
ar
X

iv
:1

80
5.

03
53

2v
9 

 [
cs

.S
I]

  6
 O

ct
 2

02
0

Necessary and Sufficient Budgets in Information

Source Finding with Querying: Adaptivity Gap

Jaeyoung Choi and Yung Yi†

Abstract—In this paper, we study a problem of detecting the
source of diffused information by querying individuals, given
a sample snapshot of the information diffusion graph, where
two queries are asked: (i) whether the respondent is the source
or not, and (ii) if not, which neighbor spreads the information
to the respondent. We consider the case when respondents
may not always be truthful and some cost is taken for each
query. Our goal is to quantify the necessary and sufficient
budgets to achieve the detection probability 1− δ for any given
0 < δ < 1. To this end, we study two types of algorithms:
adaptive and non-adaptive ones, each of which corresponds to

whether we adaptively select the next respondents based on the
answers of the previous respondents or not. We first provide the
information theoretic lower bounds for the necessary budgets
in both algorithm types. In terms of the sufficient budgets, we
propose two practical estimation algorithms, each of non-adaptive
and adaptive types, and for each algorithm, we quantitatively
analyze the budget which ensures 1− δ detection accuracy. This
theoretical analysis not only quantifies the budgets needed by
practical estimation algorithms achieving a given target detection
accuracy in finding the diffusion source, but also enables us to
quantitatively characterize the amount of extra budget required
in non-adaptive type of estimation, refereed to as adaptivity gap.
We validate our theoretical findings over synthetic and real-world
social network topologies.

I. INTRODUCTION

Information diffusion in networks can be used to model

many real-world phenomena such as propagation of infectious

diseases, diffusion of a new technology, computer virus/spam

infection in the Internet, and tweeting and retweeting of

popular topics. A problem of finding the information source

is to identify the true source of the information spread. This

is clearly of practical importance, because harmful diffusion

can be mitigated or even blocked, e.g., by vaccinating humans

or installing security updates [1]. Recently, extensive research

attentions for this problem have been paid for various network

topologies and diffusion models [1]–[8], whose major interests

lie in constructing an efficient estimator and providing theo-

retical analysis on its detection performance.

Prior work directly or indirectly conclude that this informa-

tion source finding turns out to be a challenging task unless

sufficient side information or multiple diffusion snapshots are

provided. There have been several research efforts which use

multiple snapshots [9] or a side information about a restricted

superset the true source belongs [10], thereby the detection

performance is significantly improved. Another type of side

information is the one obtained from querying, i.e., asking

questions to a subset of infected nodes and gathering more
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hints about who would be the true information source [11].

The focus of this paper is also on querying-based approach

(we will shortly present the difference of this paper from [11]

at the end of this section).

In this paper, we consider an identity with direction (id/dir

in short) question as follows. First, a querier asks an identity

question of whether the queriee is the source or not, and if

”no”, the queriee is subsequently asked the direction question

of which neighbor spreads the to the queriee. Queriees may be

untruthful with some probability so that the multiple questions

to the same queriee are allowed to filter the untruthful answers,

and the total number of questions can be asked within a given

budget. We consider two types of querying schemes: (a) Non-

Adaptive (NA) and (b) ADaptive (AD). In NA-querying, a

candidate queriee set is first chosen, and the id/dir queries are

asked in a batch manner. In AD-querying, we start with some

initial quieree, iteratively ask a series of id/dir questions to

the current queriee, and adaptively determine the next queriee

using the (possibly untruthful) answers from the previous

queriee, where this iterative querying process lasts until the

entire budget is used up.

We summarize our main contributions of this paper. First,

we obtain the necessary budgets for both querying schemes

to achieve the (1 − δ) detection probability for any given

0 < δ < 1. To this end, we establish information theo-

retical lower bounds from the given diffusion snapshot and

the answer samples from querying. Our results show that

it is necessary to use the budget Ω
(

(1/δ)1/2

log(log(1/δ))

)

for the

NA-querying whereas Ω
(

log1/2(1/δ)
log(log(1/δ))

)

for the AD-querying,

respectively. Second, to obtain the sufficient amount of budget

for (1−δ) detection performance, we consider two estimation

algorithms, each for both querying schemes, based on a simple

majority voting to handle the untruthful answer samples.

We analyze simple, yet powerful estimation algorithms and

characterize their detection probabilities for given parameters.

Our results show that it suffices to use O
(

(1/δ)
log(log(1/δ))

)

for

the NA-querying, whereas O
(

log2(1/δ)
log(log(1/δ))

)

is sufficient for

the AD-querying, respectively. The gap between necessary

and sufficient budgets in both querying schemes is due to our

consideration of simple, yet practical estimation algorithms

based on majority voting, caused by the fact that the classical

ML-based estimation is computationally prohibitive and even

its analytical challenge is significant. Our quantification of

necessary and sufficient budgets enables us to obtain the lower

and upper bounds of the adaptive gap, i.e., the gain of adaptive
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querying scheme compared to non-adaptive one. Finally, we

validate our findings via extensive simulations over popular

random graphs (Erdös-Rényi and scale-free graphs) and a real-

world Facebook graph.

We end this section by presenting the difference of this

paper from our preliminary work [11]. In [11], (i) only

identity question in the non-adaptive case is considered and

(ii) untruthfulness for the answers of identity questions in the

adaptive case is not modeled. In this paper, we generalize and

complete the model in terms of query types and schemes,

which add non-negligible analytical challenges, and we es-

tablish information-theoretic lower bounds for the necessary

amount of budget, which is the key step to quantifying the

adaptivity gap.

II. MODEL PRELIMINARIES

A. Diffusion Model and MLE

We consider an undirected graph G = (V,E), where V is a

countably infinite set of nodes and E is the set of edges of the

form (i, j) for i, j ∈ V . Each node represents an individual

in human social networks or a computer host in the Internet,

and each edge corresponds to a social relationship between

two individuals or a physical connection between two Internet

hosts. As an information spreading model, we consider a

Susceptible-Infected (SI) model under exponential distribution

with rate of λij for the edge (i, j), and all nodes are initialized

to be susceptible except the information source. Once a node

i has an information, it is able to spread the information to

another node j if and only if there is an edge between them.

We denote by v1 ∈ V the information source, which acts

as a node that initiates diffusion and denote by VN ⊂ V ,

N infected nodes under the observed snapshot GN ⊂ G. In

this paper, we consider the case when G is a regular tree,

the diffusion rate λij is homogeneous with unit rate, i.e.,

λij = λ = 1, and N is large, as done in many prior work [2],

[3], [9], [10], [12]. We assume that there is no prior distribution

about the source, i.e., the uniform distribution. As a useful

prior result, under the SI-diffusion with homogeneous rate over

regular tree, the authors [2] first show that the source chosen

by the Maximum Likelihood Estimator (MLE) becomes the

node with a highest graph-theoretic score metric, called rumor

centrality. Formally, the estimator chooses vRC as the rumor

source defined as vRC = argmaxv∈VN P(GN |v = v1) where

vRC is called rumor center (RC).

B. Querying Model and Algorithm Classes

Querying with untruthful answers. Using the diffusion snap-

shot of the information, a detector performs querying which

refers to a process of asking some questions. We assume that

a fixed budget K is given to the detector (or the querier) and

a unit budget has worth of asking one pair of id/dir question,

i.e., “Are you the source?” first and if the respondent answers

“yes” then it is done. Otherwise, the detector subsequently

asks a direction question as “Which neighbor spreads the

information to you?”. In answering a query, we consider that

each respondent v is only partially truthful in answering id
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(b) Adaptive (AD)-querying.

Fig. 1. Examples of two querying types with untruthful answers (r = 1).
In (a), the querier selects a candidate set (a large square) and asks just one
id/direction question in a batch manner under the untruthful answers. In (b),
starting from the initial node, the querier first asks one id/direction question
and adaptively tracks the true source with the untruthful answers. (In (b), True
is the direction of true parent and Wrong is the wrong direction.)

and dir questions, with probabilities of being truthful, pv and

qv, respectively. To handle untruthful answers, the querier may

ask to a respondent v the question multiple times, in which

v’s truthfulness is assumed to be independent. We also assume

that homogeneous truthfulness across individuals, i.e., pv = p
and qv = q for all v ∈ VN , and p > 1/2, q > 1/d meaning that

all answers are more biased to the truth. In terms of querying

schemes, we consider the following two types, non-adaptive

and adaptive, for each of which we restrict ourselves to a

certain class of querying mechanisms:

NA-querying. In this querying, we first choose a subset of

infected nodes in a batch as a candidate set which is believed

to contain the true source, then ask (multiple) id/dir question

to each respondent inside the candidate set, and finally run

an estimation algorithm based on the answers from all the

respondents. We consider the following class of NA-querying

mechanisms, denoted by NA(r,K), in this paper:

Definition 1: (Class NA(r,K)) In this class of NA-

querying schemes with the parameter r and a given budget K,
the querier first chooses the candidate set of ⌊K/r⌋ infected

nodes according to the following selection rule: We initially

select the node RC and add other infected nodes in the

increasing sequence in terms of the hop-distance from the RC.

Then, the querier asks the id/dir question r times to each node

in the selected candidate set.

AD-querying. A querier first chooses an initial node to ask

the id/dir question, possibly multiple times, and the querier

adaptively determines the next respondent using the answers

from the previous queriee, which is repeated until the entire

budget is exhausted. We consider the following class of AD-

querying mechanisms, denoted by AD(r,K), in this paper:

Definition 2: (Class AD(r,K)) In this class of AD-

querying schemes with the parameter r and a given budget

K, the querier first chooses the RC as a starting node, and

performs the repeated procedure mentioned earlier, but in

choosing the next respondent, we only consider one of the

neighbors of the previous node, where each chosen respondent

is asked the id/dir question r times. If the querier can not

obtain any information about the direction (due to all “yes”

answers for id questions), it chooses one of the neighbors as

the next respondent uniformly at random.



In NA-querying, Fig. 1(a) illustrates a candidate set of

nodes inside a square, id/dir querying is performed in a batch

with r = 1. This hop-based candidate set selection has also

been considered in [11], [12], revealing that it is a good

approximation for the optimal one. In AD-querying, Fig. 1(b)

shows an example scenario that starting from the initial node, a

sequence of nodes answer the queries truthfully or untruthfully

for r = 1.

III. MAIN RESULTS

We now present our main results which state the necessary

and sufficient budgets to achieve 1− δ detection accuracy for

both querying types defined in the class of querying schemes

NA(r,K) and AD(r,K), respectively.

For presentational convenience, we define a Bernoulli ran-

dom variable X that represents a querier’s answer for an id

question, such that X is one with probability (w.p.) p and X
is zero w.p. 1 − p. Similarly, we define a querier’s random

answer Y for a dir question, such that Y is one w.p. q and

Y is i w.p. (1 − q)/(d − 1), for i = 2, . . . , d. To abuse the

notation, we use H(p) and H(q) to refer to the entropies of

X and Y , respectively. Throughout this paper, we also use

the standard notation H(·) to denote the entropy of a given

random variable or vector.

A. NA-Querying: Necessary and Sufficient Budgets

(1) Necessary budget. We present an information theoretic

lower bound of the budget for the target detection proba-

bility 1 − δ inside the class of NA(r,K). We let T (r) =
[T1, T2, . . . , T⌊K/r⌋] be the random vector where each Ti is

the random variable of infection time of the i-th node in the

candidate set. Then, by appropriately choosing r, we have the

following theorem.

Theorem 1: Under d-regular tree G, as N → ∞, for any

0 < δ < 1, there exists a constant C = C(d), such that if

K ≤
C ·H(T (r⋆))(2/δ)1/2

fLN(p, q) log(log(2/δ))
, (1)

where

fLN (p, q) = (1−H(p)) + p(1− p)(log2 d−H(q)),

r⋆ =

⌊

1 +
4(1− p){7H(p) + 2H(q)} logK

3e log(d− 1)

⌋

, (2)

then no algorithm in the class NA(r,K) can achieve the

detection probability 1− δ.

Note that H(T (r)) can be expressed as a function of the

diffusion rate λ, see [13]. The implications of Theorem 1

are in order. First, if the entropy H(T (r⋆)) of the infection

time is large, the necessary amount of budget increases due to

large uncertainty in figuring out a predecessor in the diffusion

snapshot. Second, larger entropy for the answers of id/dir

questions requires more budget to achieve the target detection

accuracy. Also, when p goes to 1/2 and q goes to 1/d,

i.e., no information from the querying, results in diverging

the required budget (because fLN goes to zero). Finally, if

Algorithm 1: MVNA(r)

Input: Diffusion snapshot GN , budget K, degree d,
truthfulness probabilities p > 1/2, q > 1/d.

Output: Estimator v̂

1 Cr = SI = SD = ∅;
2 Choose the candidate set Cr as in Definition 1 and ask the

id/dir questions r times to each node in Cr;
3 for each v ∈ Cr do
4 Step1: Count the number of ‘yes’es for the identity

question, stored at µ(v), and if µ(v)/r ≥ 1/2 then add
v to SI ;

5 Step2: For each of v’s neighbors, count the number of
designations for the dir question, choose the v’s
neighbor, say w, with the largest count (under the rule
of random tie breaking) as v’s ‘predecessor’, and save
a directed edge, called predecessor edge, w→ v ;

6 Make a graph Gprewith all the predecessor edges and for
each v ∈ Cr, set E(v)← the number of all the
descendants of v

7 SD ← argmaxv∈Cr |E(v)|;
8 if SI ∩ SD = ∅ then
9 If p = 1, set v̂ ← argmaxv∈SI P(GN |v = v1)

otherwise, set v̂ ← argmaxv∈SI∪SD P(GN |v = v1);

10 else
11 v̂ ← argmaxv∈SI∩SD P(GN |v = v1);

12 Return v̂;

respondents are truthful in answering for the id question (i.e.,

p = 1), the direction answers does not effect the amount of

necessary budget.

(2) Sufficient budget. To compute a sufficient budget, a natural

choice would be to use the MLE (Maximum Likelihood

Estimator), which, however, turns out to be computationally

intractable for large N due to too much randomness of the

diffusion snapshot and query answers. Hence, we consider a

simple estimation algorithm named MVNA(r) that is based

on majority voting for both the id and dir questions. To

briefly explain how the algorithm behaves, we first select the

candidate set Cr of size ⌊K/r⌋ that has the least hop-distance

from the RC, then we ask r times of id/dir questions to each

node in the candidate set (Line 1). Then, we filter out the nodes

that are more likely to be the source and save them in SI (Line

4) and using the results of the dir questions, compute E(v)
that correspond to how many nodes in Cr hints that v is likely

to be the source node (Lines 5 and 6). Finally, we choose a

node with maximal likelihood in SI ∩SD and if SI ∩SD = ∅,
we simply perform the same task for SI ∪ SD. It is easy to

see that the time complexity is O(max{N,K2/r}).
Now, Theorem 2 quantifies the amount of querying budget

that is sufficient to obtain arbitrary detection probability by

appropriately choosing the number of questions to be asked.

Theorem 2: For any 0 < δ < 1, the detection probability

under d-regular tree G is at least 1− δ, as N → ∞, if

K ≥
12d/(d− 2)(2/δ)

fN (p, q) log(log(2/δ))
, (3)

where fN (p, q) = 3(p− 1/2)2+ (d−1)p(1−p)
3d (q− 1/d)2 under



MVNA(r⋆), where

r⋆ =

⌊

1 +
2(1− p){1 + (1− q)2} logK

e log(d− 1)

⌋

.

We briefly discuss the implications of the above theorem.

First, we see that (1/δ)1/2 times more budget is required that

the necessary one, which is because we consider a simple,

approximate estimation algorithm. Second, the dir question

does not effect the sufficient budget K if p = 1 i.e., no

untruthfulness for the id question as in Theorem 1. However, if

p < 1, the information from the answers for the dir questions

reduces the sufficient amount of budget, because fN increases

in the denominator of (3). Finally, when p goes to 1/2 and q
goes to 1/d, the required budget diverges due to the lack of

information from the querying.

B. AD-Querying: Necessary and Sufficient Budgets

(1) Necessary budget. Next, we present an information the-

oretic lower bound of the budget for the target detection

probability 1 − δ for the algorithms in the class AD(r,K)
in Theorem 3 by choosing r, appropriately.

Theorem 3: Under d-regular tree G, as N → ∞, for any

0 < δ < 1, there exists a constant C = C(d), such that if

K ≤
C ·H(T (r⋆))(log(7/δ))α/2

fLA(p, q) log(log(7/δ))
, (4)

for α = 2 if p < 1 and α = 1 if p = 1 where

fLA(p, q) = (1−H(p)) + p(log2 d−H(q)),

r⋆ =

⌊

1 +
7dp{3H(p) + 2dH(q)} log logK

2(d− 1)

⌋

, (5)

then no algorithm in the class AD(r,K) can achieve the

detection probability 1− δ.

We describe the implications of Theorem 3 as follows. First,

when p goes to 1/2 and q goes to 1/d, i.e., no information

from the querying causes diverging the required budget (be-

cause fLA becomes zero). Second, the positive untruthfulness

for the id question (p < 1) requires log1/2(1/δ) times more

budget than that under the perfect truthfulness (p = 1). This is

because more sampling is necessary to learn the source from

the answers of the id questions when p < 1, whereas no such

learning is required for finding the source when p = 1. Third,

large truthfulness (i.e., large p) gives more chances to get

the direction answers which decreases the amount of budget.

Finally, we see that the order is reduced from 1/δ to log(1/δ),
compared to that in Theorem 1.

(2) Sufficient budget. In AD-querying, due to the similar

computational issue to NA-querying in using the MLE, we also

consider a simple estimation algorithm to obtain a sufficient

budget named by MVAD(r), which is again based on majority

voting for both the id and dir questions. In this algorithm, we

choose the RC as the initial node and perform different query-

ing procedures for the following two cases: (i) p = 1 and (ii)

p < 1. First, when p = 1, since there is no untruthfulness of

the answers of the id questions, we check whether the current

respondent s is the source or not. If yes, then the algorithm

Algorithm 2: MVAD(r)

Input: Diffusion snapshot GN , querying budget K, degree
d, truthful probabilities p > 1/2, q > 1/d

Output: Estimated rumor source v̂

1 SI = SD = ∅ and η(v) = 0 for all v ∈ VN ;
2 Set the initial node s by RC;
3 while K ≥ r do
4 if p = 1 then
5 If s = v1, return v̂ = s otherwise, go to step 2;

6 else
7 Step1: Set η(s)← η(s) + 1 which describes that the

node s is taken as a respondent and count the
number of “yes”es for the identity question, stored
at µ(s), and if µ(v)/r ≥ 1/2 then add v to SI ;

8 Step2: Count the number of “designations” for the
direction question among s’s neighbors, and choose the
largest counted node as the predecessor with a random
tie breaking;

9 Set such chosen node by s and K ← K − r;

10 SD ← argmaxv∈VN η(v);
11 if SI ∩ SD = ∅ then
12 v̂ ← argmaxv∈SI∪SD P(GN |v = v1);

13 else
14 v̂ ← argmaxv∈SI∩SD P(GN |v = v1);

15 Return v̂ = s;

is terminated and it outputs the node s as a result (Line 5).

If not, it asks of s the dir question r times and chooses one

predecessor by majority voting with random tie breaking (Line

8). Then, for the chosen respondent, we perform the same

procedure until we meet the source or the budget is exhausted.

Second, when p < 1, we first add one in η(s) which is the

count that the node s is taken as the respondent. Next, due

to untruthfulness, we count the number of “yes” answers for

the id question and apply majority voting to filter out the

nodes that are highly likely to be the source and save them

in SI (Line 7). For the negative answers for id questions, we

count the designations of neighbors and apply majority voting

to choose the next respondent. Then, we perform the same

procedure to the chosen node and repeat this until the budget

is exhausted. To filter out more probable source node from

the direction answers, we compare the number that is taken

as the respondent by designation from the neighbors in η(v),
and we choose the node which has the maximal count of it

and save them into SD (Line 10). Finally, we select a node

with maximal likelihood in SI ∩ SD or SI ∪ SD (Lines 11-

14). We easily see that the time complexity of this algorithm

is O(max{N,K}). Now, Theorem 4 quantifies the sufficient

amount of budget to obtain arbitrary detection probability by

appropriately choosing the number of questions to be asked.

Theorem 4: For any 0 < δ < 1, the detection probability

under d-regular tree G is at least 1− δ, as N → ∞, if

K ≥
2(2d− 3)/d(log(7/δ))α

fA(p, q) log(log(7/δ))
, (6)

where fA(p, q) =
2d
d−1 (p− 1/2)2+ d−1

d−2 (q− 1/d)3 and α = 2



if p < 1 and α = 1 if p = 1 under MVAD(r⋆), where

r⋆ =

⌊

1 +
7d2{2(1− p)3 + (1− q)2} log logK

3(d− 1)

⌋

.

The gap between necessary and sufficient budgets is

log(1/δ) when p < 1, and log1/2(1/δ), when p = 1.
Note that we have log(1/δ) factor reduction from what is

sufficient under MVNA(r⋆) in the non-adaptive case. Further,

as expected, we see that the sufficient budget arbitrarily grows

as p goes to 1/2 and q goes to 1/d, respectively.

C. Adaptivity Gap: Lower and Upper Bounds

Using our analytical results stated in Theorems 1-4, we now

establish the quantified adaptivity gap defined as follows:

Definition 3: (Adaptivity Gap) Let Kna(δ) and Kad(δ) be

the amount of budget needed to obtain (1 − δ) detection

probability for 0 < δ < 1 by the optimal algorithms in

the classes NA(r,K) and AD(r,K), respectively. Then, the

adaptivity gap, AG(δ) is defined as Kna(δ)/Kad(δ).

Theorem 5: For a given 0 < δ < 1, there exist a constant r
and two other constants U1 = U1(r, p, q) and U2 = U2(r, p, q),
where the constant r corresponds to the number of repeated

id/dir questions for each respondent in both classes NA(r,K)
and AD(r,K), such that

U1 · (1/δ)1/2

logα(1/δ)
≤ AG(δ) ≤

U2 · (1/δ)

logα/2(1/δ)
, (7)

where α = 2 if p < 1, and α = 1 if p = 1.

In Theorem 5, we see that for a given target detection

probability 1 − δ, the required amount of querying budget

by adaptive querying asymptotically decreases from (1/δ)
to log(1/δ), This implies that there is a significant gain of

querying in the adaptive manner. Further, the difference of

upper and lower bounds of AG(δ) is expressed by square

root in our algorithm classes, when we use MVNA(r⋆) and

MVAD(r⋆) for sufficient budgets, respectively.

IV. PROOFS

In this section, we will provide the proofs for the Theorems.

The whole proof will be provided in our supplementary

material [14].

A. Proof of Theorem 1

For a given r, we introduce the notation Vl, which is

equivalent to Cr, where the hop distance l =
log(K(d−2)

rd +2)
log(d−1) .

Also for notational simplicity, we simply use P[v̂ = v1] to

refer to limN→∞ P[v̂(GN , r) = v1] for any estimator given

the snapshot GN and redundancy parameter r in the proof

section. Then, the detection probability is expressed as the

product of the two terms:

P[v̂ = v1] = P[v1 ∈ Vl]× P[v̂ = v1|v1 ∈ Vl], (8)

where the first one is the probability that the source is in

the l-hop based candidate set Vl and the second term is the

probability that the estimated node is exactly the source in the

candidate set for any learning algorithm under the algorithm

class C(l, r). We first obtain the upper bound of probability of

first term in (8) in the following lemma.

Lemma 1: For d-regular trees,

P[v1 ∈ Vl] ≤ 1− c · e−l log l, (9)

where c = 4d/3(d− 2).

We will closely look at the case of each l, to derive the

probability that the rumor center vRC is exactly l-hop distant

from the rumor source v1. Let δ1 be the error for the P[v1 /∈ Vl]
then it is lower bounded by δ1 ≥ c · e−l log l.

To obtain the second term in (8), we use the information

theoretical techniques for the direct graph inference as done in

[13] with partial observation because, if the rumor spread from

the source we can obtain a direct tree where all direction of

edges are outgoing from the source. From the assumption of

independent answers of queries, we see that the snapshot from

one querying process with untruthful for direction question is

equivalent to the snapshot of diffusion flow from the source

under the IC-diffusion model with noisy observation. By using

these fact and the result of graph learning techniques from the

epidemic cascades in [13], we obtain the following lemma.

Lemma 2: For any graph estimator to have a probability of

error of δ2 > 0, it needs r queries to the candidate set Vl with

|Vl| = n that satisfies

r ≥
log(1/δ2)H(T )(n− 1) log n

2

n((1−H(p)) + p(1− p)(log2 d−H(q)))
, (10)

where H(T ) is the entropy of infection time vector and

H(p) = p log p + (1 − p) log(1 − p) and H(q) = q log q +
(1− q) log 1−q

d−1 , respectively.

This result indicates that if there is no information from

query, i.e., p = 1/2 and q = 1/d, the required number of

queries diverges. Further, if the uncertainty of infection time

H(T ) for the nodes in Vl increases, the required queries also

increases. Then, from the disjoint of two error event and by

setting δ1 = δ2 = δ/2 with l = log
(

K(d−2)
rd + 2

)

/ log(d−1),

we have

P[v̂ 6= v1] ≥ c · e−
log(K

r )
log(d−1)

log
log(K

r )
log(d−1)

+ e
−

H(T )(K
r

−1) log K
2r

K((1−H(p))+p(1−p)(log2 d−H(q))) ≥ δ.

From the fact that λ = 1 in our setting and Lemma 2 in

[13], we obtain H(T ) ≤ K/r and by differentiation of above

lower bound with respect to r, we approximately obtain r⋆ =
⌊

1 + 4(1−p){7H(p)+H(q)} logK
3e log(d−1)

⌋

where the derivation is given

in the supplementary material. Since if we use the r⋆, it gives

the upper bound of detection probability hence, we put it to

the obtained upper-bound which is expressed as a function of

K, as follows:

P[v̂ 6= v1]

≥
1

2
e−h1(T,p,q) logK log(logK) +

c

4
e−2h1(T,p,q) logK log(logK)



≥ Cde
−2h1(T,p,q) logK log(logK), (11)

where Cd = (c + 3)/4 and h1(T, p, q) = H(T )−1(1 −
H(p)) + p(1 − p)(log2 d − H(q)). If we set δ ≤
Cde

−2h1(T,p,q) logK log(logK), we find the value K such that

its assignment to (11) produces the error probability δ, and we

finally obtain the desired lower-bound of K as in Theorem 1.

B. Proof of Theorem 2

We first provide the lower bound on detection probability

of MVNA(r) for a given K and r in the following lemma.

Lemma 3: For d-regular trees (d ≥ 3), a given budget K,
our estimator v̂ from MVNA(r) has the following lower-bound

of the detection probability:

P[v̂ = v1] ≥ 1−c

(

r + p+ q

r + 2

)3

·exp

(

−hd(K, r)wd(p, q)

2

)

,

(12)

where c = 7(d+1)/d and wd(p, q) =
1
2 (4(p−1/2)2+(d/(d−

1))3(q − 1/d)3). The term hd(K, r) is given by

hd(K, r) :=
log
(

K
r

)

log(d− 1)
log

(

log
(

K
r

)

log(d− 1)

)

.

Proof: Under the MVNA(r), the detection probability is

expressed as the product of the three terms:

P[v̂ = v1] = P[v1 ∈ Vl]× P[v̂ = v1|v1 ∈ Vl]

= P[v1 ∈ Vl]× P[v1 ∈ V̂ |v1 ∈ Vl]

× P[v1 = vLRC |v1 ∈ V̂ ], (13)

where V̂ := SI ∩ SD if it is not empty or V̂ := SI ∪ SD,

otherwise. This is the filtered candidate set in MVNA(r) and

vLRC is the node in V̂ that has the highest rumor centrality

i.e., likelihood, where LRC means the local rumor center. We

will drive the lower bounds of the first, second, and the third

terms of RHS of (13). The first term of RHS of (13) is bounded

by

P[v1 ∈ Vl] ≥ 1− c · e−(l/2) log l, (14)

where the constant c = 7(d+ 1)/d from Corollary 2 of [12].

Let SN be the set of revealed nodes itself as the rumor source

and let SI be the set of nodes which minimizing the errors.

If the true source is in Vl, then the probability that it is most

indicated node for a given budget K with the repetition count

r and truth probability p > 1/2 and q > 1/d is given by

P[v1 = vLRC |v1 ∈ V̂ ]

= P[v1 = arg max
v∈SI∩SD

R(v,GN )|K, p, q]. (15)

To obtain this, we consider that if p > 1/2, the probability

v1 ∈ SI by the majority voting, because the selected node can

be designation again in the algorithm. We let total number of

queries by r ≥ 1, we let W =
∑r

i=1 Xi(v1) for the source

node v1, then the probability that true source is in the filtration

set SI is given by P[W ≥ r/2] =
∑⌊r/2⌋

j=0

(

r
j

)

(1 − p)jpr−j.

Then, from this relation, we have the following lemmas whose

proofs are will be provided in [11]:

Lemma 4: ( [11]) When p > 1/2,

P[v1 ∈ SI |v1 ∈ Vl] ≥ p+ (1− p)(1 − e−(p−1/2)2 log r).

This result implies the lower bound of probability that the

source is in SI for a given r. Next, we will obtain the

probability that the source is in SD after filtration of the

direction answers. To do this, we first consider that the total

number of direction queries Nd is a random variable which is

given by:

P (Nd = k) =

{

(

r
k

)

pr−k(1− p)k if v = v1
(

r
k

)

(1 − p)r−kpk if v 6= v1,

where k is less than parameter r. Using this fact, we obtain

the following result.

Lemma 5: When p > 1/2 and q > 1/d,

P[v1 ∈ SD|v1 ∈ Vl] ≥ 1− e−
rp(d−1)(q−1/d)2

3d .

This result shows the lower bound of probability that the

source is in SI for a given r. By considering the two results

in the above, we have the following lemma.

Lemma 6: For given repetition count r, we have

P (v1 ∈ SI ∩ SD|v1 ∈ Vl) ≥ 1− 2e−f(p,q)2r log r (16)

where f(p, q) = 3(p− 1/2)2 + d−1
3d p(1− p)(q − 1/d)2.

Then, we obtain the following lemma, which is the lower

bound of detection probability among the final candidate set.

Lemma 7: When d ≥ 3, p > 1/2 and q > 1/d,

P[v1 = vLRC |v1 ∈ SI ∩ SD] ≥ 1− e−f(p,q)r log r.

Merging these lower-bound with the lower-bound in (14)

where we plug in l =
log(K(d−2)

rd +2)
log(d−1) , we finally get the

lower bound of detection probability of MVNA(r) for a given

repetition count r and this completes the proof of Lemma 3.

To finish the proof of theorem, note that the second term

of RHS of (12) is the probability that the source is in the

candidate set for given K and r. Hence, one can see that for a

fixed K , large r leads to the decreasing detection probability

due to the smaller candidate set. However, increasing r posi-

tively affects the first term of RHS of (12), so that there is a

trade off in selecting a proper r. By derivation of the result

with respect to r, we first obtain r⋆ which maximizes the

detection probability by r⋆ =
⌊

1 + 2(1−p){1+(1−q)2} logK
e log(d−1)

⌋

in

MVNA(r⋆) and put this into the error probability P[v̂ 6= v1]
such as

P[v̂ 6= v1] ≤ e−f(p,q)r log r + 2e−f(p,q)2r log r + c · e−
l
2 log l,

(17)



where the constant c is the same as that in (14). Now, we

first put l =
log(K(d−2)

rd +2)
log(d−1) into (17) and obtained the upper-

bound of (17), expressed as a function of r, for a given p
and q and the constant c. Then, we take r∗ and put it to the

obtained upper-bound which is expressed as a function of K,
as follows:

P[v̂ 6= v1] ≤ 3 e−f(p,q) logK log(logK) + ce−
log K

2 log(logK)

≤ c1e
−f(p,q) log K

2 log(logK),
(18)

where c1 = c+ 3. If we set δ ≥ c1e
−f(p,q) log K

2 log(logK), we

find the value of K such that its assignment to (18) produces

the error probability δ, and we get the desired lower-bound of

K as in the theorem statement. This completes the proof of

Theorem 2.

C. Proof of Theorem 3

We will show the lower bound for given K and r of the

case p < 1. 1 For a given r, we let VL be the set of all infected

nodes from the rumor center within a distance L := K/r then

we see that the querying dynamic still becomes a directed

tree construction rooted by the source v1. Then, the detection

probability is expressed as the product of the two terms:

P[v̂ = v1] = P[v1 ∈ VL]× P[v̂ = v1|v1 ∈ VL], (19)

where the first one is the probability that the distance between

source and rumor center is less than K/r and the second

term is the probability that the estimated node is exactly the

source in the candidate set for any learning algorithm under

the algorithm class AD(r,K). First, from Lemma 1, we have

that the probability of first term in (19) is upper bounded by

1 − ce−(K/r) log(K/r) where c = 4d/3(d − 2) for a given

budget K and repetition count r. We see that the querying

dynamic still becomes a directed tree construction rooted

by the source v1. However, different to the NA-querying,

the querying process gives direction data of a subgraph of

the original direct tree because the querier chooses a node,

interactively. For a given r, let Zr,i be the answer data of

querying for a selected queried node i where 1 ≤ i ≤ K/r.
Then, from the assumption of the algorithm class AD(r,K),
the joint entropy for the random answers with the infection

time random vector T , H(T, Zr,1, . . . , Zr,K/r) is given by

H(T, Zr,1, . . . , Zr,K/r) =

K/r
∑

i=1

H(T, Zr,i|Zr,i−1, . . . , Zr,1)

=

K/r
∑

i=1

H(T, Zr,i|Zr,i−1)
(a)
=

K/r
∑

i=1

H(T, Zr,i),

(20)

where (a) is from the fact that all data Zr,i are independent.

Let G∗ be the true directed graph and let Ĝ be be an estimated

directed tree from the sequential answers of adaptive querying

1The result for p = 1 is similar to this except the termination of querying
process when it meets the source.

(Zr,1, . . . , Zr,K/r). Then, we see that this defines a Markov

chain

G∗ → (T, Zr,1, . . . , Zr,K/r) → Ĝ,

from the defined algorithm class AD(r,K). By property of

the mutual information, we have

I(G∗;T, Zr,1, . . . , Zr,K/r)

≤ H(T, Zr,1, . . . , Zr,K/r) =

K/r
∑

i=1

H(T, Zr,i)

(a)
= (K/r)H(T, Zr,1)

(b)

≤ (KH(T )/r)[r(1 −H(p)) + rp(log2 d−H(q))]

= KH(T )[(1−H(p)) + p(log2 d−H(q))]

:= Kh(p, q), (21)

where (a) follows from the fact that the answers Zr,i are

mutually exclusive and (b) is from the fact that H(T, Zr,1) =
(1 − H(p) + rp(log2 d − H(q)))/H(T ) since the number

of direction answers follows binomial distribution. Let GK/r

be the set of possible directed tree in Vs then we have

|GK/r| ≤ (K/r) log(K/2r). Using the Fano’s inequality on

the Markov chain G∗ → (Zr,1, . . . , Zr,K/r) → Ĝ, we obtain

P[G 6= G∗] ≥
I(G∗;Zr,1, . . . , Zr,K/r) + h(p, q)

H(T ) log |GK/r|

≥
Kh(p, q) + h(p, q)
KH(T )

r log(K2r − 1)
. (22)

From the disjoint of two error event and by setting δ1 = δ2 =
δ/2 for each error, we have

P[v̂ 6= v1] ≥ c · e−(K/r) log(K/r)

+ e−
KH(T )

r
log( K

2r
−1)

Kh(p,q)+h(p,q) ≥ δ. (23)

From the fact that λ = 1 in our setting and Lemma 2 in

[13], we approximately obtain H(T ) ≤ K/r and by differ-

entiation of above lower bound with respect to r, we obtain

r⋆ =
⌊

1 + 7dp{3H(p)+2dH(q)} log logK
2(d−1)

⌋

where the derivation

is given in the supplementary material. Since if we use the

r⋆, it gives the upper bound of detection probability hence,

we put it to the obtained upper-bound which is expressed as

a function of K, as follows:

P[v̂ 6= v1] ≥
1

3
e−h2(T,p,q)K log(logK) +

c

4
e−7h2(T,p,q)K log(logK)

≥ Cde
−7h2(T,p,q)K log(logK),

(24)

where Cd = 2(c + 3)/7 and h2(T, p, q) = H(T )−1(1 −
H(p)) + (1 − p)(log2 d − H(q)). If we set δ ≤
Cde

−7h2(T,p,q)K log(logK), we find the value of K such that

its assignment to (24) produces the error probability δ, and we

get the desired lower-bound of K as in the theorem statement.

Then, we finally obtain the result and this completes the proof

of Theorem 3.



D. Proof of Theorem 4

We will show the lower bound on the detection probability

for given K and r of the case p < 1 2 in Lemma 8.

Lemma 8: For d-regular trees (d ≥ 3), a given budget K,
our estimator v̂ from MVAD(r) has the detection probability

lower-bounded by:

P[v̂ = v1] ≥1− c(gd(r, q))
3

· exp

[

−

(

p−
1

2

)2(
K

r

)

log

(

K

r

)

]

, (25)

where gd(r, q) := e−
r(d−1)(q−1/d)2

3d(1−q) and c = (5d+ 1)/d.

Proof: For the MVAD(r), for a given r, we introduce the

notation Vs, where the set of all queried nodes of the algo-

rithm. From the initial queried node, we need the probability

that the source is in the set of queried node by some policy

P ∈ P(vI). Then, the detection probability is also expressed

by the product of the three terms:

P[v̂ = v1] = P[v1 ∈ VL]× P[v̂ = v1|v1 ∈ VL]

= P[v1 ∈ VL]× P[v1 ∈ V̂ |v1 ∈ VL]

× P[v1 = vLRC |v1 ∈ V̂ ], (26)

where VL = {v|d(vRC , v) ≤ K/r} because the number of

budget is K and V̂ = SI ∩ SD if it is not empty or V̂ =
SI ∪ SD, otherwise. From the result in Corollary 2 of [12],

we have P[E1] ≤ c · e−(K/r) logK/r since we use additional

direction query with identity question. For the second part of

probability in (26), we obtain the following lemma.

Lemma 9: When p > 1/2,

P[v1 ∈ SI |v1 ∈ VL]

≥
(

p+ (1− p)(1− e−(p−1/2)2 log r)
)(

1− ce−
Kp
r (q−1/d)3

)

.

Proof: Let QK(v) be the number of queries to a node

v ∈ Vl when there are K queries then we have

P[QK(v1) ≥ 1]

=

l
∑

i=1

P[QK(v1) ≥ 1|d(v1, vRC) = i]P[d(v1, vRC) = i].

where P[d(v1, vRC) = i] is the probability that the distance

from the rumor center to rumor source is i and this probability

become smaller if the distance between rumor source and

rumor center is larger. From this, we have the following result

for the lower bound of the probability of distance between the

rumor center and source.

Proposition 1: For d-regular trees,

P[d(v1, vRC) = i] ≥

(

d− 1

d

)i

e−(i+1). (27)

2The result for p = 1 is given in [11] and we omit it here.

Next, we construct the following Markov chain. Let p̂ :=
P[W = r] for the identity questions i.e., there is no “no”

answers for the identity questions so that the algorithm should

chooses one of neighbor nodes uniformly at random and

let q̂ := P[Z1(v) > Zj(v), ∀j] for the direction question,

respectively. Different to the case for p = 1 which the node

reveals itself as the rumor source or not with probability one

so that the Markov chain has the absorbing state, in this case,

there is no such a state. To handle this issue, we use the

information that how many times the neighbors indicate a

node as its parent and how many times a node reveals itself

as the rumor source. To do that, we consider the case that

there is a token3 from the initial state and it move to the next

state after additional querying follows the answer. Then this

probability is the same that after K/r-step of Markov chain,

and we expect that the rumor source v1 will have the largest

chance to keeping this token due to the assumption of biased

answer. Let Xn be the state (node) which keep this token at

time n where the state is consist of all node in VN . The initial

state is the rumor center such that X0 = 0 where 0 indicates

the rumor center. Then there are (d(d − 1)K/r − 2)/(d − 2)
states and we can index all the state properly. Let pnk,j be the

n step transition probability from the state k to the state j. To

obtain this probabilities, we first label an index ordering by

counter-clockwise from the rumor center X0 = 0. Then, we

have P (Xn+1 = k|Xn = k) = 0 for all k and n, respectively.

Furthermore, P (Xn+1 = j|Xn = k) = 0 for all d(k, j) > 1
since the token is moved one-hop at one-step (r querying).

Then, the transition probability for the node k which is not a

leaf node in VL is as follows.

pk,j =

{

p̂
d + (1− p̂) 1−q̂

d−1 if j /∈ nb(k, v1)
p̂
d + (1− p̂)q̂ if j ∈ nb(k, v1),

where nb(k, v1) is the set of neighbors of the node k on the

path between the node k and v1. From the simple Markov

property of querying scheme, if we assume that the source

node is an absorbing state then we obtain for a given budget

K/r ≥ l,

P[QK(v1) ≥ 1|d(v1, vRC) = i]

= 1− P[QK(v1) = 0|d(v1, vRC) = i]

= 1− P[

K
∑

n=0

In(v1) = 0|d(v1, vRC) = i]

= 1− P[In(v1) = 0, ∀i ≤ n ≤ K/r|d(v1, vRC) = i]

= 1−

K/r
∏

n=i

(1− pn0,v)

(a)

≥ 1−

K/r
∏

n=i

(1 − p
K/r
0,v ) = 1− (1− p

K/r
0,v )K/r−i

(b)

≥ 1− e−(K/r−i)p
K/r
0,v , (28)

3The token keeper is regarded as the current respondent in this model.



where (a) follows from the fact that pn0,v ≥ p
K/r
0,v for all

i ≤ n ≤ K/r and (b) is from the relation of (1 − p)K/r =
eK/r log(1−p) ≤ e−p(K/r) where we use the inequality log(1−
x) ≤ −x for 0 ≤ x ≤ 1. Note that the transition probability

is the case of d(v1, vRC) = i. From Lemma, we have

P[QK(v1) ≥ 1] ≥
∞
∑

i=1

(1− e−(K/r−i)p
K/r
0,v )P (d(v1, vRC) = i)

≥
∞
∑

i=1

(1− e−(K/r−i)p
K/r
0,v )

(

d− 1

d

)i

e−(i+1)

≥ 1− ce−
Kp

K/r
0,v
r ≥ 1− ce−

Kp
r (q−1/d)3 .

Using this result and Lemma 4, we conclude the result of

Lemma 9 and this completes the proof.

Next, we have the following result.

Lemma 10: When p > 1/2 and q > 1/d,

P[v1 ∈ SD|v1 ∈ VL] ≥ 1− e−
Kp(d−1)(q−1/d)2

6rd

Similar to the previous one, to obtain the detection probabil-

ity, we need to find the probability P (v1 ∈ SN ∩SI |v1 ∈ VL).
From this, we consider r repetition count for identity question

and r − Xr(v) for direction question where (Xr(v) be the

number of yes answers of the queried node v with probability

pv. Hence, we see that the number of repetition count for the

direction questions is also a random variable which follows a

binomial distribution with parameter pv. By considering this,

We have the following lemma.

Lemma 11: Suppose v1 ∈ VL then we have

P (v1 ∈ SI ∩ SD|v1 ∈ VL) ≥ 1− e−6g(p,q)2(K/r) log r, (29)

where g(p, q) = 2d
d−1 (p− 1/2)2 + d−1

d−2(q − 1/d)3.

Proof: Since the events v1 ∈ SI and v1 ∈ SD are

independent for a given v1 ∈ VL, by using lemma 10 and

10 and some algebra, we have

P[v1 ∈ SI ∩ SD|v1 ∈ VL]

≥
(

p+ (1− p)(1− e−(p−1/2)2 log r)
)(

1− ce−
Kp
r (q−1/d)3

)

·

(

1− e−
K(d−1)(q−1/d)2

6rd

)

≥ 1− e−6g(p,q)2(K/r) log r,

where g(p, q) = c1(p−1/2)2+c2(q−1/d)3 for some constants

c1 and c2 which are only depends on the degree d. This

completes the proof of Lemma 11.

Next, we consider the following lemma which indicates the

lower bound of detection probability among the final candidate

set.

Lemma 12: When d ≥ 3, p > 1/2 and q > 1/d,

P[v1 = vLRC |v1 ∈ SI ∩ SD] ≥ 1− e−g(p,q)K log r.

The proof technique is similar to the Lemma 7 so we omit it.

Using the obtained lemmas 5-8, we finally get the lower bound

of detection probability of MVAD(r) for a given repetition

count r and this completes the proof of Lemma 8.

The term gd(r, q) in (25) is the probability that the respon-

dent reveals the true parent for given r and q. Hence, one

can see that for a fixed K , large r leads to the increasing

this probability due to the improvement for the quality of the

direction answer. However, increasing r negatively affects the

term K/(r+1) in (25), so that there is a trade off in selecting

a proper r. By considering the error probabilities, we obtain

P[v̂ 6= v1] ≤ c · e−(K/r) log(K/r) + e−3g(p,q)2(K/r) log r

+ e−g(p,q)K log r

(a)

≤ (c+ 1)e−2g(p,q)2(K/r)(logK/r),

(30)

where c1 = c+1 and g(p, q) = 2d
d−1(p−1/2)2+ d−1

d−2(q−1/d)3.

The inequality (a) is from the fact that g(p, q) < 1. By

derivation of the result with respect to r, we first obtain

r⋆ which maximizes the detection probability by r⋆ =
⌊

1 + 7d2{2(1−p)3+(1−q)2} log logK
3(d−1)

⌋

in MVAD(r⋆) and put this

into the error probability P[v̂ 6= v1], we have

P[v̂ 6= v1] ≤ (c+ 1)e−2g(p,q)2(K/(r∗)) log(K/(r∗))

(a)

≤ (c+ 1)e−g(p,q)K log(logK), (31)

where the inequality (a) comes from the obtained result of

r⋆. Let δ ≥ (c + 1)e−g(p,q)K log(logK), then, we obtain the

value of K which produces the error probability δ in later and

we obtain the desired lower-bound of K as in the theorem

statement. This completes the proof of Theorem 4.

V. SIMULATION RESULTS

In the simulation, we consider two graph topologies: regular

trees, and a Facebook graph. We propagate an information

from a randomly chosen node to 400 infected nodes at max-

imum, and plot the detection probability from 200 iterations.

We obtain the detection probabilities with varying budgets K
under different parameters (p, q). In the regular tree, we use

MVNA(r⋆) and MVAD(r⋆) for both querying schemes with

d = 3 and Fig. 2(a) shows that there is a significant adaptive

gain for various parameters (p, q), validating our theoretical

results. Different from the regular tree, there exist loops in

a general graph such as Facebook network. It is known that

computing the MLE in such a general loopy graph is #P-

complete [3]. Hence, as a heuristic, we use a Breath First

Search (BFS) to the graph and use the BFS estimator as

the initial center node of candidate set in NA-querying and

the initial node in AD-querying, respectively. Further, in NA-

querying, we count the number of descendants of each node

in the candidate set on the BFS tree due to the loop in the

general graph. Fig. 2(b) shows the detection probabilities with

varying K for NA-querying and AD-querying with different

parameters (p, q) and we observe similar trends to those in

the regular tree. We see that the AD-querying is powerful

for finding the source because it uses the sampled data more

efficiently in an interactive manner.
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Fig. 2. Detection probabilities with varying K for regular tree (a) and
Facebook network (b), respectively.

VI. CONCLUSION

In this paper, we considered querying for the information

source inference problem in both non-adaptive and adaptive

setting. We obtained the answer for the fundamental question

of how much benefit adaptiveness in querying provides in

finding the source with analytical characterization in presence

of individuals’ untruthfulness.
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