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Feedback Does Not Increase the Capacity of

Compound Channels with Additive Noise

Sergey Loyka, Charalambos D. Charalambous

Abstract

A discrete compound channel with memory is considered, &her stationarity, ergodicity or
information stability is required, and where the uncetaset can be arbitrary. When the discrete noise
is additive but otherwise arbitrary and there is no cost trairg on the input, it is shown that the causal
feedback does not increase the capacity. This extends thereasult obtained for general single-state
channels with full transmitter (Tx) channel state inforioat(CSl) to the compound setting. It is further
shown that, for this compound setting and under a mild texirdondition on the additive noise, the
addition of the full Tx CSI does not increase the capacithegitso that the worst-case and compound
channel capacities are the same. This can also be expresaeshddle-point in the information-theoretic
game between the transmitter (who selects the input disitiy) and the nature (who selects the channel
state), even though the objective function (the inf-infation rate) is not convex/concave in the right
way. Cases where the Tx CSI does increase the capacity artfiet

Conditions under which the strong converse holds for thisakel are studied. The ergodic behaviour
of the worst-case noise in otherwise information-unstahl@nnel is shown to be both sufficient and

necessary for the strong converse to hold, including fegdbad no feedback cases.

. INTRODUCTION

Many channels, especially wireless ones, are non-erogadig-stationary in nature |[1] so
that the standard tools developed for stationary ergodanicels do not apply and new methods

are needed for such channels. A powerful method to deal weteigl channels, for which
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stationarity, ergodicity or information stability are netquired, is the information density (spec-
trum) approach [2][3]. In this method, the key quantity ie thf-information rate rather than the
mutual information since the latter does not have operatiareaning for information-unstable
channels.

In real systems, channel state information (CSI) may becinate or limited due to a number
of reasons such as the limitations of channel estimatioreedifack link[[1]. The concept of
compound channel is one way to address this issue wherebgedaok is designed to work for
any channel in the uncertainty set, without any knowledge/odt channel state is currently in
effect [4]. A number of results have been obtained for theacdp of compound channels, séé [4]
for a detailed review. While most of the studies do not comsfdedback, the compound capacity
of a class of finite-state memoryless (and hence informatiahle) channels with deterministic
feedback was established in [5].

While most of the known results require some form of inforioratstability for any channel
in the uncertainty set, a general formula for compound cebhocapacity has been established in
[6][8] where no stationarity, ergodicity or informationasility is required, and the uncertainty
set can be arbitrary. The key quantity in this setting is thigound inf-information rate, which
is an extension of the inf-information rate 6f [2][3] to thenapound setting.

In this paper, we extend the study in [6][8] and consider aegancompound channel with
memory and additive noise (no information stability is regd so that the channel can be non-
stationary, non-ergodic; the uncertainty set can be aryiXr where all alphabets are discrete,
there is no cost constraint and a noiseless, causal feedibkdk present, where all past channel
outputs are fed back to the transmitter. We consider a sicewdiere no CSl is available at the
transmitter but full CSI is available to the receiver. Untlas setting, we demonstrate that the
feedback does not increase the compound channel capatiiis extends the earlier result in
[7] established for single-state fully-known channelsll(f0SI available at both ends) to the
compound setting. Since noisy feedback cannot outperfariseless one, this also holds for the
former case.

Under a mild technical condition on the additive noise, weher show that the availability

In this paper, we consider the classical compound setfilig][&] where a fixed-rate code is designed to operate on any
channel in the uncertainty set and its decoding regions kowedd to depend on the state (but not the encoding process);

variable-rate coding, while being interesting, is beyone paper’'s scope.
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of the full Tx CSI does not increase the capacity either: tloestvcase and compound channel
capacities are the same. This fact is remarkable since\acithe worst-case capacity allows
for the codebooks to depend on the channel state while th@aand channel capacity requires
the codebooks to be independent of the channel state (anck hem feedback to the Tx is
needed). This can also be expressed as the existence of & gemidt in the information-
theoretic game between the transmitter (who selects tha)igmd the nature (who selects the
channel state): neither player can deviate from the optstrategy without incurring a penalty.
This result is rather surprising since the underlying dfojecfunction (the inf-information rate)
is not convex/concave in the right way and the uncertainty set eandm-convex as well (e.qg.
discrete) so that the celebrated von Neumann’s mini-mayoidme [15] or its extensions [16]
cannot be used to establish the existence of a saddle-ddirg.shows that neither convexity
of the feasible set nor of the objective function are neagska a saddlepoint to exist in this
information-theoretic game. This saddlepoint result edtethe earlier results established for
stationary and ergodic (and hence information-stablehicbls, e.g. in[[17]:[22], where mutual
information is a proper metric, to the realm of informationstable scenarios, where the inf-
information rate has to be used as a metric since the mutigahiation does not have operational
meaning anymore.

Next, we consider some cases when the Tx CSI does increasapheity. This turns out to be
somewhat surprising since, in all such cases, the optinpaltidistribution is uniform, regardless
of the channel state (a common wisdom suggests that the Tin@®hses the capacity via proper
selection of the input distribution tailored to the chansigte; our results indicate that this does
not have to be the case). Examples are provided to facilitatkerstanding and insights.

Finally, conditions under which the strong converse holatsthis channel are studied. The
ergodic behaviour of the worst-case noise in otherwiserimédion-unstable channel is shown
to be both sufficient and necessary for the strong converé®lth including feedback and no
feedback cases. Examples are given to illustrate scenahes the strong converse holds and
when it does not.

The rest of the paper is organized as follows. Section lloohices the channel model and
notations. Section Il discusses the capacity of genanfdiination-unstable) compound channels
without feedback. The impact of feedback is included in ®eckv. The impact of the channel

state information at the transmitter and the existence afdallepoint are studied in Section V.
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Examples are given in Section VI. Sufficient and necessangitions for the strong converse

to hold are given in Section VII.

1. CHANNEL MODEL

Let us consider the following discrete-time model of a conmpbdiscrete channel with additive

noise:
y'=gs@") + & (1)

wherez", y", £ are the input, output and noise sequences of length” = {z,,..,z,} and
likewise fory™ and<™; the functionsy™(2") = {gs1 (1), gs2(2?), ., gsn(2™)} model the channel's
impulse response and are required to induce one-to-oneintgpp <« z" = g”(z"). All
alphabets as well as operations dreary, s € S denotes the channel (noise) state, @hds
the (arbitrary) channel uncertainty set. The compound eeecpE” = {&s, .., {us} represents
arbitrary additive noise, e.g. non-ergodic, non-statigna general, independent of the channel
input when used without feedback.

Note that the channel is not memoryless, it may include isyenbol interference (ISI) via

9; (), e.9.
ls
2k = gsk(xk) = Z Th—q (2
i=0

wherel, is the depth of the ISI and where we sa;t: 0 for ¢ < 0. The noise is also allowed
to have arbitrary memory.

The channel is not required to be information stable (in #rese of Dobrushin [12] or Pinsker
[13]). We assume thatis known to the receiver but not the transmitter, who knoves(drbitrary)
uncertainty setS. This is motivated by the fact that channel estimation isedahthe receiver;
M may be small, e.g. binary alphabets, while the cardinalityy @an be very large (in fact§
can be a continuous set) so it is not feasible in practicedd feback to the transmitter via e.g.
a binary feedback channel.

The channel has noiseless feedback with 1-symbol delaycfwdan also be extended to noisy
feedback - see Remark 3), so that the transmitted sympalt time k = 1..n is selected as

x,ﬁ") = fkn)(w"yk_l) , Wheren is the blocklengthu™ denotes the message to be transmitted

2our result will also hold for a more general feedback of thenfa, = 3% (v"), where{:} are arbitrary feedback functions,

see Remark 4.
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Effective channel

Fig. 1. A general channel with additive noise and causallfaeki{w"y*~*} — z* — y; and the effective channet™ — 3™
(dashed box), wherey, = g, (z*), ¥ = fF(w™y*1).

via n-symbol block,z" = {z\"...z{"} and likewise fory" and¢m; f™ denotes the encoding
function at timek, which depends on the selected messatjeand past channel outputg—!
(due to the feedback)f™ = {f™...f™1. This induces the input distribution of the form:

pla" Iy Hp 1y (3)

where|| denotes causal conditioning [10]. No cost constraint isdsga on the input.
Notations To simplify notations, we use(x|y) to denote conditional distributiop,,(x|y)
when this causes no confusion (and likewise for joint andgmat distributions) and shortcut
x,ﬁ") as r; with understanding that all sequences and distributiorzeé on blocklength
and may be different for different blocklengths. Capitals) (denote random variables while

lower-case lettersz{) denote their realizations or arguments of functioAs= { X"},

[1l. CAPACITY WITHOUT FEEDBACK

First, we briefly review the relevant capacity resultlin [8][which apply to general compound
channelsp,(y™|z™), not only those in[{1); channels can be information-unstaklg. non-
stationary, non-ergodic, but without feedback, ié. = f*(w") (the input depends only on
the message and the past inputs, not the outputs). The compinannel capacity is defined
operationally as the maximum achievable rate for which thereprobability can be made
arbitrary small and uniformly so over the whole set of chasmm@ad where the codewords are

independent of channel state (see €.9!/ [4][8] for details).
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Theorem 1 ([6][8]). Consider a general compound channel where the channel staeS
is known to the receiver but not the transmitter and is indeleait of the channel input; the
transmitter knows the (arbitrary) uncertainty sét Its compound channel capacity (without

feedback) is given by
Cnrp = S;P i(X; Y) (4)

where the supremum is over all sequences of finite-dimeaisigout distributions and (X;Y)

is the compound inf-information rate,

I(X;Y) =sup {R : lim supPr{Z,s < R} = 0} (5)

R n—00 58

where Z,,, = n~1i(X™; Y"|s) is the normalized information density under channel state []

This theorem was proved in![6][8] using the Verdu-Han andn&in Lemmas properly
extended to the compound channel setting.

For future use, we need the following formal definitions, ethextend the respectivef and
sup operators introduced for regular (single-state) sequei{Z}3] (see [(75)) to the compound

setting.

Definition 1. Let {X,,}>2, be an arbitrary compound random sequence wherns a state
(i.e. a random sequence indexed by the staté’he compound infimur:ﬁ_} and supremunf-}

operators are defined as follows:

X ={X,} =sup {x : lim supPr{X,, <z} = O} (6)

— n—oo s

X = {Xsn} = inf {x : lim sup Pr{X,, >z} = 0} (7)
n—oo s

Roughly, X and X represent the largest lower and least upper bounds to thapastc
support set ofX, over the whole state set (notep, in the definitions).
The following definitions extend the respective informatibeoretic quantities in_[2][3] to

the compound setting.
Definition 2. Let X = {X?}>°, andY = {Y"}>2, be two compound random sequences with
distributionsp,,» and p,,» wheres is a state. The compound inf-divergence rate is defined as

D(X;Y) = {dan(XT|[Y)} (8)
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where d,, (z"||y") = Llog2="1"") js the divergence density rate. The compound inf and sup-

Psyn (xn)

entropy ratest (X) and ﬁ(X) are defined as

H(X) = {hoo(XD)}, H(X) = {hon(X2)} 9)

where h,,(2") = —n~'logp,(2™) is the entropy density rate. The compound conditional inf-
entropy ratefd (Y'| X') and sup-entropy ratg(Y|X) are defined analogously via the conditional
entropy density rateh,,(y"|z") = —n~1logp,(y"|z™) (with respect to the joint distribution
ps(z",y™)), andT(X;Y) is similarly defined.

The proposition below gives the properties of the compounfdnformation ratel(X;Y")

and other relevant quantities [6][8], which will be instramal below.

Proposition 1. Let X andY be (arbitrary) compound random sequences. The followirigsho

D(X||Y) >0 (10)
I(X;Y) > I[(X;Y) >0 (11)
I(X:Y)=1(Y;X) (12)
[(X;Y) <H(Y) - H(Y|X) (13)
I(X;Y) < H(Y) - H(Y|X) (14)
[(X;Y) > H(Y) - H(Y|X) (15)
HY)>H(Y|X) (16)
H(Y)>H(Y)> H(Y|X) (17)
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If the alphabets are discrete, then

0< H(X|Y) < H(X) < H(X) <log N, (18)

< min{log N,,log N, } (29
[(X;Y) =min{H(X), H(Y)}

if min{H(Y|X),H(X|Y)}=0 (20)

0<T(X;Y) <min{H(X),H(Y)}
< min{log N,,log N, } (21)
where the last inequalities iffL8)-(21) hold if the alphabets are of finite cardinality,, N,,.
Note that many of these properties mimic the respectivegstigs of mutual information and

entropy, e.g. "conditioning cannot increase the entromd ‘anutual information is non-negative,

symmetric and bounded by the entropy of the alphabet”.

IV. CAPACITY WITH FEEDBACK

In this section, we consider a discrete compound channél f@édback and general additive
noise. Instead of dealing with the feedback channely*~'} — ¥ — v, k = 1...n, directly,
one can consider an effective channél — y™ without feedback, see Figl 1. Applying Theorem

to the effective channel, the capacity with the feedback lma expressed [as
Crp = sup L(W;Y) (22)
W,F—
whereY = {Y"}>°, and likewise forW, I[(W;Y') is the compound inf-information rate:

I(W;Y) = {n (W™ Y"s)} (23)

wherei(WW";Y™"|s) is the information density:

ps(y"w")
ps(y™) @4

i(w";y"|s) = log

3see also[[11] for a formulation based on the directed infdian&or the case of full CSI and a proof of equivalence of thes

two formulations in the latter case.
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The maximization in[(22) is over all possible encoding fimas F = {/"}>°, and all pos-
sible message distributions. Unfortunately, this maxatian is difficult to perform in general.

Therefore, we proceed in a different way. Let

H(E) = {n~'h(z¢]s)} (25)

be the compound sup-entropy rate of the compound ngise {Z"}°°,, =" = {Z5...2,s},

s

h(£"|s) = —logps(£™). The following is the main result of the paper.

Theorem 2. The capacity of the compound discrete channel with (arbpradditive noise in

(@) and the full Rx CSIl is not increased by the causal feedback:
Crp =Cnrp =supIl(X;Y) zlogM—ﬁ(E) (26)
X =

where Cyrp is the capacity without feedback, ardp x is over all sequences of input distri-

butions.

Proof: Let us consider the no-feedback case first. The 2nd equaliywf from Theorem

1. The following Lemma is needed to prove the last equality.

Lemma 1. Let 2, = g (2¥), K = 1...n, and the mapping” — 2" is one-to-one. Ifp(2") =
1/M™, thenp(z") = 1/M", i.e. equiprobableX™ generates equiprobabl&”.

Now, since the mapping™ — 2" is invertible,I(X;Y) = I(Z;Y). It follows from (13) that

[(Z;Y)<H(Y)-H(Y|Z) (27)

Using this inequality, one obtains:

[(ZY) <logM — H(Y|Z) (28)

= log M — H(E) (29)

where 1st inequality is due td/-ary alphabets, so tha?(Y) < log M (see [(18)), and the

equality is due to?(Y|Z) = H(Z+E|Z) = H(E), since the noise is additive and independent
of the input (recall that we consider the no feedback caseglll,
[(X;Y) <logM — H(B) (30)
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10

and the equality is achieved by equiprobable input due torheffl, under which the output is
also equiprobable. This proves the last equality(id (26).

To prove 1st equalityC'»z = C'vrg, Observe that feedback cannot decrease the capacity,

log M — ﬁ(E) = Cnre < Crp (31)
To prove the converse,
Cpp <logM — H(E) (32)
use [22) to conclude
Cpp =sup [(W;Y) (33)
W.F—
< sup[H(Y) — H(Y|W)] (34)
W.F
< log M — inf H(Y|W) (35)

m||

where 1st inequality is due t(W;Y) < ﬁ(Y) (Y|W) and 2nd inequality is due to
ﬁ(Y) < log M (since the alphabet i&/-ary).

To evaluate?(Y|W), note that

S(y" ") Hps yily*tw™) (36)
and
Ps(yrly* 1 w") = po(yely" a*w™) (37)
= ps(yily* e w) (38)
= Dsy (gor(z") + &2 ¢ ™) (39)
= pag(&rl€* M) (40)
= pae(&el€") (41)
where &, = y, — ga(2h), 28 = fEwytY), &0 = {& 7. 1st equality is due tar® =

fE(wmy*1); 2nd and 3rd equalities are due to the channel magget z; + &; 4th equality is

due toz* = fF(w"¢k1), where f* is a function which depends on encoding functigifsand
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11

the channel impulse response functigsfs last equality is due to independence of noise and

message. Thus,

psy(yn|wn) = psﬁ(gn) (42)

and therefore

H(Y|W)=H(E) (43)

Combining this with [[3b), one obtains (32) and hence therddsiesult follows.
Equality in [32) is achieved by the uniform input distrilmrtip(z™) = 1/M™, which is also
i.i.d. and equiprobablep(z™) = ], p(z;), p(z;) = 1/M (this can be shown by induction),

under which the output is also uniform. [ |

Remark 1. Note that in both feedback and no-feedback systems, thmiajptg input is uniform
and hence i.i.d. equiprobable and independent of the fedddander this input, the output is

also uniform under any noise, which explains why feedbacloishelpful in this setting.

Remark 2. Settingl, = 0 in (2), one obtains a channel without intersymbol interferenckely
in addition, the uncertainty s& is singleton (single-state channel with no uncertainty)edrem
above reduces to the corresponding resultlin [7] obtainedféilly known (no uncertainty)

channels.

Remark 3. Since noisy feedback cannot perform better than noiseflissresult also implies

that noisy feedback cannot increase the compound caparcityis setting either.

Remark 4. One may consider a more general feedback of the farm 3:(v*), where{3,} are
arbitrary (possibly random) feedback functions (which@aut for e.g. quantization of feedback
signals and noise in the feedback channel), and the corretipg encoding of the form, =
fr(w™u*~1). Since the capacity with this form of feedback cannot exteedapacity with the
full feedback ofy*~!, TheoreniR still holds for this setting as well.

V. IMPACT OF THETX CSIAND SADDLE POINT

Let us consider the case where channel stageknown at the transmitter, so that codewords

can be selected as functions of the channel state. In thés tas worst-case channel capacity

July 23, 2018 DRAFT



12

C,, is a proper performance metric and it can be expressed as

Cy =inf sup I(W;Y|s) (44)
S W.F
= inf(log M — H(E|s)) (45)
= infsup I(X;Y|s) (46)
s X
= log M — sup H(Z|s) 47)
2 10gM — ﬁ(E) = CFB (48)
wherel(X;Y|s) is the inf-information rate under channel stat]:
1
I(X;Y|s) =sup {R : lim Pr {—i(W";Y"|s) < R} = 0} , (49)
R n—oo n
H(Z|s) is the sup-entropy rate of the noise under state
— = : : 1o B
H(E|s) _l%f{R'JLIgOPr{Eh(“S|S> > R} —0} (50)

(44) follows from the general formula inl[2] and the equivalehannel in Figl11;[(45) follows
from the Theorem in[[7];[(48) follows from the Lemria 2 below, that the impact of Tx CSI

can be characterized by

AC = Cw - CFB = F(E) - supF(E\s) Z 0 (51)

Note that, similarly to the compound capacity,, is not increased by the feedback either,
i.e. (41) is also the no-feedback worst-case channel dgpasiindicated by[(46) whil&, =
supyx 1(X;Y|s) is the channel capacity under stat&nown to both Tx and Rx.

To proceed further, we need the following definition.
Definition 3. The compound noise sequence&;}> , is uniform if the convergence in
Pr {%h(Efﬂs) > sup H(ZE|s) + 5} — 0 (52)
asn — oo is uniform ins € S for anyé > 0.
Note that, while the convergence to zero[in](52) for each0 ands € S is guaranteed from

the definition ofsup, H(Z|s), this convergence does not have to be uniform in generabd f

the uniform convergence requirement above is equivalent to

1 —
lim sup Pr {—h(Eﬂs) > sup H(E|s) + 5} =0 (53)
n

n—oo s s
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for any § > 0, which is clearly stronger than just point-wise convergemt (52) for eachs,

which is equivalent to

1 —
sup lim Pr {Eh(Eﬂs) > sup H(E|s) + 5} =0 (54)

s n—o0

In general lim andsup cannot be swaped; rather
sup lim {} < lim sup{-} (55)

so that [(58) implies.(84) but the converse is not true in ganéee. the inequality can be strict.

We are now in a position to establish the following key result

Lemma 2. The following inequality holds for the general compoundseasequence:

H(E) > sup H(E]s) (56)
with equality if and only if the compound noise is uniform.

Proof: See Appendix. [ |
Strict inequality in[(56) can be demonstrated by exampleg-Sectiof MI. Combining Lemma

with (51), one obtains the following result.

Theorem 3. Consider the discrete compound channel with additive nasén (1) under the
full Rx CSIl. When the compound noise is uniform, neither athelk CSI nor causal noiseless

or noisy feedback increase its capacity, i.e.
CNFB = C(FB = Cw (57)

The last equality states that the worst-case channel dgachievable by codebooks tailored
to the channel state) is the same as the compound channelitgafvehere the codebooks are

independent of channel states), which can be equivalerflyessed as
infsup I(X;Y|s) = supinf I(X;Y|s) (58)
S X X S

so that, wheninf and sup are achieved, this is equivalent to the existence of a sguloilat
[15][16]:

I(X;Y|s") <I(X%Y"|s") < L(X*Y7|s) (59)
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where (X, s*) is the saddle point. This saddle point exists for both feekizand no feedback
cases when the compound noise is uniform.

It is remarkable that a saddle point exists even though tloertainty set is allowed to be
non-convex and the objective functigf{s) £ I(X;Y|s) is not required to be convex either
(e.g. whens is discrete f(s) is not conve; it can also be non-convex even when the unogrta
set is convex), so that von Neumann’s mini-max Theorem [15{soextensions [16] can not be
used to establish the existence of a saddle point.

The saddle point above extends the information-theoretddie-point results established
earlier in e.g.[[17][2R] for stationary and ergodic (anchbe information-stable) channels, for
which mutual information is a proper metric, to the realm wformation-unstable scenarios,
where mutual information has no operational meaning andrthaformation rate has to be
used instead. Furthermore, it demonstrates that neithreregdy of the feasible set nor of the
objective function are necessary for the saddlepoint tetexi also has the standard game-
theoretic interpretation: neither the nature (who coststates) nor the transmitter (who controls

the input distribution) can deviate from the optimal stggtevithout incurring a penalty.

VI. EXAMPLES

In this section, we consider some illustrative examplesoAgiother things, they identify the

scenarios when the Tx CSI increases the capacity and where# not.

A. Example 1
Let the compound noise be of the form

£ =A{w,..,ws, 0.0} (60)

wherelV; are i.i.d. equiprobable so thatw®) = 1/M?*, ands € {1, 2, ...}. This can model block
interference/noise of length. Note that the noise procegs”} is not stationary. Usind (50),
one obtains, after some manipulatiods(Z|s) = 0 Vs (this is due to the fact that, under fixed

s, the "noisy” part in [60) is asymptotically negligible) sbat sup, H(E|s) = 0 and hence

Cy,=logM (61)
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Yet, using [(50), it follows, after some manipulations, tTiﬂ(tE) =log M > sup, H(E|s) = 0.

Hence, the noise is not uniform and
Crp=0 (62)

so that the advantage of the Tx CSI is significadtC’ = log M, i.e. the maximum possible
value for M-ary alphabet. The reason for this is that the compound noi@&0) is not uniform,
the worst-case noise (correspondingstp, in (6)) is i.i.d. equiprobable for any given and
hence the compound channel is useless, even under noiselesal feedback. The presence
of the Tx CSI changes the situation dramatically: one can design a codebook for any
given states and make the error probability arbitrary low by using suéfitly large blocklength

n > s. This conclusion also holds fany distribution ofw?, not only i.i.d. equiprobable, since
sup, H(Z|s) = 0 regardless.

The situation also changes dramatically if one imposes thendledness constraint on the
uncertainty sets < S < oo. In this caseﬁ(E) = sup, H(E|s) = 0, i.e. the noise becomes
uniform, and henceCry = C,, = log M. One may wonder as to what are the practical
implications of these dramatic changes. In our view, the iese of unboundesl corresponds
to a scenario where the interference is more powerful thanctidebook, i.e. for any given,
does not matter how large, one can always find powerful enanighference withs = n thus
rendering the channel useless. The second case of bounpeslents this thus allowing for
the codeword lengtm to be much larger thaw and hence represents a scenario where the
codebook is more powerful than any possible interferencghé same way, one can interpret
the impact of the Tx CSI: giving to the Tx allows one to chose > s and hence make the

impact of interference negligible, which is not possiblaestvise.

B. Example 2
Let us now set the compound noise as
6? = {w17“7w8728+17"7zn} (63)

with binary alphabet andV; ~ Ber(p;), Z; ~ Ber(p,), i.e. Bernoulli random variables, all
independent of each other add p, < p; < 1/2, ands € {1, 2,...}. This can model a scenario

where there is noise (2nd part) in addition to interfererics part).

July 23, 2018 DRAFT



16

One obtains, after some manipulations,
sup F(Els) = h(ps) < h(pr) = F(E) (64)
whereh(p) is the binary entropy function, and hence
AC =Cy — Cpp = h(p1) — h(p2) >0 (65)

so that the noise is not uniform and the Tx CSI does bring iraathge. Bounding the uncertainty
sets < S < oo has no impact orf/ (E|s) but makesﬁ(E) = h(p2) and hence the advantage
of the Tx CSI disappearAC = 0. The noise becomes uniform in this case. As in Example 1,
the distribution ofw® does not affect/(Z|s) but does have an impact d:ﬁi(E).

If, on the other handy, > p;, thenAC = 0 regardless whether the uncertainty set is bounded

or not, so that, in general,
AC = Cy — Crp = [h(p1) — h(p2)]+ (66)

where [z]; = max{0, z}.

C. Example 3

Let the compound noise sequence be of the form

& =A{wy, .., w,} (67)

with binary alphabet andll; ~ Ber(p;) and independent of each other, where

2(i + s)

ands > 0 (not necessarily integer). This models a scenario whergertlmecomes "weaker” with

bi = (68)

time (note that:(p;) decreases with), while s controls the decay rate: noise becomes negligible
wheni > s, so thath(p;) ~ 0, see Fig[R. The process is clearly not stationary.

After some manipulations, one obtaiff(Z|s) = 0 V s and hencesup, H(Z|s) = 0. Yet,
ﬁ(E) =1 so thatC, =1, Crp = 0 and AC = 1, the maximal possible value, and the noise in
not uniform. Thus, while the Tx CSI is the most useful, thesetess causal feedback is useless.

As above, bounding the uncertainty set< S < oo changes the situation dramatically:
Crp =1, AC =0, so that the Tx CSI gives no increase in the capacity sincendige is now

uniform.
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Fig. 2. Binary entropyi(p;) for p; as in [68) versus time for different states:.

D. Example 4

Let us now consider a non-ergodic non-stationary channid wi

w?  with Pr=p

&= (69)
2" with Pr=1-p

where W, Z? are non-stationary processes (e.g. from the above examgtel) < p < 1,
i.e. one of the two processes is randomly selected at thenhiegi and it operates during the
entire transmission. This process is clearly non-ergodierwits components are of different
distributions. One may also considey, i.e. a function of the channel state, provided that
a<p,<pB<1Vs.

It can be seen that
H(2|s) = max{H(W|s), H(Z|s)}, H(E) = max{H (W), H(Z)} (70)
so that

AC = max{H(W),H(Z)} — sp max{H(W|s), H(Z|s)} (71)

In particular, AC = 0 if {W2}e, {Z"}o2, are uniform compound sequences. This holds if e.g.
the uncertainty set is of a finite cardinality, regardlessvbat the distributions of W'}, {Z"}

are.
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VIlI. STRONG CONVERSE

In this section, we establish a sufficient and necessaryitondor the strong converse to
hold for the compound channel with additive noise. In additio being of theoretical interest
on its own, it also has some practical implications. In gattr, strong converse ensures that
slightly larger error probability cannot be traded off fagiher data rate, since the transition from
arbitrary low to high error probability is sharp. Additidlya a consequence of this is that the
error rate performance degrades dramatically if the SNRgltmelow the threshold for which
the system was designed.

Let ¢, andr, be the error probability and rate of a codebook of blocklengt The formal

definition of strong converse is as follows.

Definition 4. A compound channel is said to satisfy strong converse if

lim e, =1 (72)
n—o0
for any code satisfying
liminfr, > C, (73)
n—oo

We begin with the following definitions which are needed beldst one extends the standard

definition of convergence in probability to compound randesguences.

Definition 5. A compound random sequen{k,, }°>° , is said to converge in probability tg,,

denoted ag, L Yo, If
lim sup Pr{|Ys, — 0| > €} =0 (74)
n—o0 s

for any e > 0, wheresup, is over the whole state set.

It should be emphasized that the point-wise convergeneelitn,, .. Pr{|Y;, — yo| > €} =
0 Vs, does not imply[(74), which is a stronger condition (see &i)).

In addition to the following standard definitions of the infim X, and supremumX, of a
random sequenc&” under states [2][3]:

X, =sup {x clim Pr{X,, <z} = 0}
n—oo

X, = inf {x : lim Pr{X,, >z} = O} (75)

n—oo
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and the compound infimunX_ and supremunf in Definition[1, the following compoundhf

andsup operators are needed in a condition for strong converse.

Definition 6. Let { X, }°°, be an arbitrary compound random sequence wheig a state. The

compound infimurd-} and supremunq-} operators are defined as follows:

X = {X,} = sup {x : lim inf Pr{X,, <z} = o} (76)
X = (X, = inf {x : lim inf Pr{X,, >z} = 0} (77)
n—,oo s

Roughly, X, and X, represent the largest lower and least upper bounds of thapstic
support set ofX,, under states while X and X do so over the whole state set by selecting
the best states for the respective bounds. Note howevethbsg quantities are different from
X and X inf rather thansup are used in the definitions oX and X so that the respective
limits are enforced for some channel states only, not ovemthole state set. While subtle, the
difference is important, as we will see below. These opesatave the properties which are

instrumental in establishing the strong converse and otmairlts.

Proposition 2. The compoundnf and sup operators in Definitio 6 satisfy the following:

(-X)=-X (78)
X+Y<(X+Y)<X+Y (79)
X <min{X, X} <max{X, X} <X (80)
sup X, < X, X <inf X, (81)

If Yy, L Yo, then
(X+Y)=X+u (82)
Proof: See Appendix. [ |

Strict inequalities in Propositidd 2 can be demonstratedexamples.

Example 1 Let X3, and X,, be uniformly-distributed random variables,
X, ~ Uni[o, 2], Xo, ~ Uni[]_, 3] (83)
so that

(84)

[
I
>
I
>
I
ol
I
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PDF

Fig. 3. Asymptotic distribution of a random 2-state seqee’t and related quantities. Note thaf < X.

and all inequalities in(80) are strict. Since
sup X, = 1, inf X, = 2, (85)

this example also demonstrates that the inequalities_ih €84 become equalities.

To demonstrate that the inequalities in](79) can be strattXs, to be deterministic constant
andY,, as X in Example 1 above.

Example 2 To see that the inequalities ih_(81) can be strict, Xet, be Bernoulli random
variables as follows:

n
n+s’

s>0 (86)

Xsn ~ Ber{l - psn}a Psn =
so thatPr{X,, = 0} = p,,. It is straightforward to see thaX, = X, = 0 for any s so that
sup X, =inf X, =0, (87)

yet X = 1 so that 1st inequality is strict while 2nd one becomes etyualnce X = 0. To see

that this inequality can be strict, sat,,, ~ Ber{ps,} instead, so that
sup X, =inf X, =1, (88)

yet X = 0.

Using Example 1 and its modifications, see Fig. 3 land 4, oneatsmdemonstrate that there
is no specific relationship betweeX and X in general, i.e. neitheX < X nor X > X are
true, unlike X < X that holds in full generality. In a similar way, it can be shothat there

exists no specific relationship betweerp, X, and X. This also holds foinf, X, and X.
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Fig. 4. Asymptotic distribution of a random 2-state seqee’t and related quantities. Note thaf > X.

Using Proposition 9 in[[8] and (78), the inequalities [inl(&An be refined as follows:

X <infX, <supX,<X<X,

X <X <infX, <supX,<X (89)
A special case of (719) is whevi,, = b, i.e. a constant, so that, for amy> 0,

(aX +b)=aX +b (90)

i.e. {-} is a linear operator for positive. It is straightforward to see that, for negative

(aX +b)=aX +b (91)

Let H(E) = {n"'h(Z"|s)} and likewise forH (Z). In addition to its properties inherited from
Propositior 2, it also satisfies
0< H(E),H(E) <log M (92)
where 1st inequality holds in full generality and 2nd oner- f6-ary alphabets. We are now in

a position to establish a sufficient and necessary conditipthe strong converse to hold.

Theorem 4. The compound channel with additive noise(@) under the full Rx CSI satisfies

the strong converse condition for both feedback and no fegdbases if and only if

H(E) = H(E) (93)
If the compound noise is uniform, this reduces to

sup T(Els) = H(E) (94)
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Fig. 5. Asymptotic distribution of the noise entropy deystite for a 2-state channel with strong converse and retedpy

density rates.

Proof: See Appendix. [ |
Fig. [  illustrates the condition of strong converse for a&eschannel.
Using Proposition 27 in [8] under the optimal (uniform) inpki* in combination with [(130),

one further obtains under the strong converse conditiojt (93

= 1
H(E) = limsupsup —H(E}) (95)

N

where H(Z") is the ergodic entropy, i.e. the compound sup-entropy EE) coincides with
the ergodic entropy rate of the noise (under its worst stamsen though no ergodicity (or
information stability) was imposed on the noise upiHorh‘lence, one concludes that the strong
converse condition forces the worst-case noise to behaaieally and hence the worst-case
noise ergodicity is both necessary and sufficient for thengtrconverse to hold. This conclusion
holds for both feedback and no feedback cases.

While there is no specific ordering betweéh =) and H(E) or betweensup, H(Z|s) and
H(Z) in general (as indicated by the examples above), such agiéiinduced by the strong

converse, as indicated below.
Corollary 4.1. Under the strong converse condition in Theotdm 4, the foligwrdering holds:
H(E) <inf H(E|s) < sup H(E|s) < H(E) (96)

which is thus a necessary condition for the strong converdeotd.

“Note also that[{35) equates two very different quantitiesilevthe definition of H(Z7) is based on the expectation, so it is

an ergodic quantity, that olf:{(E) does not use expectation at all.
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Proof: It follows from (93) and [(811) that

H(E) = H(Z) > sup H(E|s)

S

> inf H(E|s) 97)

A. Examples

To gain further insight, one may use the examples of SeétibrirVparticular, one obtains

for Example 1
H(E) = H(E) =log M (98)

when the uncertainty set is not bounded and

H(E) = H(E) =0 (99)

when it is, so that the strong converse holds in both cases.

For Example 2,

H(E) = H(E) = h(p1) (100)

when the uncertainty set is not bounded and

H(E) = H(E) = h(p2) (101)

when it is, so that the strong converse holds in both caseslis w

For Example 3,

H(E) = H(E) =1 (102)

when the uncertainty set is not bounded and

H(E) = H(E) =0 (103)

when it is, so that the strong converse holds in both cases too

Example 4 is more interesting. It is not too difficult to shdvat, in the general case,

H(E) < min{H(W),H(Z)} (104)
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so that

< H(E) = max{H (W), H(Z)} (105)
and hence, itH(W) # H(Z),
H(E) < H(E) (106)

so that the strong converse does not hold (one may use Exarbjleto construct component
sequencedV , Z for further insights). Note that this conclusion holds fatyg as long as

0<p<l.

Remark 5. It is tempting to conclude, based gi(Z) = min{H (W), H(Z)} which holds in
full generality, that(L04) should hold with equality in general. To see that this is m& tase,

consider Example 4 with the following component sequences:
wl = {by..bs,0..0}
zit =40..0,bs41..b,, } (207)

where b is a binary i.i.d. equiprobable sequence. This models a atenvhere the noise

randomly corrupts either 1st or 2nd part of a codeword ancontrols its length. It follows that
H(2) = H(W)=H(Z) =1 (108)
yet
H(E)=1/2 < 1=min{H(W),H(Z)} (109)

Note that the strong converse does not hold in this case reigwen though it holds for
each component sequence individually aiW) = H(Z). Further note thatl (E) = 1/2,
inf, H(Z|s) = sup, H(E|s) = 1 so that the last inequality if96) does not hold.
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VIIl. CONCLUSION

The capacity of compound channels with additive noise aedRk CSI has been studied.
When all alphabets are discrete and there is no cost camstraiseless causal feedback does
not increase the capacity. The impact of the channel stiaemiation at the transmitter has been
qguantified. In particular, it does not increase the capatitye additive noise is a uniform com-
pound process. Otherwise, it may provide significant imprognt (unlike the feedback), which
was shown via examples. A saddle-point has been shown toiexiee information-theoretic
game between the transmitter and the nature, even thougibjbetive is not convex/concave in
the right way. Finally, the sufficient and necessary coodifior the strong converse to hold has
been establish: it requires the worst-case noise sequenaehtive ergodically, even though no
ergodicity or information satiability requirements weneposed upfront. Examples are provided

to facilitate understanding and insights.
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X. APPENDIX
A. Proof of Lemm&]2

The proof of the 1st part (the inequality in general) is bytcadiction. Assume thaﬁ(E) <

sup, H(EZ|s), which implies that

Js0: H=H(E) < H = H(E|s0) (110)
Set
R=H~+M/2=H+A=H-A (111)
whereA = (H — H)/2 > 0. Note that
nh_)rglo Pr {%h(EZOLSO) > H — A} >0 (112)
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from the definition ofH. However,

1 —
0 = lim supPr {—h(Eg‘|s) > H+A}
n

n—oo s
1 —
> lim Pr {—h(520|50) > H+ A} (113)
n—00 n

1 _
= lim Pr{—h(E?@|so) > H — A} >0
n—o0 n
where 1st equality is due to the definition &, i.e. a contradiction, from which the desired
inequality follows.
The "if” part of the equality case (under uniform noise) isaproved by contradiction: assume

that, under the uniform convergence,
O>H= sup H(E|s) (114)
and set
R=H~+H)/)2=H-A=H+A (115)
whereA = (H — H)/2 > 0, and hence

lim Pr{n~'h(Zl[s) > H+ A} =0VseS (116)

n—o0

from the definition of 4, so that a contradiction follows

0 =sup lim Pr{n~"'n(Z}|s) > H + A}

g M—0

= lim supPr {n""h(Z}|s) > H + A} (117)

n—oo ¢

= lim sup Pr {n_lh(E?\s) >H - A} >0

n—oo s
where 2nd equality is due to uniform convergence and theinasjuality is from the definition
of I.

To prove the "only if” part, assume that the equality holdsl abserve that

0 = lim sup Pr {n‘lh(E?\s) >H + A}

n—o0 s

= lim sup Pr {n‘lh(Eﬂs) > sup H(E|s) + A} (118)

n—oo s s
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for any A > 0. The last equality implies uniform convergence: for any 0 there exists such

no(e) that for anyn > ng(e),
sup Pr {n_lh(Eﬁs) > sup H(Z|s) + A} <e€

and hence the convergence is uniform.

B. Proof of Proposition 2
Let liminf = lim,,_ inf, and likewise forlim sup. Eq. (78) follows from the definition of
ﬁ:
(=X) =sup {z : liminf Pr {- X, <z} =0}
= sup {z : liminf Pr {X,, > —z} = 0}
= sup {—=z : liminf Pr{X,, > 2} =0}
= —inf {z : liminf Pr{X,, > 2z} = 0}
=-X (119)

To prove [79), sett = X 1Y + 6 for somes > 0, let B denote the evenfYy, < Y + 0} and
B¢ - its complement, and observe that

0 = liminf Pr{X,, + ¥ > z}
= liminf(Pr{X,, + Y > 2|B} Pr{B} + Pr{X,, + Y > z|B°} Pr{B°})
> liminf Pr{ X, + Y > x|B} Pr{B}
> liminf Pr{ Xy, + Y,, —d > z|B} Pr{B}
= lim inf Pr{ X, + Y;, — 0 > z|B} Pr{B} + limsup Pr{ X, + Y;, — 0 > z|B°} Pr{B‘}
> liminf(Pr{ X, + Y, — 0 > z|B} Pr{B} + Pr{X,, + Y5, — § > x| B} Pr{B‘})
— liminf Pr{X,, + Yy > 2+ 6} =0 (120)

where 1st equality is fromr = X + Y + 6 and the definition ofX; 2nd inequality is from
Y > Y,, — ¢ conditioned onB; 3rd equality is from

lim sup Pr{ Xy, + Y, — 6} > 2|B°} Pr{B¢} < limsup Pr{B°} =0 (121)
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where the last equality is from the definition 8f; the last equality in[(120) is implied by the
preceding chain. This last equality implies th¥it+ Y < x + ¢ so that

X+Y<X+Y +25 (122)

for any 6 > 0, which proves 2nd inequality if_(V9). To prove 1st one, use ghbstitutions
Y - -Y and X — X +Y in combination with [(7B).
To establish[(80), we first show th < X. To this end, let

Q= {z : limsup Pr{X,, <z} =0}
Qo = {z: liminf Pr{Xj, <z} =0} (123)
Since
limsup Pr{X,, <z} > liminf Pr{Xj, <z} (124)

it follows that(2; € €, which implies X < X by usingsup. Next, we show thaiX < X.To

this end, let
Q3 = {z: limsup Pr{X,, <z} =1}
and observe that
X = inf {z : liminf Pr {X,, > 2} =0}
= inf {z : liminf Pr {X,, >z} = 0} (125)
= inf {z € Q3}
Since, for anyr; € Q; and anyz; € 3, it holds thatr; < z3, so that

X =sup{zeh}<inf{reQ}=X (126)

This establishes 1st inequality in (80). 2nd one is trivead one can be established from 1st
one usingX — —X.
To show 1st inequality i (81), recall that

Qgszzsup{x: hnlpr{x;nggx}::o}, (127)
n—oo
setxy = X, — 6 for somed > 0 and observe that

0 = lim Pr{X,, <z} > liminf Pr{X,, <z} =0 (128)

n—o0
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where the last equality is implied by the preceding chainsTimplies thatX > z,. Since this
holds for anys > 0, X > X follows. Since this holds for any, 1st inequality in[(8I1) follows.
2nd one can be established & — —X.

To establish[(82), observe th&t, Lie yo impliesY = Y = yo and use[(79).

C. Proof of Theorerhl4

We begin with a brief summary of the sufficient and necessamndition for the general

compound channel to satisfy the strong converse.

Theorem 5 ([8][9]). The general compound channel with full Rx CSI and withoudldaek

satisfies the strong converse condition if and only if
C.2supl(X;Y)=supl(X;Y) (129)
X - X

wheresup is over all sequences of finite-dimensional input distiitmg. The conditioff129)is

equivalent to the following: for any > 0 and an optimal inputX™ ,

lim inf Pr{|Z;, — C.| > d} =0 (130)

n—,oo s
whereZ;, = Li(X™*;Y™*|s) is the information density rate under optimal inpAt*, i.e. there
exists such sequence of channel stafes that the corresponding information density raté,
under optimal inputX™ converges in probability to the compound capadity(i.e. the channel
represented by this sequence of states is informatiorestatsen though the original compound
channel is not required to be information-stable).

To adapt this result to the feedback case, we again conBidas an input and optimize over

both W and F' so that [[(12D) becomes

sup I(W;Y) = sup [(W;Y) (131)

W,F~ W.F
Since the left-hand side has been already evaluated, we vedwage the right-hand side. To this

end, one can follow the steps similar to those in evaluategléft-hand side. First, observe that

sup I(W;Y) < sup[H(Y) — H(Y |W)]
W.F W.F
§ .
<log M — inf H(Y|W)
=logM — H(E) (132)
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where 1st inequality is due to Propositian 2; 2nd inequdbtiows from ﬁ(Y) < log M (since
the alphabet is\/-ary); the last equality is due t6 (42) so thd{Y |W') = H(E). Now, using
no feedback and uniform inpuX, one obtaing (W;Y) = log M — H(Z) so that

sup I(W;Y) > log M — H(E) (133)
W, F

Combining the two inequalities,

sup [(W;Y) =logM — H(E) (134)
W.F

It is remarkable that, similarly td(W;Y’), the optimal value off(W:;Y) is not affected by
feedback either and the best strategy is to use the unifedistyibuted input and ignore feedback.

Combining the last equality with_(26), the desired conditfollows.
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