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Abstract—The stringent requirements for the Deep Neural
Networks (DNNs) accelerator’s reliability stand along with the
need for reducing the computational burden on the hardware
platforms, i.e. reducing the energy consumption and execu-
tion time as well as increasing the efficiency of DNN accel-
erators. Moreover, the growing demand for specialized DNN
accelerators with tailored requirements, particularly for safety-
critical applications, necessitates a comprehensive design space
exploration to enable the development of efficient and robust
accelerators that meet those requirements. Therefore, the trade-
off between hardware performance, i.e. area and delay, and
the reliability of the DNN accelerator implementation becomes
critical and requires tools for analysis. This paper presents a
comprehensive methodology for exploring and enabling a holistic
assessment of the trilateral impact of quantization on model
accuracy, activation fault reliability, and hardware efficiency.
A fully automated framework is introduced that is capable of
applying various quantization-aware techniques, fault injection,
and hardware implementation, thus enabling the measurement
of hardware parameters. Moreover, this paper proposes a novel
lightweight protection technique integrated within the framework
to ensure the dependable deployment of the final systolic-array-
based FPGA implementation. The experiments on established
benchmarks demonstrate the analysis flow and the profound im-
plications of quantization on reliability, hardware performance,
and network accuracy, particularly concerning the transient
faults in the network’s activations.

Index Terms—deep neural networks, design space exploration,
quantization, fault simulation, reliability assessment

I. INTRODUCTION

In the past decades, Deep Neural Networks (DNNs) demon-
strated a significant improvement in accuracy by adopting
intense parameterized models [1]. As a consequence, the size
of these models has drastically increased, imposing challenges
in deploying them on resource-constrained platforms [2].
FPGAs are a widely used solution for flexible and efficient
DNN accelerator implementations and have shown superior
hardware performance in terms of latency and power [3]. In
practice, deployment of an FPGA-based DNN accelerator for
the safety- and mission-critical applications (e.g., autonomous
driving) requires addressing the trade-off between different

Fig. 1: Hardware-induced reliability threats in an example
DNN accelerator and their possible impact on the output

design parameters of hardware performance, e.g., area, power,
delay, and reliability. A compromise between conflicting re-
quirements can be achieved by simplifying the implementation
to sacrifice the precision of results but benefiting from lower
resource utilization, energy consumption, and higher system
efficiency. Quantization is one such concept that is being
widely used in neural network deployments [4]. Quantization
is used to compress the model for storage and computation re-
duction. However, recent research shows that faults in memory
can cause a significant drop in DNN accuracy, which raises
concern about the impact of quantization on the reliability of
the network [5].

The reliability of DNN accelerators expresses their ability
to produce correct outputs in the presence of hardware faults
originating from various phenomena, e.g., radiation-induced
soft errors in memory or logic [6]. DNNs are known to be
inherently fault-resilient due to the high number of learning
process iterations and several parallel neurons with multiple
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computation units. Nevertheless, faults may impact the output
accuracy of DNNs drastically [7], and in the case of resource-
constrained critical applications, the reliability of DNNs is
required to be evaluated and guaranteed [8]. The complexity
of such evaluation motivates an automated toolchain with
quantization and reliability analysis to support Design Space
Exploration (DSE) for DNN accelerators already at the early
design stage, i.e. starting from a high-level description, fol-
lowed by providing an FPGA prototype for the selected design.

While the protection of weights stored in ROM can be
ensured through error correction codes (ECC) or similar
protection techniques, the dynamic nature of activations, which
are stored for a short period of time in usually unprotected
memories, poses a critical concern. Thus, it is crucial to thor-
oughly investigate the consequences of faults in the network’s
activations.

This paper presents a framework containing a fully au-
tomated toolchain to perform a study on the impact of
quantization on network accuracy, hardware performance, and
reliability drop in the presence of activation faults (Fig. 1)
in systolic-array-based FPGA accelerators. To the best of
our knowledge, this is the first framework that holistically
considers those parameters. A novel lightweight mitigation
technique is proposed and integrated into the framework to
study potential trade-offs of compensating the reliability drops.
The proposed methodology enables the analysis both at the
level of the network model and at the level of individual layers
of the network.

This framework is empowered by techniques for quantizing
the networks and restricting the activation ranges to be limited
to a certain level throughout the whole network execution by
applying an extra scaling function in the network inference.
This framework uses the high-level description of a DNN as
an input and is capable of providing a transient-fault-resilient
systolic-array-based FPGA implementation of the network
utilizing the design parameters selected by the DSE. The main
contributions in this work are as follows:

• A methodology for holistic exploration of quantization
and reliability trade-offs in systolic-array implementation
that enables assessing the trilateral impact of quantization
on accuracy, activation fault reliability, and hardware
performance.

• A fully-automated framework that is capable of applying
quantization-aware training, post-training quantization,
range-restriction, fault simulation, and implementing the
whole methodology down to hardware implementation to
measure actual hardware parameters like area, latency,
etc.

• A lightweight and effective protection technique is devel-
oped and adopted in the framework toolchain to provide
the final reliable systolic-array-based FPGA implementa-
tion of the network

• Demonstration and analysis of the results on the impact
of quantization on reliability, hardware performance, and
accuracy of the neural networks due to the transient faults
in the activations for two well-known benchmarks.

The rest of the paper is organized as follows. Related works
are discussed in Section II, the methodology and framework
are presented in Section III, the experimental setup and results
are provided in Section IV, and finally, the work is concluded
in Section V.

II. RELATED WORKS

A. DNN reliability and quantization studies

Several works examine the impact of different fault models
on the basis of a number of layers in DNNs and different
data types [9]. Investigation into the effects of data precision
is done in [10], where authors conducted a comparison of the
resilience of FP16, FP32, and FP64 in the context of Matrix
Multiplication. Their findings indicated that the reduction of
precision not only enhances GPU performance and efficiency
but also contributes to its overall resilience.

Another study [11] involved the deployment of MNIST
CNN on FPGAs utilizing FP32, FP16. The results of the
experiment demonstrated that decreasing the data precision
in CNNs can lead to a substantial enhancement in overall
resilience. This improvement was attributed to the reduced
memory usage. Furthermore, [12] noted that the application of
binary quantization to weights in convolutional layers results
in decreased vulnerability factors, although it does increase
the criticality of faults. [13] showed that the impact of faults
is higher in most significant bits (MSBs) and with more
aggressive compression the most significant bits are more
probable to be exposed to faults. The aforementioned works
show that quantization from higher data representations like
FP32 down to INT16 has a positive impact on the performance
and overall resilience, though on the lower quantization ranks
this matter should be studied and is not always impacting
positively on the resilience

In [14], it is shown that in some cases, the impact of the
faults in the weight memories of a DNN can be negligible.
Even though in the above-mentioned works, impact of faults
(soft errors modeled as bit flips) in the weights of a DNN
during inference is examined, to further enhance our com-
prehension of the impact of quantization on the reliability of
DNNs in systolic-array-based DNN accelerators, this work is
enriched with an FI engine capable of injecting faults into the
activations of the DNNs in the systolic architecture.

B. Fault mitigation techniques

The process of quantization and outlier regularization offers
the potential to restrict the numerical range within a DNN,
thereby eliminating the possibility of generating excessively
large values due to faults [5].

Hoang et al. analyzed how various boundary values affect
the network’s accuracy. They have found that the best bound-
ary values for each layer are not necessarily the maximum
values of the layers’ activations [15]. Hence, they propose an
interval search algorithm to find appropriate boundary values
for the ReLU activation function at each layer, named FT-
ClipAct. The proposed clipped activation function maps their
outputs to 0 if activations exceed the boundaries. Although



Fig. 2: Proposed methodology flow

these methods can decrease the effect of faults in DNNs,
they remove a significant portion of non-zero activations by
replacing them with zero, leading to an accuracy drop in high
error rates. It is also noteworthy that the mentioned methods
do not consider low integer quantization and are mostly
working with FP32 and FP16. In this paper, we introduce
a novel lightweight range-checking circuit that, despite the
other works, can consider the maximum values of the layers’
activations and replace the out-ranged values with either lower-
or upper-bound to avoid fault propagation and also avoid
removing a significant portion of non-zero activations by
replacing them with only zero. This protection technique is
employed in the DNN accelerator hardware generation step
of the framework to provide the user with a prototype of the
reliable accelerator.

C. DNN hardware accelerator frameworks

The advantages of implementing and deploying DNNs on
FPGAs are advocated in several recent works. The existing
FPGA-based toolchains to map Convolutional Neural Net-
works (CNNs) are presented in the surveys [16]–[19]. The
FINN framework [20] is released by Xilinx for the exploration
of quantized CNNs’ inference on FPGAs that also provide
customized data-flow architectures for each network. Hetero-
geneous systems are another design strategy in the automated
toolchains that propose hardware/software co-design [21]–
[23]. In these designs, computational units, e.g., adders and
multipliers, are mainly implemented on Programmable Logic
(PL) that is controlled by a control unit in a CPU using a
dedicated framework, e.g., OpenCL [24]. In this work, we
introduce a hardware generation step as part of the framework,
to explore DNN inference on an FPGA-based accelerator with
a customizable systolic array. It seamlessly integrates with
the PYNQ framework [25], leveraging the original PYNQ
bootable image. This integration enhances versatility and
compatibility, enabling users to implement their network on

different FPGA devices supporting PYNQ. Furthermore, the
reconfigurable systolic array implementation introduced in this
step provides flexibility and scalability. Users can customize
this step to meet their specific network requirements by pro-
viding trained parameters and network architectures, resulting
in efficient and high-performance DNN inference.

To the best of our knowledge, none of the previous works
explored the impact of using different levels of full quantiza-
tion (weights, activations and biases) of a DNN in the presence
of transient faults in the activations on the reliability, accuracy,
and delay/resource utilization of the target DNN accelerator.

The approach proposed in this paper goes beyond the
state of the art by establishing a fully automated tool for
enabling efficient quantization in FPGA-based DNN accel-
erators aimed at safety-critical applications. The proposed
framework contains a high-level simulator to study the impact
of quantization on the reliability and accuracy of the network
by considering the hardware architecture, with and without
protection techniques, followed by an efficient and user-
friendly heterogeneous FPGA implementation of the selected
DNN configuration.

III. PROPOSED METHODOLOGY

Fig. 2 illustrates the methodology flow established in the
toolchain for reliability and hardware performance analysis
of quantized DNN hardware accelerators. This framework
takes the DNNs’ Pre-trained model description as the input.
The design, training, and testing of the DNNs are performed
in Python. Quantization-aware training and the Post-training
quantization, Range extraction and DSE steps are seamlessly
integrated into the same environment and are responsible for
extracting the required data for the hardware generation step.
This step is responsible for the hardware implementation of the
selected configuration to measure actual hardware parameters
like area, latency, etc.



Step 1: Quantization-aware training. For this purpose,
a full quantization is implemented, targeting all activations,
weights, and biases. The framework first takes the description
of the network provided by the user and then uses the TFlite
library for quantization-aware training. The user can replace
their preferred quantization library with the toolchain for this
step. The main output of this step is the quantized network’s
parameters (weights and biases) and network architecture.

Step 2: Post-training quantization. In the post-training
quantization step, the user can define any further quantization
that can be applied to the network with a negligible accuracy
loss depending on the level of the quantization. This frame-
work supports quantizing the network down to 4-bit INT. The
output accuracy of the generated network is also provided at
this step and is kept as a baseline for the further steps of the
methodology. For this step, the following algorithm is applied
to the network parameters:

The mapping equation is defined as:

x̃ = clamp
(⌊x

S

⌋
+ Z; qmin, qmax

)
S =

xmax − xmin

2b − 1

Where Z is the offset defined as zero-point, xmax and xmin
represent the maximum and the minimum value in the vector.
The quantization range [qmin, qmax] is determined by the bit-
width. We focus solely on uniform unsigned symmetric quan-
tization, as it is the most commonly employed quantization
setup. Hence, qmin is equal to 0, and qmax is equal to 2b − 1,
where b denotes the bit-width, determining the number of
integer grids.

Step 3: Inference and range extraction. In this step,
after running the inference, the ranges of the activations are
extracted for evaluation and reliability study. The ranges are
extracted based on the set of validation data, and then the
framework extracts the next set of ranges for each layer based
on the test data and validates the extracted data correspond-
ingly.

Step 4: Design Space Exploration.
Step 4-A: Fault simulation. Reliability analysis relies on

a Fault Injection (FI) in a systolic-array-based simulation of
the network in Python, assuming the single bit-flip faults in
the activations. While the multiple-bit fault model is more
accurate, it requires a prohibitively large number of fault
combinations to be considered. Fortunately, it has been shown
that high fault coverage obtained using the single-bit model
results in a high fault coverage of multiple-bit faults [26].
Therefore, a vast majority of practical FI and test methods
are based on the single-bit fault assumption. However, this
framework is capable of applying multiple-bit-flips as a fault
model depending on the user demand.

The reliability analysis step applies the accuracy drop com-
parison of the network-under-test as one of the assessment
metrics. In addition, the framework assesses the reliability of
the DNN by comparing the output probability vector of the
golden run (i.e. the DNN that behaves as expected, without

faults) and the faulty run (i.e. the DNN that includes the fault).
These metrics involve the SDC (Silent Data Corruption) rate.
Specifically, one of the two metrics is “absolute”, and the other
one is “relative”. The SDC rate is defined as the proportion
of faults that caused misclassification in comparison with the
golden model.

• SDC-1: Fault caused a misclassification in the top-ranked
output class.

• SDC-5: Fault caused the top-ranked element not to exist
in the top-5 predicted output classes.

• SDC-10%: Fault caused a variation in the output con-
fidence score of the top-ranked output class more than
10% compared to the golden model.

After choosing the preferred quantization in Step 2, the
designer can go through the systolic-array-based fault injector
provided for the reliability evaluation of the Quantized DNN
(QDNN). The final design is fed to the next step hardware
generator for the DNN hardware accelerator generation and
hardware performance evaluation process.

Fig. 3: Proposed lightweight mitigation technique

Step 4-B: Fault mitigation. Analyzing the output values of
the network’s intermediary layers post-training reveals identi-
fiable upper and lower bounds for the neuron’s output values.
Leveraging this characteristic, we can ensure that any out-of-
range outputs are reassigned to the respective upper or lower-
bound values. This approach can be effectively implemented
using specialized hardware units, as outlined below.

Out-range Error Detection: If the neuron’s output value
exceeds the predetermined upper or lower bound, it indicates
a fault in the neuron’s input values. To address this, a compar-
ison is made between the neuron’s output value and the two
pre-established threshold values. For effective error detection,
this paper introduces the following strategy.

For each layer, we store two values of upper bound and
lower bound as the reference threshold for the out-ranged
values. The output of the MAC (Multiply-Accumulate) unit
is compared with the threshold values using two subtractors
(negative values indicate that the output is beyond the thresh-
old). The result of this comparison defines the final output (Fig.
3). The general overhead of this mitigation technique is two
stored values for each layer, and two subtractors to compare
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Fig. 4: Lenet-5 layer-level reports of reliability drop (based on FI for different quantized networks)
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Fig. 5: AlexNet layer-level reports of reliability drop (%) based
on different quantization levels (unprotected design)

the MAC output value with the range threshold values and
provide the select signal for the MUX to make the decision.

Three variations of this protection technique were imple-
mented in the software to provide users with insights into the
reliability enhancements this framework offers:

1) Method 1: When out-of-range value is detected it is
replaced by the lower bound (min value).

2) Method 2: When out-of-range value is detected it is
replaced by the upper bound (max value).

3) Method 3: When out-of-range value is detected it is
replaced by either lower or upper bound depending on

the sign of the MAC output.

This protection technique is designed for easy replacement
with any other protection methods (i.e. FT-ClipAct [15])
within this framework toolchain without compromising the
overall versatility of the framework.

Step 5: Hardware generation.
At this step, a systolic-array-based QDNN accelerator for

FPGA SoC is generated based on the parameters of the
quantized network provided by Step 4 to assess hardware
utilization and requirements.

The following tasks are executed at this step:
1. Network parameters are analyzed to determine the size

of the systolic array, bit precision, and AXI bus bandwidth
for data transfer. This analysis takes into account the number
of kernels and feature map sizes. The goal is to optimize
hardware accelerator performance for the generated network
and improve overall efficiency.

2. The board is configured with the PYNQ bootable image.
PYNQ provides Python and Jupyter Notebook support to
AMD-Xilinx embedded devices. Included Python APIs allow
to control both processing system and programmable logic
(FPGA). PYNQ setup was selected to provide the users with
a familiar interactive Python environment.

3. Network weights and biases are loaded on the board as
NumPy array files. The network is described using a provided
Python package that interfaces with the accelerator.

4. FPGA is configured from the Jupyter Notebook with the
generated accelerator. Then, inference can be run using the
provided input data.
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TABLE I: Lenet-5 layer-level reports of fault criticality (%) based on FI for different quantized networks
% of critical

faults Unprotected Protected with Method 1 Protected with Method 2 Protected with Method 3

Lenet-5 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit
conv1 0.31 0.52 1.37 3.27 9.12 0.01 0 0.49 2.82 9.06 0.3 0.6 1.45 1.69 3.76 0 0 0.37 1.46 3.49
conv2 0.29 0.46 1.33 3.62 9.38 0.07 0.08 0.84 3.42 8.49 0.21 0.57 1.27 2.45 4.71 0.07 0.08 0.51 1.71 4.08

fc1 1.67 2.03 5.65 14.88 21.15 1.04 0.9 2.14 6.67 11.21 1.72 1.78 4.91 9.23 11.13 0.82 1.18 1.82 3.2 4.53
fc2 1.6 2.41 5.88 16.31 25.5 1.24 1.23 1.98 4.79 13.68 1.59 2.22 5.94 17.42 19.41 0.97 1.26 2.24 3.09 5.07

TABLE II: AlexNet layer-level reports of fault criticality (%) based on FI for different quantized networks

% of critical
faults Unprotected Protected with Method 3

AlexNet 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit
conv1 0.5 0.79 1.76 4.03 8.81 0.05 0.06 0.52 1.87 3.56
conv2 0.58 1.05 1.35 1.66 4.11 0.03 0.03 1.035 1.39 3.31
conv3 1.46 1.47 5.11 11.48 23.91 0.07 0.08 1.14 1.29 4.38
conv4 0.99 1.63 2.46 7.13 14.26 0.03 0.04 1.30 4.13 5.17
conv5 0.90 2.10 3.69 7.82 14.31 0.04 0.09 1.61 3.44 5.17

fc1 3.02 4.95 8.15 16.38 31.19 0.14 0.20 1.90 5.11 8.66

TABLE III: SDC report for two unprotected Lenet-5 examples
with different quantization levels

Metric (%) 16-bit 8-bit
SDC-1 3.18 5.24
SDC-5 28.04 37.26
SDC-10% 14.30 17.65

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Two networks are studied in this work: Lenet-5 and
AlexNet. Lenet-5 is trained on the MNIST dataset, and
AlexNet is trained on the CIFAR-10 dataset. Both networks
are trained according to the Step 1 methodology using
quantization-aware training. Lenet-5 is trained using 16-bit
INT data type, AlexNet is trained using 8-bit INT. For the
study, different levels of quantization are applied in the Step 2
using post-training quantization.

Simulations are performed on 2 × Intel Xeon Gold 6148
2.40 GHz (40 cores, 80 threads per node) with 96 GB RAM.
To speed up the simulation process, the framework supports
multi-thread parallelism.

To show the hardware characteristics of the output QDNN,
studied networks are implemented on the Zynq UltraScale+

ZCU104 Evaluation Board (xczu7ev-ffvc1156-2-e).

B. Fault simulator

The fault simulator that is used in Step 4 calculates the
sufficient number of faults required for the reliability analysis.
QDNNs generated by Step 2 are validated by means of fault
injection over the test set.

Random fault injection. According to the adopted fault
model, a random single bit-flip is injected into a random
activation in a random layer of the network, and the whole
test set is fed to the network to obtain the accuracy of the
network. This process is repeated several times to reach an
acceptable confidence level, which depends on the number of
neurons and data representation bit length based on [27]. This
work provides an equation to reach 95% confidence level and
1% error margin. The framework adopts the formula presented
in this work and provides a sufficient number of repetitions
required for reliability analysis.

C. Validation results

The accuracy results for the quantized networks are reported
in Table IV. Further, fault injection is applied on each net-
work automatically as part of the defined configuration of
the framework, and reliability drop and fault criticality are



TABLE IV: Model-level design space exploration results for Lenet-5 and AlexNet

Network BP GIOPS Resource utilization Accu- Reliability HW utilization (LUT) Fault criticality improvement, %
LUT FF DSP racy, % improvement, % M1 M2 M3 M1 M2 M3

Lenet-5

16 0.058 5298 12,892 9 95.41 — 144 144 576 — — —
8 0.079 3475 7003 9 94.02 64.33 72 72 288 57.78 8.75 65.61
7 — — — — 93.93 67.95 68 68 135 71.24 14.95 67.74
6 — — — — 93.52 71.90 63 63 99 57.25 6.16 65.91
5 — — — — 92.49 81.17 68 68 81 36.30 31.34 66.86
4 0.087 2114 3865 9 89.65 81.17 36 36 63 25.85 44.92 69.20

AlexNet

16 0.338 16,654 35,503 64 — — 1024 1024 2048 — — —
8 0.465 12,138 20,539 64 73.03 92.96 512 512 1024 — — 94.27
7 — — — — 72.26 89.79 480 480 960 — — 95.19
6 — — — — 72.11 73.72 448 448 704 — — 58.59
5 — — — — 70.69 66.32 480 480 576 — — 54.13
4 0.562 6428 10,067 64 69.15 78.07 256 256 448 — — 60.08

reported in Fig. 4 and Table I for the Lenet-5 and in Fig. 5
and Table II for AlexNet. Reliability drop is defined as the
percentage of accuracy loss in the presence of the faults in
the activations in a systolic-array-based simulation model of
the network. Fault criticality is defined as percentages of the
faults that show a negative impact on the network accuracy
and lead to misclassification. In Fig. 4 and Table I, the
results for all versions of the proposed protection technique are
documented for Lenet-5. Table II, only the network protected
with Method 3 is compared with the unprotected network
for AlexNet, and in Fig. 5 the reports the areliability drop
without the protection techniques to show the impact of faults
in activations, on different quantization level and layers of an
AlexNet network. primarily due to space limitations within the
paper.

From the previous works [11], it is evident that the reduc-
tion in memory size and quantization can lead to enhanced
resilience and mitigate the impact of weight faults due to a
reduced memory footprint. However, according to the pre-
sented charts, quantization may simultaneously heighten the
network’s vulnerability to faults in activations and logic. This
is particularly crucial in lower precision networks, where even
minor bit alterations can have significant ramifications. That is
why reliability studies in the DNNs should be done for each
QDNN to ensure the impact of quantization on the network’s
reliability.

Fig. 4 shows that protection Method 3 is capable of improv-
ing the reliability of the network in the presence of a fault
for more than 34.23% in the worst case for Lenet-5. These
numbers are calculated based on the following equation:

% of Improvement =
(

New Value − Old Value
Old Value

)
× 100

The same results are reported for AlexNet in Table IV, which
shows an improvement of more than 51.79% in the worst
case. Improvements in fault criticality for both networks at the
model level are also reported in Table IV, which demonstrates
the positive impact of the protection technique on reducing
the criticality of faults in both networks. These data also
showcase the increasing fault criticality in different networks
by increasing the level of quantization. Based on the results
reported in Table IV, protection Method 3, which shows the

best results for improving reliability among all of the proposed
protection techniques, introduces less than 10% overhead
compared to the LUTs required for the unprotected network
implementation. Meanwhile, full protection of the network
with TMR (Triple Module Redundancy) introduces more than
200% hardware overhead.

The fault injection procedure is performed for different
quantizations and different versions of the proposed protection
technique, and the accuracy drop, due to quantization and
fault injection, is profiled. Further, in Table III, SDC metrics
of two examples of quantized Lenet-5 are reported. It can
be seen that these two networks are susceptible to injected
faults. Specifically, the SDC-10% and SDC-5 are very high:
on average, about 3.18% of the time the faulty inference
misclassified the input in the 16-bit network and 5.24% in
the 8-bit network; furthermore, in 28.04% cases for the 16-bit
network and 37.26% cases for the 8-bit network, the expected
class is not even in the TOP-5 predictions. In addition, it can
be observed that the 16-bit quantized network shows better
performance in the presence of faults compared to the 8-bit
network. In general, these results show that the DNNs used in
this experiment are not suitable for a safety-critical application.

Hardware resource utilization and inference latency in
GIOPS (Giga Integer Operations Per Second) for different
quantization levels are reported in Table IV alongside ac-
curacy, reliability improvement due to the quantization, and
hardware overhead and fault criticality improvement for fault
mitigation techniques. These results of model-level design
space exploration are provided for the user to understand the
trade-off between reliability, accuracy, and required computa-
tional resources.

V. CONCLUSION

This paper presents a comprehensive methodology for ex-
ploring and enabling a holistic assessment of the trilateral
impact of quantization on model accuracy, activation fault reli-
ability, and hardware efficiency. A fully automated framework
is introduced that is capable of applying various quantiza-
tion techniques, fault injection, and hardware implementation,
thus enabling the measurement of crucial hardware parame-
ters like area and latency. Moreover, this paper proposes a
novel lightweight protection technique integrated within the



framework to ensure the dependable deployment of the final
systolic-array-based FPGA implementation. The experiments
on established benchmarks demonstrate the analysis flow
and the profound implications of quantization on reliability,
hardware performance, and network accuracy, particularly
concerning the transient faults in the network’s activations.
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