. Unfortunately, this maximization is difficult to perform in general.

Therefore, we proceed in a different way. Let

H(Ξ) = {n−1h(Ξn
s |s)} (25)

be the compound sup-entropy rate of the compound noiseΞ = {Ξn
s}

∞
n=1, Ξ

n
s = {Ξ1s...Ξns},

h(ξn|s) = − log ps(ξ
n). The following is the main result of the paper.

Theorem 2. The capacity of the compound discrete channel with (arbitrary) additive noise in

(1) and the full Rx CSI is not increased by the causal feedback:

CFB = CNFB = sup
X

I(X;Y ) = logM −H(Ξ) (26)

whereCNFB is the capacity without feedback, andsup
X

is over all sequences of input distri-

butions.

Proof: Let us consider the no-feedback case first. The 2nd equality follow from Theorem

1. The following Lemma is needed to prove the last equality.

Lemma 1. Let zk = gsk(x
k), k = 1...n, and the mappingxn → zn is one-to-one. Ifp(xn) =

1/Mn, thenp(zn) = 1/Mn, i.e. equiprobableXn generates equiprobableZn.

Now, since the mappingxn → zn is invertible,I(X;Y ) = I(Z;Y ). It follows from (13) that

I(Z;Y ) ≤ H(Y )−H(Y |Z) (27)

Using this inequality, one obtains:

I(Z;Y ) ≤ logM −H(Y |Z) (28)

= logM −H(Ξ) (29)

where 1st inequality is due toM-ary alphabets, so thatH(Y ) ≤ logM (see (18)), and the

equality is due toH(Y |Z) = H(Z+Ξ|Z) = H(Ξ), since the noise is additive and independent

of the input (recall that we consider the no feedback case). Finally,

I(X;Y ) ≤ logM −H(Ξ) (30)

July 23, 2018 DRAFT
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and the equality is achieved by equiprobable input due to Lemma 1, under which the output is

also equiprobable. This proves the last equality in (26).

To prove 1st equality,CFB = CNFB, observe that feedback cannot decrease the capacity,

logM −H(Ξ) = CNFB ≤ CFB (31)

To prove the converse,

CFB ≤ logM −H(Ξ) (32)

use (22) to conclude

CFB = sup
W ,F

I(W ;Y ) (33)

≤ sup
W ,F

[H(Y )−H(Y |W )] (34)

≤ logM − inf
W ,F

H(Y |W ) (35)

where 1st inequality is due toI(W ;Y ) ≤ H(Y ) − H(Y |W ) and 2nd inequality is due to

H(Y ) ≤ logM (since the alphabet isM-ary).

To evaluateH(Y |W ), note that

ps(y
n|wn) =

n
∏

k=1

ps(yk|y
k−1wn) (36)

and

ps(yk|y
k−1wn) = ps(yk|y

k−1xkwn) (37)

= ps(yk|y
k−1xkξk−1wn) (38)

= psy
(

gsk(x
k) + ξk|x

kξk−1wn
)

(39)

= psξ(ξk|ξ
k−1wn) (40)

= psξ(ξk|ξ
k−1) (41)

where ξk = yk − gsk(x
k), xk = fk(wnyk−1), ξn = {ξk}

n
k=1. 1st equality is due toxk =

fk(wnyk−1); 2nd and 3rd equalities are due to the channel modelyk = zk + ξk; 4th equality is

due toxk = f̌k(wnξk−1), wheref̌k is a function which depends on encoding functionsfk and

July 23, 2018 DRAFT
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the channel impulse response functionsgks ; last equality is due to independence of noise and

message. Thus,

psy(y
n|wn) = psξ(ξ

n) (42)

and therefore

H(Y |W ) = H(Ξ) (43)

Combining this with (35), one obtains (32) and hence the desired result follows.

Equality in (32) is achieved by the uniform input distribution p(xn) = 1/Mn, which is also

i.i.d. and equiprobable:p(xn) =
∏n

i=1 p(xi), p(xi) = 1/M (this can be shown by induction),

under which the output is also uniform.

Remark 1. Note that in both feedback and no-feedback systems, the optimizing input is uniform

and hence i.i.d. equiprobable and independent of the feedback. Under this input, the output is

also uniform under any noise, which explains why feedback isnot helpful in this setting.

Remark 2. Settingls = 0 in (2), one obtains a channel without intersymbol interference. When,

in addition, the uncertainty setS is singleton (single-state channel with no uncertainty), Theorem

2 above reduces to the corresponding result in [7] obtained for fully known (no uncertainty)

channels.

Remark 3. Since noisy feedback cannot perform better than noiseless,this result also implies

that noisy feedback cannot increase the compound capacity in this setting either.

Remark 4. One may consider a more general feedback of the formuk = βk(y
k), where{βk} are

arbitrary (possibly random) feedback functions (which account for e.g. quantization of feedback

signals and noise in the feedback channel), and the corresponding encoding of the formxk =

fk(w
nuk−1). Since the capacity with this form of feedback cannot exceedthe capacity with the

full feedback ofyk−1, Theorem 2 still holds for this setting as well.

V. IMPACT OF THE TX CSI AND SADDLE POINT

Let us consider the case where channel states is known at the transmitter, so that codewords

can be selected as functions of the channel state. In this case, the worst-case channel capacity

July 23, 2018 DRAFT
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Cw is a proper performance metric and it can be expressed as

Cw = inf
s

sup
W ,F

I(W ;Y |s) (44)

= inf
s
(logM −H(Ξ|s)) (45)

= inf
s
sup
X

I(X;Y |s) (46)

= logM − sup
s

H(Ξ|s) (47)

≥ logM −H(Ξ) = CFB (48)

whereI(X;Y |s) is the inf-information rate under channel states [2]:

I(X;Y |s) = sup
R

{

R : lim
n→∞

Pr

{

1

n
i(W n; Y n|s) ≤ R

}

= 0

}

, (49)

H(Ξ|s) is the sup-entropy rate of the noise under states:

H(Ξ|s) = inf
R

{

R : lim
n→∞

Pr

{

1

n
h(Ξn

s |s) > R

}

= 0

}

(50)

(44) follows from the general formula in [2] and the equivalent channel in Fig. 1; (45) follows

from the Theorem in [7]; (48) follows from the Lemma 2 below, so that the impact of Tx CSI

can be characterized by

∆C = Cw − CFB = H(Ξ)− sup
s

H(Ξ|s) ≥ 0 (51)

Note that, similarly to the compound capacity,Cw is not increased by the feedback either,

i.e. (47) is also the no-feedback worst-case channel capacity as indicated by (46) whileCs =

sup
X
I(X;Y |s) is the channel capacity under states known to both Tx and Rx.

To proceed further, we need the following definition.

Definition 3. The compound noise sequence{Ξn
s}

∞
n=1 is uniform if the convergence in

Pr

{

1

n
h(Ξn

s |s) > sup
s

H(Ξ|s) + δ

}

→ 0 (52)

as n → ∞ is uniform ins ∈ S for any δ > 0.

Note that, while the convergence to zero in (52) for eachδ > 0 ands ∈ S is guaranteed from

the definition ofsupsH(Ξ|s), this convergence does not have to be uniform in general. In fact,

the uniform convergence requirement above is equivalent to

lim
n→∞

sup
s

Pr

{

1

n
h(Ξn

s |s) > sup
s

H(Ξ|s) + δ

}

= 0 (53)
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for any δ > 0, which is clearly stronger than just point-wise convergence in (52) for eachs,

which is equivalent to

sup
s

lim
n→∞

Pr

{

1

n
h(Ξn

s |s) > sup
s

H(Ξ|s) + δ

}

= 0 (54)

In general,lim and sup cannot be swaped; rather

sup
s

lim
n→∞

{·} ≤ lim
n→∞

sup
s

{·} (55)

so that (53) implies (54) but the converse is not true in general, i.e. the inequality can be strict.

We are now in a position to establish the following key result.

Lemma 2. The following inequality holds for the general compound noise sequence:

H(Ξ) ≥ sup
s

H(Ξ|s) (56)

with equality if and only if the compound noise is uniform.

Proof: See Appendix.

Strict inequality in (56) can be demonstrated by examples - see Section VI. Combining Lemma

2 with (51), one obtains the following result.

Theorem 3. Consider the discrete compound channel with additive noiseas in (1) under the

full Rx CSI. When the compound noise is uniform, neither the full Tx CSI nor causal noiseless

or noisy feedback increase its capacity, i.e.

CNFB = CFB = Cw (57)

The last equality states that the worst-case channel capacity (achievable by codebooks tailored

to the channel state) is the same as the compound channel capacity (where the codebooks are

independent of channel states), which can be equivalently expressed as

inf
s
sup
X

I(X;Y |s) = sup
X

inf
s
I(X;Y |s) (58)

so that, wheninf and sup are achieved, this is equivalent to the existence of a saddlepoint

[15][16]:

I(X ;Y |s∗) ≤ I(X∗;Y ∗|s∗) ≤ I(X∗;Y ∗|s) (59)

July 23, 2018 DRAFT
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where(X∗, s∗) is the saddle point. This saddle point exists for both feedback and no feedback

cases when the compound noise is uniform.

It is remarkable that a saddle point exists even though the uncertainty set is allowed to be

non-convex and the objective functionf(s) , I(X ;Y |s) is not required to be convex either

(e.g. whens is discrete,f(s) is not convex; it can also be non-convex even when the uncertainty

set is convex), so that von Neumann’s mini-max Theorem [15] or its extensions [16] can not be

used to establish the existence of a saddle point.

The saddle point above extends the information-theoretic saddle-point results established

earlier in e.g. [17]-[22] for stationary and ergodic (and hence information-stable) channels, for

which mutual information is a proper metric, to the realm of information-unstable scenarios,

where mutual information has no operational meaning and theinf-information rate has to be

used instead. Furthermore, it demonstrates that neither convexity of the feasible set nor of the

objective function are necessary for the saddlepoint to exist. It also has the standard game-

theoretic interpretation: neither the nature (who controls states) nor the transmitter (who controls

the input distribution) can deviate from the optimal strategy without incurring a penalty.

VI. EXAMPLES

In this section, we consider some illustrative examples. Among other things, they identify the

scenarios when the Tx CSI increases the capacity and when it does not.

A. Example 1

Let the compound noise be of the form

ξns = {w1, .., ws, 0..0} (60)

whereWi are i.i.d. equiprobable so thatp(ws) = 1/Ms, ands ∈ {1, 2, ...}. This can model block

interference/noise of lengths. Note that the noise process{ξns } is not stationary. Using (50),

one obtains, after some manipulations,H(Ξ|s) = 0 ∀s (this is due to the fact that, under fixed

s, the ”noisy” part in (60) is asymptotically negligible) so that sups H(Ξ|s) = 0 and hence

Cw = logM (61)
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Yet, using (50), it follows, after some manipulations, thatH(Ξ) = logM > supsH(Ξ|s) = 0.

Hence, the noise is not uniform and

CFB = 0 (62)

so that the advantage of the Tx CSI is significant:∆C = logM , i.e. the maximum possible

value forM-ary alphabet. The reason for this is that the compound noisein (60) is not uniform,

the worst-case noise (corresponding tosups in (6)) is i.i.d. equiprobable for any givenn and

hence the compound channel is useless, even under noiselesscausal feedback. The presence

of the Tx CSI changes the situation dramatically: one can nowdesign a codebook for any

given states and make the error probability arbitrary low by using sufficiently large blocklength

n ≫ s. This conclusion also holds forany distribution ofwn
s , not only i.i.d. equiprobable, since

supsH(Ξ|s) = 0 regardless.

The situation also changes dramatically if one imposes the boundedness constraint on the

uncertainty set:s ≤ S < ∞. In this case,H(Ξ) = sups H(Ξ|s) = 0, i.e. the noise becomes

uniform, and henceCFB = Cw = logM . One may wonder as to what are the practical

implications of these dramatic changes. In our view, the first case of unboundeds corresponds

to a scenario where the interference is more powerful than the codebook, i.e. for any givenn,

does not matter how large, one can always find powerful enoughinterference withs = n thus

rendering the channel useless. The second case of boundeds prevents this thus allowing for

the codeword lengthn to be much larger thanS and hence represents a scenario where the

codebook is more powerful than any possible interference. In the same way, one can interpret

the impact of the Tx CSI: givings to the Tx allows one to chosen ≫ s and hence make the

impact of interference negligible, which is not possible otherwise.

B. Example 2

Let us now set the compound noise as

ξns = {w1, .., ws, zs+1, .., zn} (63)

with binary alphabet andWi ∼ Ber(p1), Zi ∼ Ber(p2), i.e. Bernoulli random variables, all

independent of each other and0 ≤ p2 < p1 ≤ 1/2, ands ∈ {1, 2, ...}. This can model a scenario

where there is noise (2nd part) in addition to interference (1st part).
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One obtains, after some manipulations,

sup
s

H(Ξ|s) = h(p2) < h(p1) = H(Ξ) (64)

whereh(p) is the binary entropy function, and hence

∆C = Cw − CFB = h(p1)− h(p2) > 0 (65)

so that the noise is not uniform and the Tx CSI does bring in advantage. Bounding the uncertainty

set s ≤ S < ∞ has no impact onH(Ξ|s) but makesH(Ξ) = h(p2) and hence the advantage

of the Tx CSI disappear:∆C = 0. The noise becomes uniform in this case. As in Example 1,

the distribution ofws does not affectH(Ξ|s) but does have an impact onH(Ξ).

If, on the other hand,p2 ≥ p1, then∆C = 0 regardless whether the uncertainty set is bounded

or not, so that, in general,

∆C = Cw − CFB = [h(p1)− h(p2)]+ (66)

where[x]+ = max{0, x}.

C. Example 3

Let the compound noise sequence be of the form

ξns = {w1, .., wn} (67)

with binary alphabet andWi ∼ Ber(pi) and independent of each other, where

pi =
s

2(i+ s)
(68)

ands ≥ 0 (not necessarily integer). This models a scenario where noise becomes ”weaker” with

time (note thath(pi) decreases withi), while s controls the decay rate: noise becomes negligible

when i ≫ s, so thath(pi) ≈ 0, see Fig. 2. The process is clearly not stationary.

After some manipulations, one obtainsH(Ξ|s) = 0 ∀ s and hencesupsH(Ξ|s) = 0. Yet,

H(Ξ) = 1 so thatCw = 1, CFB = 0 and∆C = 1, the maximal possible value, and the noise in

not uniform. Thus, while the Tx CSI is the most useful, the noiseless causal feedback is useless.

As above, bounding the uncertainty sets ≤ S < ∞ changes the situation dramatically:

CFB = 1, ∆C = 0, so that the Tx CSI gives no increase in the capacity since thenoise is now

uniform.
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Fig. 2. Binary entropyh(pi) for pi as in (68) versus timei for different statess.

D. Example 4

Let us now consider a non-ergodic non-stationary channel with

ξns =











wn
s with Pr = p

zns with Pr = 1− p
(69)

whereW n
s , Z

n
s are non-stationary processes (e.g. from the above examples) and 0 < p < 1,

i.e. one of the two processes is randomly selected at the beginning and it operates during the

entire transmission. This process is clearly non-ergodic when its components are of different

distributions. One may also considerps, i.e. a function of the channel state, provided that0 <

α ≤ ps ≤ β < 1 ∀s.

It can be seen that

H(Ξ|s) = max{H(W |s), H(Z|s)}, H(Ξ) = max{H(W ), H(Z)} (70)

so that

∆C = max{H(W ), H(Z)} − sup
s

max{H(W |s), H(Z|s)} (71)

In particular,∆C = 0 if {W n
s }

∞
n=1, {Z

n
s }

∞
n=1 are uniform compound sequences. This holds if e.g.

the uncertainty set is of a finite cardinality, regardless ofwhat the distributions of{W n
s }, {Z

n
s }

are.
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VII. STRONG CONVERSE

In this section, we establish a sufficient and necessary condition for the strong converse to

hold for the compound channel with additive noise. In addition to being of theoretical interest

on its own, it also has some practical implications. In particular, strong converse ensures that

slightly larger error probability cannot be traded off for higher data rate, since the transition from

arbitrary low to high error probability is sharp. Additionally, a consequence of this is that the

error rate performance degrades dramatically if the SNR drops below the threshold for which

the system was designed.

Let εn and rn be the error probability and rate of a codebook of blocklength n. The formal

definition of strong converse is as follows.

Definition 4. A compound channel is said to satisfy strong converse if

lim
n→∞

εn = 1 (72)

for any code satisfying

lim inf
n→∞

rn > Cc (73)

We begin with the following definitions which are needed below. 1st one extends the standard

definition of convergence in probability to compound randomsequences.

Definition 5. A compound random sequence{Ysn}
∞
n=1 is said to converge in probability toy0,

denoted asYsn
Pr
→ y0, if

lim
n→∞

sup
s

Pr{|Ysn − y0| > ǫ} = 0 (74)

for any ǫ > 0, wheresups is over the whole state set.

It should be emphasized that the point-wise convergence, i.e. limn→∞ Pr{|Ysn − y0| > ǫ} =

0 ∀s, does not imply (74), which is a stronger condition (see also(55)).

In addition to the following standard definitions of the infimum Xs and supremumXs of a

random sequenceXn
s under states [2][3]:

Xs = sup
{

x : lim
n→∞

Pr {Xsn ≤ x} = 0
}

Xs = inf
{

x : lim
n→∞

Pr {Xsn ≥ x} = 0
}

(75)
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and the compound infimumX and supremumX in Definition 1, the following compoundinf

and sup operators are needed in a condition for strong converse.

Definition 6. Let {Xsn}
∞
n=1 be an arbitrary compound random sequence wheres is a state. The

compound infimum{·} and supremum{·} operators are defined as follows:

X = {Xsn} = sup
{

x : lim
n→∞

inf
s
Pr {Xsn ≤ x} = 0

}

(76)

X = {Xsn} = inf
{

x : lim
n→∞

inf
s
Pr {Xsn ≥ x} = 0

}

(77)

Roughly,Xs andXs represent the largest lower and least upper bounds of the asymptotic

support set ofXsn under states while X andX do so over the whole state set by selecting

the best states for the respective bounds. Note however thatthese quantities are different from

X andX: inf rather thansup are used in the definitions ofX andX so that the respective

limits are enforced for some channel states only, not over the whole state set. While subtle, the

difference is important, as we will see below. These operators have the properties which are

instrumental in establishing the strong converse and otherresults.

Proposition 2. The compoundinf and sup operators in Definition 6 satisfy the following:

(−X) = −X (78)

X + Y ≤ (X + Y ) ≤ X + Y (79)

X ≤ min{X,X} ≤ max{X,X} ≤ X (80)

sup
s

Xs ≤ X, X ≤ inf
s
Xs (81)

If Ysn
Pr
→ y0, then

(X + Y ) = X + y0 (82)

Proof: See Appendix.

Strict inequalities in Proposition 2 can be demonstrated via examples.

Example 1: Let X1n andX2n be uniformly-distributed random variables,

X1n ∼ uni[0, 2], X2n ∼ uni[1, 3] (83)

so that

X = 0, X = 1, X = 2, X = 3 (84)
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Fig. 3. Asymptotic distribution of a random 2-state sequence X and related quantities. Note thatX < X .

and all inequalities in (80) are strict. Since

sup
s

Xs = 1, inf
s
Xs = 2, (85)

this example also demonstrates that the inequalities in (81) can become equalities.

To demonstrate that the inequalities in (79) can be strict, set Xsn to be deterministic constant

andYsn asX in Example 1 above.

Example 2: To see that the inequalities in (81) can be strict, letXsn be Bernoulli random

variables as follows:

Xsn ∼ Ber{1− psn}, psn =
n

n+ s
, s ≥ 0 (86)

so thatPr{Xsn = 0} = psn. It is straightforward to see thatXs = Xs = 0 for any s so that

sup
s

Xs = inf
s
Xs = 0, (87)

yet X = 1 so that 1st inequality is strict while 2nd one becomes equality sinceX = 0. To see

that this inequality can be strict, setXsn ∼ Ber{psn} instead, so that

sup
s

Xs = inf
s
Xs = 1, (88)

yet X = 0.

Using Example 1 and its modifications, see Fig. 3 and 4, one canalso demonstrate that there

is no specific relationship betweenX andX in general, i.e. neitherX ≤ X nor X ≥ X are

true, unlikeX ≤ X that holds in full generality. In a similar way, it can be shown that there

exists no specific relationship betweensupsXs andX. This also holds forinfsXs andX.
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Fig. 4. Asymptotic distribution of a random 2-state sequence X and related quantities. Note thatX > X .

Using Proposition 9 in [8] and (78), the inequalities in (81)can be refined as follows:

X ≤ inf
s
Xs ≤ sup

s

Xs ≤ X ≤ X,

X ≤ X ≤ inf
s
Xs ≤ sup

s

Xs ≤ X (89)

A special case of (79) is whenYsn = b, i.e. a constant, so that, for anya ≥ 0,

(aX + b) = aX + b (90)

i.e. {·} is a linear operator for positivea. It is straightforward to see that, for negativea,

(aX + b) = aX + b (91)

Let H(Ξ) = {n−1h(Ξn
s |s)} and likewise forH(Ξ). In addition to its properties inherited from

Proposition 2, it also satisfies

0 ≤ H(Ξ), H(Ξ) ≤ logM (92)

where 1st inequality holds in full generality and 2nd one - for M-ary alphabets. We are now in

a position to establish a sufficient and necessary conditionfor the strong converse to hold.

Theorem 4. The compound channel with additive noise in(1) under the full Rx CSI satisfies

the strong converse condition for both feedback and no feedback cases if and only if

H(Ξ) = H(Ξ) (93)

If the compound noise is uniform, this reduces to

sup
s

H(Ξ|s) = H(Ξ) (94)
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Fig. 5. Asymptotic distribution of the noise entropy density rate for a 2-state channel with strong converse and relatedentropy

density rates.

Proof: See Appendix.

Fig. 5 illustrates the condition of strong converse for a 2-state channel.

Using Proposition 27 in [8] under the optimal (uniform) input X∗ in combination with (130),

one further obtains under the strong converse condition (93):

H(Ξ) = lim sup
n→∞

sup
s

1

n
H(Ξn

s ) (95)

whereH(Ξn
s ) is the ergodic entropy, i.e. the compound sup-entropy rateH(Ξ) coincides with

the ergodic entropy rate of the noise (under its worst states), even though no ergodicity (or

information stability) was imposed on the noise upfront4. Hence, one concludes that the strong

converse condition forces the worst-case noise to behave ergodically and hence the worst-case

noise ergodicity is both necessary and sufficient for the strong converse to hold. This conclusion

holds for both feedback and no feedback cases.

While there is no specific ordering betweenH(Ξ) andH(Ξ) or betweensupsH(Ξ|s) and

H(Ξ) in general (as indicated by the examples above), such ordering is induced by the strong

converse, as indicated below.

Corollary 4.1. Under the strong converse condition in Theorem 4, the following ordering holds:

H(Ξ) ≤ inf
s
H(Ξ|s) ≤ sup

s

H(Ξ|s) ≤ H(Ξ) (96)

which is thus a necessary condition for the strong converse to hold.

4Note also that (95) equates two very different quantities: while the definition ofH(Ξn
s ) is based on the expectation, so it is

an ergodic quantity, that ofH(Ξ) does not use expectation at all.
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Proof: It follows from (93) and (81) that

H(Ξ) = H(Ξ) ≥ sup
s

H(Ξ|s)

≥ inf
s
H(Ξ|s) (97)

≥ H(Ξ)

A. Examples

To gain further insight, one may use the examples of Section VI. In particular, one obtains

for Example 1

H(Ξ) = H(Ξ) = logM (98)

when the uncertainty set is not bounded and

H(Ξ) = H(Ξ) = 0 (99)

when it is, so that the strong converse holds in both cases.

For Example 2,

H(Ξ) = H(Ξ) = h(p1) (100)

when the uncertainty set is not bounded and

H(Ξ) = H(Ξ) = h(p2) (101)

when it is, so that the strong converse holds in both cases as well.

For Example 3,

H(Ξ) = H(Ξ) = 1 (102)

when the uncertainty set is not bounded and

H(Ξ) = H(Ξ) = 0 (103)

when it is, so that the strong converse holds in both cases too.

Example 4 is more interesting. It is not too difficult to show that, in the general case,

H(Ξ) ≤ min{H(W ), H(Z)} (104)
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so that

H(Ξ) ≤ min{H(W ), H(Z)}

≤ max{H(W ), H(Z)}

≤ H(Ξ) = max{H(W ), H(Z)} (105)

and hence, ifH(W ) 6= H(Z),

H(Ξ) < H(Ξ) (106)

so that the strong converse does not hold (one may use Examples 1-3 to construct component

sequencesW ,Z for further insights). Note that this conclusion holds for any p as long as

0 < p < 1.

Remark 5. It is tempting to conclude, based onH(Ξ) = min{H(W ), H(Z)} which holds in

full generality, that(104) should hold with equality in general. To see that this is not the case,

consider Example 4 with the following component sequences:

wn
s = {b1..bs, 0..0}

zns = {0..0, bs+1..bn} (107)

where bn is a binary i.i.d. equiprobable sequence. This models a scenario where the noise

randomly corrupts either 1st or 2nd part of a codeword ands controls its length. It follows that

H(Ξ) = H(W ) = H(Z) = 1 (108)

yet

H(Ξ) = 1/2 < 1 = min{H(W ), H(Z)} (109)

Note that the strong converse does not hold in this case either, even though it holds for

each component sequence individually andH(W ) = H(Z). Further note thatH(Ξ) = 1/2,

infsH(Ξ|s) = sups H(Ξ|s) = 1 so that the last inequality in(96) does not hold.
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VIII. C ONCLUSION

The capacity of compound channels with additive noise and the Rx CSI has been studied.

When all alphabets are discrete and there is no cost constraint, noiseless causal feedback does

not increase the capacity. The impact of the channel state information at the transmitter has been

quantified. In particular, it does not increase the capacityif the additive noise is a uniform com-

pound process. Otherwise, it may provide significant improvement (unlike the feedback), which

was shown via examples. A saddle-point has been shown to exist in the information-theoretic

game between the transmitter and the nature, even though theobjective is not convex/concave in

the right way. Finally, the sufficient and necessary condition for the strong converse to hold has

been establish: it requires the worst-case noise sequence to behave ergodically, even though no

ergodicity or information satiability requirements were imposed upfront. Examples are provided

to facilitate understanding and insights.
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X. APPENDIX

A. Proof of Lemma 2

The proof of the 1st part (the inequality in general) is by contradiction. Assume thatH(Ξ) <

supsH(Ξ|s), which implies that

∃s0 : H = H(Ξ) < H = H(Ξ|s0) (110)

Set

R = (H +H)/2 = H +∆ = H −∆ (111)

where∆ = (H −H)/2 > 0. Note that

lim
n→∞

Pr

{

1

n
h(Ξn

s0
|s0) > H −∆

}

> 0 (112)
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from the definition ofH. However,

0 = lim
n→∞

sup
s

Pr

{

1

n
h(Ξn

s |s) > H +∆

}

≥ lim
n→∞

Pr

{

1

n
h(Ξn

s0
|s0) > H +∆

}

(113)

= lim
n→∞

Pr

{

1

n
h(Ξn

s0
|s0) > H −∆

}

> 0

where 1st equality is due to the definition ofH, i.e. a contradiction, from which the desired

inequality follows.

The ”if” part of the equality case (under uniform noise) is also proved by contradiction: assume

that, under the uniform convergence,

H > H = sup
s

H(Ξ|s) (114)

and set

R = (H +H)/2 = H −∆ = H +∆ (115)

where∆ = (H −H)/2 > 0, and hence

lim
n→∞

Pr
{

n−1h(Ξn
s |s) > H +∆

}

= 0 ∀s ∈ S (116)

from the definition ofH, so that a contradiction follows

0 = sup
s

lim
n→∞

Pr
{

n−1h(Ξn
s |s) > H +∆

}

= lim
n→∞

sup
s

Pr
{

n−1h(Ξn
s |s) > H +∆

}

(117)

= lim
n→∞

sup
s

Pr
{

n−1h(Ξn
s |s) > H −∆

}

> 0

where 2nd equality is due to uniform convergence and the lastinequality is from the definition

of H.

To prove the ”only if” part, assume that the equality holds and observe that

0 = lim
n→∞

sup
s

Pr
{

n−1h(Ξn
s |s) > H +∆

}

= lim
n→∞

sup
s

Pr

{

n−1h(Ξn
s |s) > sup

s

H(Ξ|s) + ∆

}

(118)
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for any∆ > 0. The last equality implies uniform convergence: for anyǫ > 0 there exists such

n0(ǫ) that for anyn > n0(ǫ),

sup
s

Pr

{

n−1h(Ξn
s |s) > sup

s

H(Ξ|s) + ∆

}

< ǫ

and hence the convergence is uniform.

B. Proof of Proposition 2

Let lim inf = limn→∞ infs and likewise forlim sup. Eq. (78) follows from the definition of

{·}:

(−X) = sup {x : lim inf Pr {−Xsn ≤ x} = 0}

= sup {x : lim inf Pr {Xsn ≥ −x} = 0}

= sup {−z : lim inf Pr {Xsn ≥ z} = 0}

= − inf {z : lim inf Pr {Xsn ≥ z} = 0}

= −X (119)

To prove (79), setx = X + Y + δ for someδ > 0, let B denote the event{Ysn < Y + δ} and

Bc - its complement, and observe that

0 = lim inf Pr{Xsn + Y ≥ x}

= lim inf(Pr{Xsn + Y ≥ x|B}Pr{B}+ Pr{Xsn + Y ≥ x|Bc}Pr{Bc})

≥ lim inf Pr{Xsn + Y ≥ x|B}Pr{B}

≥ lim inf Pr{Xsn + Ysn − δ ≥ x|B}Pr{B}

= lim inf Pr{Xsn + Ysn − δ ≥ x|B}Pr{B}+ lim sup Pr{Xsn + Ysn − δ ≥ x|Bc}Pr{Bc}

≥ lim inf(Pr{Xsn + Ysn − δ ≥ x|B}Pr{B}+ Pr{Xsn + Ysn − δ ≥ x|Bc}Pr{Bc})

= lim inf Pr{Xsn + Ysn ≥ x+ δ} = 0 (120)

where 1st equality is fromx = X + Y + δ and the definition ofX; 2nd inequality is from

Y > Ysn − δ conditioned onB; 3rd equality is from

lim sup Pr{Xsn + Ysn − δ} ≥ x|Bc}Pr{Bc} ≤ lim sup Pr{Bc} = 0 (121)
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where the last equality is from the definition ofBc; the last equality in (120) is implied by the

preceding chain. This last equality implies thatX + Y ≤ x+ δ so that

X + Y ≤ X + Y + 2δ (122)

for any δ > 0, which proves 2nd inequality in (79). To prove 1st one, use the substitutions

Y → −Y andX → X + Y in combination with (78).

To establish (80), we first show thatX ≤ X . To this end, let

Ω1 = {x : lim sup Pr {Xsn ≤ x} = 0}

Ω2 = {x : lim inf Pr {Xsn ≤ x} = 0} (123)

Since

lim sup Pr {Xsn ≤ x} ≥ lim inf Pr {Xsn ≤ x} (124)

it follows thatΩ1 ∈ Ω2, which impliesX ≤ X by usingsup. Next, we show thatX ≤ X. To

this end, let

Ω3 = {x : lim sup Pr {Xsn ≤ x} = 1}

and observe that

X = inf {x : lim inf Pr {Xsn ≥ x} = 0}

= inf {x : lim inf Pr {Xsn > x} = 0} (125)

= inf {x ∈ Ω3}

Since, for anyx1 ∈ Ω1 and anyx3 ∈ Ω3, it holds thatx1 < x3, so that

X = sup {x ∈ Ω1} ≤ inf {x ∈ Ω3} = X (126)

This establishes 1st inequality in (80). 2nd one is trivial.3rd one can be established from 1st

one usingX → −X.

To show 1st inequality in (81), recall that

Xs = sup
{

x : lim
n→∞

Pr {Xsn ≤ x} = 0
}

, (127)

setx0 = Xs − δ for someδ > 0 and observe that

0 = lim
n→∞

Pr {Xsn ≤ x0} ≥ lim inf Pr {Xsn ≤ x0} = 0 (128)
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where the last equality is implied by the preceding chain. This implies thatX ≥ x0. Since this

holds for anyδ > 0, X ≥ Xs follows. Since this holds for anys, 1st inequality in (81) follows.

2nd one can be established viaX → −X .

To establish (82), observe thatYsn
Pr
→ y0 impliesY = Y = y0 and use (79).

C. Proof of Theorem 4

We begin with a brief summary of the sufficient and necessary condition for the general

compound channel to satisfy the strong converse.

Theorem 5 ([8][9]) . The general compound channel with full Rx CSI and without feedback

satisfies the strong converse condition if and only if

Cc , sup
X

I(X;Y ) = sup
X

I(X;Y ) (129)

wheresup is over all sequences of finite-dimensional input distributions. The condition(129) is

equivalent to the following: for anyδ > 0 and an optimal inputX∗ ,

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > δ} = 0 (130)

whereZ∗
ns =

1
n
i(Xn∗; Y n∗|s) is the information density rate under optimal inputX

∗, i.e. there

exists such sequence of channel statess(n) that the corresponding information density rateZ∗
ns

under optimal inputX∗ converges in probability to the compound capacityCc (i.e. the channel

represented by this sequence of states is information-stable, even though the original compound

channel is not required to be information-stable).

To adapt this result to the feedback case, we again considerW as an input and optimize over

bothW andF so that (129) becomes

sup
W ,F

I(W ;Y ) = sup
W ,F

I(W ;Y ) (131)

Since the left-hand side has been already evaluated, we now evaluate the right-hand side. To this

end, one can follow the steps similar to those in evaluating the left-hand side. First, observe that

sup
W ,F

I(W ;Y ) ≤ sup
W ,F

[H(Y )−H(Y |W )]

≤ logM − inf
W ,F

H(Y |W )

= logM −H(Ξ) (132)
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where 1st inequality is due to Proposition 2; 2nd inequalityfollows from H(Y ) ≤ logM (since

the alphabet isM-ary); the last equality is due to (42) so thatH(Y |W ) = H(Ξ). Now, using

no feedback and uniform inputX, one obtainsI(W ;Y ) = logM −H(Ξ) so that

sup
W ,F

I(W ;Y ) ≥ logM −H(Ξ) (133)

Combining the two inequalities,

sup
W ,F

I(W ;Y ) = logM −H(Ξ) (134)

It is remarkable that, similarly toI(W ;Y ), the optimal value ofI(W ;Y ) is not affected by

feedback either and the best strategy is to use the uniformly-distributed input and ignore feedback.

Combining the last equality with (26), the desired condition follows.
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