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Abstract

In this paper, we investigate the problem of transmitting an analog source to a destination over N uses of an additive-white-
Gaussian-noise (AWGN) channel, where N is very small (in the order of 10 or even less). The proposed coding scheme is based
on representing the source symbol using a novel progressive expansion technique, partitioning the digits of expansion into N
ordered sets, and finally mapping the symbols in each set to a real number by applying the reverse progressive expansion. In the
last step, we introduce some gaps between the signal levels to prevent the carry-over of the additive noise from propagation to
other levels. This shields the most significant levels of the signal from an additive noise, hitting the signal at a less significant
level. The parameters of the progressive expansion and the shielding procedure are opportunistically independent of the SNR so
that the proposed scheme achieves a distortion D, where — log(D) is within O(loglog(SNR)) of the optimal performance for
all values of SNR, leading to a channel-agnostic scheme.

I. INTRODUCTION

Consider a joint source-channel coding problem, where the objective is to transmit some sequence of identically and
independently distributed (i.i.d.) source {U,,}M_, to a destination using N-uses of a memory-less channel. The destination
aims to recover {U,,}M_, with minimum distortion for some distortion measure function. For this problem, we can consider
three different scenarios depending on M and N, namely, long-length codes, short-length codes, and few-shot codes.

In long-length codes, where N — oo, the optimal approach is based on the separation of source coding and channel coding.
That is, the transmitter first employs a lossy source coding technique to quantize the information symbols with some distortion,
and then it uses channel coding to send the (index of) quantized symbols to the receiver. Optimality of separation implies that
the decoded symbols satisfy the average distortion as long as the rate of source coding is less than the channel capacity. This
scheme achieves the minimum distortion for any channel.

In short-length codes, N 1is in the order of a few hundred. It is shown that in this regime, the separation of source coding
and channel coding results in a significant loss of performance compared to the joint schemes. In addition, the optimum
scheme satisfies NC' — M R(D) ~ /NV + MV(D)Q~!(¢), where ¢ denotes the probability error, D is the distortion, V'
represents the channel dispersion, Q~!(-) is the inverse of the complementary cumulative distribution function of a normal
random variable, and R(D) and V(D) are the source rate-distortion and rate-dispersion functions [1], [2].

Few-shot communication is applicable when the parameter /N is on the order of 10 or even less. Such a regime appears
in several critical, delay-sensitive applications. For example, this scenario is raised in communication systems to minimize
delay in reporting time-sensitive channel state information (CSI) from the receiver to the transmitter [3]. Up-to-date CSI at the
transmitter is particularly important for interference management in dense wireless networks, e.g., small cells and cooperative
multi-antenna communication. Another application of few-shot communication appears is reducing delay in reporting real-
time system outputs to the controller [4]. This is particularly crucial in situations where the controller and the plant are not
collocated, as seen in applications like remote surgery. A significant use-case is found in massive sensor networks, where each
sensor is assigned a few narrow-band time slots to report its low-rate measurements.

Few-shot codes have been investigated in the context of analog coding [5]-[14]. However, this scenario is of particular interest
in cases where the channel state information, especially the signal-to-noise ratio (SNR), is unknown at the transmitter. In the
most common use-cases of few-shot codes, the delay involved in sending pilot signals, estimating the channel, and disseminating
channel information is not tolerable, or the necessary resources are unavailable. Therefore, it is crucial to develop a robust or
channel-agnostic scheme that performs optimally across all values of SNR.

The problem of designing robust schemes has been studied in [13], [14]. Let SDR = w, and SNR be the signal-
to-noise ratio. Then, the information-theoretic bound suggests that —log(SDR) 5 N log(SNR). The scheme proposed in [13]
achieves 22GPR) 1 and thus —1log(SDR) — Nlog(SNR) is in the order of O(log(SNR)). This result is significantly

N log(SNR)
improved by a scheme proposed in [14], that achieves — log(SDR) — N log(SNR) = O(y/log(SNR)).
In this paper, we introduce a new few-shot source-channel coding scheme that, for M = 1 source symbol, achieves

—log(SDR) — N log(SNR) = O(loglog(SNR)). This scheme is built on proposing a new expansion, named progressive
expansion, of the source U. Recall that in the conventional fixed-base expansion, such as binary expansion, digits are derived
by recursively multiplying the residual by the base and computing the quotient. A similar process is executed to derive the
digits in progressive expansion, except that the base of the expansion grows over iterations, following a particular pattern.



Then, the digits of the source expansion are partitioned into /N ordered sets in a round-robin scheduling manner. The digits
in each set are then mapped to an analog signal by applying a reverse-progressive expansion over each set. In each level of
reverse-progressive expansion, we leave the first and last alphabets unused to shield the earlier levels from the carry-over of
the additive noise, hitting the signal at a higher level. The parameters of the progressive expansion and also the number of
unused alphabets are judiciously designed such that the proposed scheme achieves near-optimum distortion for all values of
SNR, even though the achievable scheme is channel-agnostic and does not depend on SNR. As a result, the proposed scheme
remains very close to the optimum for all values of SNR.

Notation. For N € N, we define [N] := {1,..., N}. For an interval Z = [a,b) we denote its length by |Z| = b — a. For a
subset of 7 C R that is a union of a collection of mutually disjoint intervals, i.e., 7 = |J,Z we have |J| = >, |Z|. Finally,
log(+) denotes logarithm with in base 2.

II. PROBLEM FORMULATION

We consider a few-shot lossy joint source-channel coding problem, where the source Uy, Us, ..., Uy, for some M € N, is a
sequence of independently and identically distributed random variables, drawn according to some probability density function
(PDF) fu(.). The objective is to communicate this source through N € N uses of a memoryless AWGN channel. Motivated
by delay-limited applications, we focus on the settings where N is very small.

An (M, N) few-shot lossy joint source-channel coding scheme consists of N encoding function and a decoding function.
For each n =1,2,..., N, the encoding function

on :RM 5 R

maps the source sequence Uy, Us,...,Ups to a transmit symbol X(n) = ¢, (U1, Us,...,Us). For each n € [N], the coded
symbol X (n) is transmitted through an AWGN channel,

Y(n) = X(n) + Z(n),

where (Z(1),...,Z(N)) is an i.i.d. Gaussian sequence with zero mean and variance 0. The decoding function
¢ :RY - R
maps the received symbols Y(1),...,Y(V) to an estimate for the source sequence, that is,

(Ur,...,Un) = 9(Y(1),...,Y(N)).

The distortion of this estimation is defined as

1 M A 9
i Y U —Unl.
For P,D € R, a tuple (M, N, P, D) is said to be achievable if there exists an (M, N) few-shot joint source-channel coding

scheme, such that the following constraints are satisfied:

« Power constraint: E [% SN \X(n)ﬂ <P.

« Distortion constraint: £ [ﬁ Z%zl |(7m — Um|2} <D.

Remark 1. It is important to note that, here, we do not assume that M and N go to infinity. Motivated by delay-limited
scenarios, we assume that M and N are small integers (e.g., M = 1 and N = 3).

We call an achievable scheme channel agnostic if the encoding functions do not depend on P and o. Then, we define

D*(M, N, P) :=inf{D :(M, N, P, D) is achievable by a

channel-agnostic scheme}.

The objective of this paper is to characterize D* (M, N, P). In particular, for simplicity, we focus on M = 1 source symbol

that admits a uniform' distribution over [—3, 1].

'The proposed scheme can be easily generalized to any source distribution with bounded range. For unbounded distributions (e.g., Gaussian), our scheme
can be still adopted. However, the large deviation error probability should be incorporated into the final result. Also, a similar idea can be used when we have
multiple source samples to be communicated.



A. The Fundamental Limits

Following Shannon’s theorem on the optimality of separation of source-channel coding [15], we can show that for any
(M, N, P, D)-achievable few-shot joint source-channel coding, we have
1
M(h(U) -3 log(27reD)) < MRy (D)
N P
< NC7(P) = - log (14 5), (1)
2 o2

where h(U) denotes the differential entropy of the source U. Let SDR denote the signal to distortion ratio, defined as SDR = %
where 0 = E[(U — E[U])? is the signal variance, and SNR denote the signal to noise ratio, defined as SNR = £. Then,
from (1), we have

SDRM < ¢(1 4 SNR)Y, 2)
where ¢ = (2mec? 27 2MU)M For U ~ Unif([~1/2,1/2]), we have h(U) = 0 and o7, = 1/12, leading to ¢ = (me/6)M.

III. THE MAIN RESULTS

Shannon’s theorem guarantees that the upper bound in (2) can be asymptotically achieved by long-length code. However,
for few-shot codes, the best achievable SDR is unknown.

The main contribution of this paper is as follows: In Section IV we propose a few-shot joint source-channel coding scheme
(for M = 1 source symbol). Then, we study the performance of the proposed scheme in Section V, and derive an achievable
bound for SDR. The following theorem states the main result of the paper. We refer to Section V for the proof of Theorem 1.

Theorem 1. For M =1 source symbol distributed as U ~ Unif([—1/2,1/2]), the average distortion

1 10N
D = ¢;———= (logSNR + ¢ + ¢
ISNRN( g ) 2 N 3

SNR

is achievable for some constants (c1,c2) that do not depend on SNR or D, (but may depend on N), and cs is order-wise
smaller than 1/SNRY.

Focusing on the high SNR, we have the following characterization for SDR* = Z—?i.

Corollary 1. For M = 1 source U ~ Unif([—1/2,1/2]), the optimum SDR satisfies

Nlog(SNR) — 10N loglog(SNR) + o(log log(SNRY))
< log(SDR*) < Nlog(1 + SNR).

We refer to Section V for the proof of Corollary 1.

IV. AN ACHIEVABLE SCHEME FOR M =1
A. Preliminaries: A Progressive Expansion

Let 2 € [0,1]. For an integer S, we define the S-progressive expansion of x as

oo S
Tks
"= 2 Gk I ®

k=1s=1
where x5 € {0,1,...,k} for every s € {1,...,S}.

Remark 2 (Fixed-Based vs. progressive expansion). Recall that in the conventional fixed-base expansion, such as binary
expansion, digits are derived by recursively multiplying the residual by the base and computing the quotient. In S-progressive
expansion, however, iterations are grouped into blocks of S iterations. Within each block, the base remains constant. However,
starting from the first block with base 2, the base for each subsequent block increases by one compared to the preceding block.

Note that when S — oo, then the S-progressive expansion reduces to x = Y .o %=, which is the binary expansion of x.

An example of 2-progressive expansion (S = 2) is shown in Figure 1. As mentioned in Remark 2, the first two symbols
(212, T22) are obtained similar to a binary expansion. Then, (221, Z22) in each interval can be found similar to ternary expansion.
The following symbols, x31, 32,241, ..., can be found in a similar manner.

We will use the following notation throughout the paper.

Definition 1. For rwo pairs (k, s), (¢,t) € Nx{1,...,S} we say (k,s) = ({,t) if either k > {, or k = £ and s > t. Similarly,
(k, 8) = (¢, t) means wither (k,s) = (¢,t) or (k,s) = ({,1).



Fig. 1. An example of progressive expansion with S = 2.

In the following, we provide a list of lemmas that state the properties of the S-progressive expansion. These properties will
be used later for the proof of the main result. The proofs of the lemmas can be found in Appendix A.

Lemma 1. The S-expansion of any x € [0, 1] is unique.”

Lemma 2. For any ¢ € N we have

1
S

o0
k:@
Lemma 3. If z < m then for the S-progressive expansion we have xps = 0 for every (k,s) < (¢,t).

Lemma 4. Let X be a variable chosen uniformly at random from [0, 1] with S-progressive expansion

Xis
=33 @

then
o Xgs has a uniform distribution in {0,1,... k}.
o The sequence of random variables {{Xys}5_1}32, are pairwise independent.

Lemma 5. If w > 4 and n > 6 satisfy w < n!, then we have n — 1 > lololg“’ .
glogw

B. An Achievable Scheme

In this section, we focus on M = 1 source symbol and N channel uses. We also assume that U ~ Unif ([f%, %]) Lastly,
without loss of generality, we assume unit power constraint, i.e., E[|X(n)|?] < P = 1.

e Encoding: We start with the N-progressive expansion of U + l, that is

-5 e ®

klnl

where Uy, € {0,1,...,k}. Lemma 1 implies that this expansion is unique. In addition, from Lemma 4 we know that Uy, is
uniformly distributed over {0,1,...,k} and Uys, k=1,2,...,and s =1,..., S are pairwise independent.
For each channel use n € [N], we generate

Ukn+1 1
) =3l - 6
Z (k+3)! 2 ©)

The following lemma provides the properties of X (n). We refer to the Appendix for the proof of the lemma.

Lemma 6. For X(n) defined in (6), we have X (n) € [—a,a] where a = (16‘,/5

{i6.56¢)- Moreover, we have E[X(n)] = 0 and
E[| X (n)[?] = 0.0173814.

Then, the channel input for the nth channel is given by
X(n) =~X(n),
with v := 7.585 = ——L 50 that the power constraint is satisfied, i.e., E[X2(n)] = 1 for every n € [N].
7 L p (X2 (n) tyn € [N]

2Recall that for binary expansion we have (0.1000...)2 = (0.0111...)2. A similar boundary scenario also occurs for progressive expansion. To avoid
confusion, we stick to the finite (i.e., there exists some (¢,t) such that zgs = 0 for every (k, s) > (¢,¢)) expansion of z if that exists.
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Fig. 2. The cumulative distribution function of X (n) generated from uniformly distributed U.
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Fig. 3. The block diagram of the encoder and decoder. The PE(.S) blocks represent the S-progressive expansion, while PE! (S) shows its inverse (progressive
expansion to decimal conversion).

Remark 3 (The Intuition Behind the Achievable Scheme). Note that from each block in (5) i.e., {Ug1,Ux2,...,Urn},
one digit is assigned to each channel, and the transmitted symbol is calculated by reverse-progressive expansion with a block
length of one (S = 1), as in (6). During this process, the first and last alphabet in each layer of expansion are left unused.
More precisely, in the progressive expansion, the coefficient of 1/(k + 3)! can be any number in {0, 1, ...,k + 2}. However,
Ugn1 + 1 can only take values in {1,...,k + 1}. That is, 0 and k + 2 are eliminated to avoid negative and positive noise
(respectively) at level 1/(k + 4)! to reach level 1/(k + 2)!. This precaution is taken to shield the signal from (positive or
negative) carry-overs of added noise, ensuring that the corruption does not propagate to all other digits. The proposed scheme
achieves a balanced trade-off between the length of the first block in the expansion affected by additive noise and the number
of unused alphabets up to that block, no matter at which level in the expansion, noise hits the signal. As a result, the proposed
scheme remains very close to the optimum for all values of SNR.

Figure 2 shows the cumulative distribution function (CDF) of X (n) generated from uniformly distributed U, according
to (6). It can be seen that X (n) does not admit a uniform distribution. Moreover, there is a semi-fractal behavior in the CDF.
For instance, for no value of U, X(n) admits a value in [—0.0597,0.0597]. Similarly, there are non-occurring intervals with
smaller lengths on the negative and positive sides.

e Decoding: Let
11 1

Y(n) = mm{max{—i ;Y( )},5} (7

Then, 0 < %(,YY(n) + 3) < 3. Therefore, Lemma 3 implies that it can be written as
1 [/~ 1 = f’k(n) = Vk(n)
— [ v Z) = = . 8
3!( (”)+2> kz:;(kﬂ)! ;(m:&)! ®

where Vj(n) := Yiqo(n) € {0,1,...,k+2}. For every k € N and every channel n € [N], we define Uy, := Vj.(n)—1. Then,
combining all the channel outputs, we compute and declare

Ukn 1
ZZ (KDN(k+1)» 2 ©)

klnl

as the estimate of U.
Figure 3 illustrates the block diagram of the proposed encoder and decoder.



V. PERFORMANCE ANALYSIS

Without loss of generality, let us assume that P = 1. In addition, here we focus on the cases where o < %’Y ~ 11.37. For a
given o, consider ¢ € N that satisfies

(e+3) < <t +ay (10)

Based on the regions given in (10), we can introduce two regimes for Z,,.

| Zn| 1 (log(67/0))?
P( 6~ U+ 1)!) = o (‘2<1og 1og<6~y/o>>2) '

Proposition 1.

Proof.

(©) (log(67/o
(_2(10g10g(67/ )2 )

where (a) follows from (10), in (b) we used the fact that Q(u) < 1 exp(—u?/2), and (c) follows from Lemma 5 for w = 6v/o
and n = ¢ + 4. O

(1)

Next, we show that in the second noise regime, the first £ — 2 of the decoded symbols match those of the source symbols.

Proposition 2. If ),, then we have Uy = Upp, for k=1,...,0— 2.

67
Proof. Let Z(n) = ‘Z(,—")‘ and Z(n) = 300, (Zkliu 7 with Z1(n) € {0,...,k} be the 1-expansion (with S = 1) of Z(n). We
note that Z(n) < ﬁ Therefore, Lemma 3 implies that Zj(n) = 0 for every k < ¢ + 2. Hence, we have
Z(n)| _ » o Zu(n) o~ Zi(n)
31y () k:zM (k+1)! ; (k+3)" (12)

where Zj,(n) := Zy2(n) € {0,...,k + 2}. Thus

. > Upn, +1 > Zk(n)
_Z(k+3)!i;(k+3)!

Un+1  Ug_1)n+1 iUkn“FliZk(n)
E+3) T ((+2)] (k+3)!

(13)

- L . U 1 .
Note that Zf; -2 ((J;_’;;)} acts as the effective signal for the nth channel use, while W(n) = (Zei);,—s_ + >0, %ﬁfﬁm) is
its effective noise. In the following, we show that the effective signal and the effective noise can be separated

Recall that 0 < Zi(n) < k+2 and 0 < Uy, < k. Thus, —k — 1 < Uy, + 1 + Z(n) < 2k + 3. Therefore, we have

ZUkn+1—Zk = k+1 a 1

(k+3)! — (k+3)! C(+2)r

k=t
where (a) follows from Lemma 2. This further implies

Up—1yn +1 ZUlerl Zy(n)

Win) = =759 *+3)

> 0. (14)

On the other hand,

o0 (o) o0
Upn+ 1+ 72 2k-+3 k+2 (a 2
Uknt 14 2Zk(n) +3 _, +2 @ ,
ZH (k+3)! 2. <2 k+3)  ((+2)



where (a) is followed from Lemma 2. Therefore, using the fact that U (=1 < ¢ — 1, we arrive at
U1y, +1 SiUm+1+ZMm

(£ +2)! — (k+3)!
- /-1 L 2 o+ - 1

(€4+2)!  (£+2)!  (£+2) " (e+1D)

This together with Lemma 3 implies that W(n) can be written as W(n) = > 7, E/Z’“T(ln)), = > V[(/Zj_%(ﬁ), where
Wi(n) € {0,...,k}. Thus, plugging this into (13), we get

W(n) <

15)

Ukn+1+ Z Wiya(n) (16)

which implies

U’m:y’“(”)_lz{ gjfkiz(n)—l ii;gj 7
Consequently, we have Ulm e{-1,....,k+1}. O
Proposition 3. If |67 oy for alln € [N], then,
O-vl<—2 (18)
((€=1H¥
Proof. Recall from Proposition 2 that under the current noise regime, we have U;m = Uy, for k =1,...,¢ — 2 and every
n € [N], we have
Sl l?;m Ugn 2 Ui —Upn
kzlzl Nk+1)m | k:ze:l; (KN (k+1)m
‘Ukn_Ukn ) 2 XN k+1
< 3 Ligvwer £ 2 S
TR
k=t—1 k=t—1
= 1 = -1 2
‘lg%ww ;%WW_W—WW 4
where (a) holds since Uy, € {~1,...,k+ 1} and Ug, € {0,...,k}, and (b) holds since 21 < 2. O

Let us define the event A := {|Z,| < +2),,Vn € [N]}. Using Propositions 1 and 3 and the union bound, we have

D =E[(U —U)*A] - P(A) +E[(U — U)?| A - P(A°)
4 (log(6v/0))”
<—+——+N — . 20
< =t * ¥ (g a7 e
From Sterling’s approximation, we have n<nlog % <logn!. This together with the relationship in (10) implies

£+ 3 <log ({4 3)! <log(6v)/o. (21
Therefore, we have
4 N (a) 5 (b) 5
1 _ [L—o(¢+1) 2 (£+3) 2 o log 6y 7 22)
(£-1)! (C+4)! (L+4)! — 6y o

where (a) follow from ab < ((a + b)/2)? and (b) is a consequence of (10) and (21). Plugging (22) in (20), we get

2N
2 (1091} ) 4 Nexp (= L0861/
D§4<m (1 . a) ) o p( 2(10g10g(67/0))2>' -




Plugging SNR = 1/02, and setting

4 10N

Cc1 = W, Cy = C1 (2 10g 6’}/) s
and cg being the last term in (23), we arrive at the distortion claimed in Theorem 1. Note that at the high SNR regin;e (.e.,
sufficiently small ), the second term in (23) is negligible compared to the first term. Therefore, for SDR= w = %

(for U ~ Unif([—1/2,1/2])), we get
log SDR > N log SNR — 10N log log SNR + o(log log SNR).

This completes the proof of Corollary 1.
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APPENDIX
PROOF OF THE LEMMAS

Proof of Lemma 1. Assume that {{zys}32,}5 ; and {{yks}32,}5_, are two distinct progressive expansions for some z €
[0, 1], that is,

oo S S
xks yks
24
=5 e RS e o
Then, we prove that there exists some pair (¢,¢) such that
o Tjs = Yis for every (k,s) < (4,1);

o Tpt = Yo + 1,

o and, s = 0 and yys = k for every (k,s) > (£,1).
These three conditions imply that {{z}s}%°,}5_; is a finite S-progressive expansion of x, and {{yxs}3,}5_; is the corre-
sponding infinite expansion. More importantly, if = does not admit a finite S-progressive expansion (which happens almost
surely for « ~ Unif([—1/2,1/2])), the expansion will be unique.

Let (¢,t) be the first pair where xy; and yg; are distinct. That means xgs = ygs for every (k,s) < (¢,t). Without loss of
generality, assume x,; > yg. Therefore, we have

c© S
— _ Yks — Tks
O*x*x*ZZ(kl) S(k+1)*

k=1s=1

Yo — T + Z yes Tys

(6' L+ 1)t t+1 S(6+1)s
+ Z Z yks — Tks (25)
k=(+1 s=1
Now, since xg; > ys:, We have
Yer — Tt 1
— 2
(NS +1)t —  (HS(L+1)t (26)
Moreover, for z¢s, yos € {0, ..., ¢} we have
ES: Yes ls 1 14
S:t+1(€') (€+ 1) — (é')s t+1 (L+1)
TS S
1 {+1 1
= S j{: s 2{: s
(ﬁ') Ls=t+1 (f + 1) s=t+1 (£ + 1)
1 [E i 1
- S s
(e o (t+1) S (¢+1)
1 1 1
S [+ 1)t (L4 1)8
B 1 B 1 27
o Hse+10t  ((e+1)Hs
Similarly, since zys,ygs € {0,...,k}, we can write
0o S
yks xka
> < Y Y s
k=0+1 s= 1 k= /+1s—1

k+1 1
z:: { K)S(k + 1)° (k!)S(k+1)S]

S
- S[ k+1 Zk+1

k= Z+1 s=! s=1

= 1-
e ! ]
kfz+1 k+1

I
8 ng A




I
M8
= -
=

|
M8
=
+ —
=

k=(+1 k=(+1
=1 =1 1

= Z 5 Z (28)

k=041 (k!) k=042 (k!) ((€+ 1))

Therefore, plugging (26)-(28) into (25), we get
0<_ 1 4 1
- (S +1)t  (HSU+1)t
1 1 29

— + J—

((C+1)H5  (e+1)Hs
That means all the inequalities in (26)-(28) should hold with equality, which implies ¢ = y¢r + 1, and zis = 0 and yis = k
for every (k,s) > (¢,t). This completes the proof. O

Proof of Lemma 2. The desired identity can be proved using the following chain of equalities:
— k
(k+1)!

o0

k+1
+1)! % k:+1

= 1
2 G

k=t

Eod
I
~

M8 I P”ﬂ8 I MS
: ?T“)—l

ol

I

~

==
I

i

~

M8 &L

AR

| =
I

| =

O

Proof of Lemma 3. We prove the lemma by contradiction. Let the claim is wrong, and there exists some (kq, sg) < (¢,t) with
Thys, = 1. Then, we have

1 - Lks
S A 2.2 ES(k + 1)°
Thoso S 1
= (ko!)¥(ko + 1) (ko!)® (ko + 1)%0

Therefore,
(ko!)® (ko +1)% > ()5(£ + 1),

or equivalently, (ko, so) %= (¢,t), which is in contradiction with assumption that (kq, sg) < (¢,1). O

Proof of Lemma 4. Let
oo S
Xk}é
X =
22 Gk s 1 G0

be the S-progressive expansion of X. For k € N, s € {1,...,S},n € {0,...,k}and i € {0,..., (k)S(k+1)*"1 —1}, define

(k+1i4+n (k+1i+n+1
(KD)S(k+1)s" (KYS(k+1)s >

Alisk, s,n) = {

First note that (see Figure 1)

(kNS (k+1)s71—1
{X€[0,1]: Xps =n} = U A(isk, s,n). (31)

=0



Therefore, for X uniformly distributed over [0, 1], we have

(k1S (k+1)571 -1

P(Xps =n) =P |X € U A(is k, s,m)
1=0
(k1 (k+1)571—1
= > AGk,sn)|
=0

(kN (k+1)°"~1 -1 1
- ;0 (KNS (k + 1)*
(KNS (k+1)st 1
&)S(k+1)p  k+1
for every n € {0, 1,...,k}. Therefore, each X}, admits a uniform distribution over {0, 1,...,k}.
Now, consider Uys and Uy, and without loss of generality, assume k > ¢. Then, similar to (31), we have

()% (e+1)°~" -1
(Xe1: Xa=m}=|J  AGttm) (32)
j=0
Then, from (31) and (32), we have

{X : Xps =n, Xy = m}

(kDS (k+1)571 -1 (S (e+1)t-1-1
= U A(i;kasan> N U A(],f,t,m)
i=0 =0
= J (A k. 5,m) 0 AGs £,,m)).

i,J
Therefore,

P(Xs =n, Xy =m) = || (A(is k, 5,n) N A(j; £, 1, m))

%,
(@)S(e+1)t 1 =1 (k)5 (k+1)°" 1 —1
= > S Gk, s,n) NAGG 6t m)] (33)
§=0 i=0

where the last equality holds since the collection of intervals {A(i; k,s,n)}; are disjoint, and the collection of intervals

{A(j;¢,t,m)}; are disjoint. Without loss of generality, assume (k, s) > (¢,t). This implies 7 := %72211)); is integer and a
multiple of k£ + 1. Moreover, we have

§ _[U+Dj+m (€+1)j+m+1
A(J’f’tvm)—[(@ S+ (@S + 1) >

-t

Note for intervals [a1,b1) and [ag, bs) we have

)
L+ 1)j+m) 7‘((€—|—1)j—|—m—|—1)>

(
NSk +1)° ° (k)3(k+1)° (34

[[a1,b1) N [az, b2)| = (min(by, be) — max(ai,as))™.



This implies that, for intervals with integer boundaries, we get
|A(i5 k, s,m) NA(G; £, 8, m)]
1
(kDS (k+1)s

[(k+1)i+n,(k+1)z’+n+1)

A [F(@+ 1) +m),r(€+1)j +m+1)

1 ifr(l+1)j+rm<(k+1)i+n
=¢ (KD¥(k+1)* <r(l+1)j+rm-+r,
0 otherwise,
1 e T4+ 1D)j+rm— o r(e4+1)j+rm— r
= (R)S(k+1)° if - k]+1m =<t kj+1m n+k+1 (35)
otherwise.

Since i, 757 € N, for each j, the condition in (35) holds for exactly ;77 values of . Incorporating this into (33), we get

7m
P(st = n7X£t = m)

s t—1_
B ()5 (e+1) 1 L

- ]2::0 k+1 (kD)S(k+ 1)

ey
= ()S(£+ 1)t x O
O ) T X Gk + 1)

1
=———— =P(Xys =n) - P(Xy =m).
This shows that X, and X, are pairwise independent. O
Proof of Lemma 5. We define the function f(w) := log)i ‘gw for w > 4. Then, we have
Flw) = (loglogw — 1) loge >0.

w(loglogw)?

Hence, f(w) is an increasing function for w > 4. Therefore, it suffices to show that for w, = n!, we have f(w,) <n — 1.
Note that it then implies that f(w) < f(w,) <n —1 for 4 < w < w, =nl
We have

n n+1
log w,, = logn! = Z logm < / log xdx
m=1 1

r=n+1
= (—zloge + zlogx) .
=(n+1)log(n+1) —nloge. (36)

Next, note that for n > 6 we have e"~2 > (n + 1)2. This implies

(n+1)log(n+1) —nloge — (n —1)log(n — 1)

o (et 2\, (nt1)?
= log (0 — ) Den = log 1+n—1 + log o

1 1)2
< loge? + log n—: = log (n :__2) <logl=0. 37
e
Using (37) in (36), we get
logw, < (n—1)log(n —1). (38)

Similarly, we can write

n n
log w, = logn! = Z logm > / log zdx
m=1 1

r=n

= (—zloge+zlogx) =nlogn — (n—1)loge

r=1

> (n—1)log g (39)



Taking log(-) from both sides of (39), we arrive at

loglogw, > log(n — 1) + log logg > log(n — 1), (40)
where the last inequality holds for n > 2e. Dividing (38) by (40), we get
log wy,
—1> 2 = (),
" ~ loglog wy, flwn)
which completes the proof. O
Proof of Lemma 6. Since xy,, € {0,1,...,k}, we have
o0 o
Uin+1 1 k+1 1
X(n)=3! - =<3 - =
() ;(kw)! 2 = ;(k—i—lB)' 2
6 Z(k+3)—-2 1
= — =5
Pt (k+3)! 2
— 1 - 1 1
—6|3 oy .
! !
L=1 (k+2)! = (k+3) 2
5 8 1
= —_ — — 2 — = —_ =
ol(e-3) 2 (-3)] -
17 1
:6<6—e> 5216.5—66—01903
Similarly, we can write
o Upn + 1 1 = 1
X = 3! _ st
(n) ; ki3l 2° (k + 3 T2
8 1
= = — =6e—16.5=—-0.1
6 |e 3} 5 = 6e — 16.5 0.1903

For the first moment of X (n) we have

Ukn+1
(k +3)!

i 1 kt2pl 11
— (k+3)! 2 T 276 12
Note that (a) holds for Uy, with uniform distribution over {0,1...,%}, and (b) follows from Lemma 2. Therefore, we get

. Upp+1 1 11
E{X(n)}:E[S!;(;+3)!_2] B2 =0

Ukn }

12

Similarly, we have

2
. Up, + 1 - > Ukn+1 o+ 1)
= (Se5) [ = |2 e

B o (Upn + 1)? (Ukn +1)(Upn + 1)
=E\> s 2 (k+3)((+3)!

1
”Zm

1<k<(

(b) 1 (k +2)(2k + 3)
N g k+3)!)2 6

]E[Ukn + I}E[Ugn + 1]




1 k+20+2
Z ¢
+3)! !
S (k+3)1e+3)! 2 2

©) — 1 E(k+2) & 1 (k+2)2
_;((k+3)!)2 12 +k§((k+3)!)2 1

1 YRR
2
T2 GrEETE 2 2

1<k<t

O 1 k(k+2) 1
=2 GryRE B +4(

k=1

(d) 1/1)\?
—a+4<6)

where v = £ (1615(2) — 1611 (2) — 11) ~ 0.000482816, and I, (z) is the modified Bessel function of the first kind. Note that

the step in (a) holds since Uy, and Uy, are independent, (b) follows from the fact that Uy, is uniformly distributed over

{0,1,...,k}, the equality in (c) holds for (k + 2)(2k + 3)/6 = k(k +2)/6 + (k + 2)?/4, and (d) follows from Lemma 2.
Therefore, from (6) we get

[“]e
= o
+ |+
Ll
C_/w

k=1

o0 2 o0
Ukn +1 Uin +1 1
E[| X (n)|?] =36E E: —6E 2: 2
X)) ( (k 3y> ESI
k=1 k=1
—%a+1—1+1—%a—ommm4
B 4 2 4 e '

This completes the proof of the lemma. O



