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Multi-user Beam-Alignment
for Millimeter-Wave Networks

Rana A. Hassan, Nicolo Michelusi

Abstract—Millimeter-wave communications is the most
promising technology for next-generation cellular wireless sys-
tems, thanks to the large bandwidth available compared to sub-6
GHz networks. Nevertheless, communication at these frequencies
requires narrow beams via massive MIMO and beamforming
to overcome the strong signal attenuation, and thus precise
beam-alignment between transmitter and receiver is needed. The
resulting signaling overhead may become a severe impairment,
especially in mobile networks with high users density. Therefore,
it is imperative to optimize the beam-alignment protocol to
minimize the signaling overhead. In this paper, the design of
energy efficient joint beam-alignment protocols for two users is
addressed, with the goal to minimize the power consumption
during data transmission, subject to rate constraints for both
users, under analog beamforming constraints. It is proved that a
bisection search algorithm is optimal. Additionally, the optimal
scheduling strategy of the two users in the data communication
phase is optimized based on the outcome of beam-alignment,
according to a time division multiplexing scheme. The numerical
results show significant decrease in the power consumption for the
proposed joint beam-alignment scheme compared to exhaustive
search and a single-user beam-alignment scheme taking place
separately for each user.

I. INTRODUCTION

Mobile data traffic has shown a tremendous growth in the
past few decades, and is expected to increase by 53% in
each year until 2020 [1]. Traditionally, mobile data traffic
is served almost exclusively by wireless systems operating
under 6 GHz, due to the availability of low-cost hardware
and favorable propagation characteristics at these frequencies.
However, conventional sub-6 GHz networks cannot support the
high data rate required by applications such as high definition
video streaming, due to limited bandwidth availability. For
this reason, millimeter-wave (mm-wave) systems operating
between 30 to 300 GHz are receiving growing interest in both
5G related research and industry [2], [3].

The large bandwidth available in the mm-wave frequency
band can better address the demands of the ever increasing
mobile traffic. However, signal propagation at these frequen-
cies is more challenging than traditional sub-6 GHz systems,
due to factors such as high propagation loss, directivity,
sensitivity to blockage [4], which are exacerbated with the
increase in the carrier frequency. These features open up many
challenges in both physical and MAC layers for the mm-
wave frequencies to support high data rate. To overcome the
propagation loss, mm-wave systems are expected to leverage
narrow beam communication, via large-dimensional antenna
arrays with directional beamforming at both base stations
(BSs) and mobile users (MUs), as well as signal processing
techniques such as precoding and combining [5].

Maintaining beam-alignment between transmitter and re-
ceiver is a challenging task in mm-wave networks, especially
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in dense and mobile networks: under high user density and
mobility, frequent blockages and loss of alignment may oc-
cur, requiring frequent realignment. Unfortunately, the beam-
alignment protocol may consume time, frequency and energy
resources, thus potentially offsetting the benefits of mm-wave
directionality. Motivated by this fact, in our previous work
[6] we derived the optimal beam-width for communication,
number of sweeping beams, and transmission energy so as to
maximize the average rate under an average power constraint
in a mobile scenario with a single user. Several schemes
have been proposed to achieve beam-alignment in mm-wave
networks. One of the most popular ones is exhaustive search,
where the BS and the MU sequentially search through all
possible combinations of transmit and receive beam patterns
[7]. An iterative search algorithm is proposed in [8], where
the BS first searches in wider sectors by using wider beams,
and then refines the search within the best sector. In [9], we
derived a throughput-optimal search scheme called bisection
search, which refines search within the previous best sector by
using a beam with half the width of the previous best sector. It
is shown that the bisection scheme outperforms both iterative
and exhaustive schemes in terms of maximizing throughput in
the communication phase. All these works focus on a single-
user scenario and do not investigate how to exploit the beam-
alignment protocols jointly across multiple users.

In the literature, multiuser mm-wave systems have been
studied under the topic of precoding [10], [11], beamform-
ing [12] and for wideband mm-wave systems, where the
channel is characterized by multi-path components, different
delays, Angle-of-Arrivals/Angle-of-Departures (AoAs/AoDs),
and Doppler shifts [13]. In all of the previous work, the
authors proposed new algorithms in order to enhance the
system performance. However, the optimality with respect
to optimizing the communication performance in multi-user
settings is not established. All of these algorithms cost in terms
of time and energy resources, and have a large effect on the
directionality achieved in the data communication phase, and
thus on power consumption and achievable rate. This motivates
us to seek how to optimally balance resources among beam-
alignment and data communication.

In this paper, we consider the optimization of beam-
alignment and data communication in a two-users mm-wave
network. The BS transmits a sequence of beam-alignment
beacons using a sequence of beams with different beam-
shape, and refines its estimate on the position of the two
users based on the feedback received. Afterwards, it sched-
ules data transmission to the two users via time-division.
Using a Markov decision process (MDP) formulation [14],
we prove the optimality of a bisection search scheme during
beam-alignment, which scans half of the uncertainty region
associated to each user in each beam-alignment slot. We
demonstrate numerically power savings up to 3dB lower than
under exhaustive search.
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Fig. 1: Beam pattern for multiuser system model.

The rest of the paper is organized as follows. In Section II,
we present the system model and the problem formulation,
followed by the analysis in Section III. Numerical results
are presented in Section IV, followed by concluding remarks
in Section V. The proofs of the main analytical results are
provided in the Appendix.

II. SYSTEM MODEL

We consider a mm-wave cellular network with a sin-
gle base station (BS) and M mobile users (MUi), where
i=1, 2, · · · ,M , depicted in Fig. 1. In this paper, we consider
the case M=2, and leave the more general case M≥2 for
future work.

The BS is located at the origin and the mobile user MUi is
located at angular coordinate Θi, at distance di from the BS,
where Θi ∈ [0, 2π] and di ≤ dmax, with dmax > 0 being the
coverage area of the BS. We assume that Θi is uniformly
distributed in [−σ2 ,

σ
2 ], denoted as Θi ∼ U [−σ2 ,

σ
2 ] where

σ ∈ (0, 2π] represents the availability of prior information
on the angular coordinate of MUi. We assume a single signal
path between the BS and each MU, either line-of-sight (LOS)
or a strong non-LOS signal (e.g., when the LOS signal is
temporarily obstructed due to mobility).

The BS uses analog beamforming with a single RF chain.
Data transmission is orthogonalized across users. We model
the transmission beam of the BS using a generalization of
the sectored antenna model [15]: the overall transmission
beam is the superposition of multiple beams, each covering
a specific sector, which can be implemented via phase shifters
[16]. In addition, we ignore the effect of secondary beam
lobes. Thus, we represent the beam shape (part of our design)
at time k via the set Bk ⊆ [−π, π], which represents the
set of angular directions covered by the transmission beam.
Furthermore, we assume that the MUs receive isotropically.
The proposed analysis can be extended to non-isotropic MUs
by using multiple beam-alignment stages, each corresponding
to a specific beam pattern at the MU [17].

We assume a frame-slotted network with frame duration
Tfr [s]. Each frame is divided into a beam-alignment phase of
duration TBA (Sec. II-A), followed by a data communication
phase of duration Tcm=Tfr−TBA (Sec. II-B), shown in Fig. 2.

A. Beam-Alignment Phase
In this section, we describe the beam-alignment phase,

executed in the initial portion of the frame, of duration TBA.
Beam-alignment is performed over L slots, each of duration

...
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Fig. 2: Timing diagram of the beam-alignment and data communica-
tion phases.

T , TBA/L. As shown in Fig 2, at the beginning of each slot
k = 0, 1, . . . , L − 1, the BS sends a beacon bk of duration
Tb < T , using a beam with beam-shape Bk, and receives a
feedback message from both MUs in the remaining portion
T − Tb of the slot.

The beam-shape Bk is designed based on the current
probability density function (PDF) of MUs’ angles (Θ1,Θ2),
denoted as Sk(θ1, θ2), which is updated via Bayes’ rule
based on the feedback received from both MUs, see (5).
We also let Sk,1(θ1) =

∫ π
−π Sk(θ1, θ2)dθ2 and Sk,2(θ2) =∫ π

−π Sk(θ1, θ2)dθ1 be the marginal PDF of MU1 and MU2,
respectively. Note that, at time 0, Θi ∼ U [−σ2 ,

σ
2 ], hence

S0,1(θ) = S0,2(θ) =
1

σ
χ

(
θ ∈

[
−σ
2
,
σ

2

])
, (1)

S0(θ1, θ2) = S0,1(θ1) · S0,2(θ2), (2)

where χ(.) is the indicator function. For convenience, we
define the support of Sk,i as

Sk,i , supp(Sk,i), (3)

which defines the region of uncertainty for MUi at time k.
If MUi is located within Bk, i.e., Θi ∈ Bk, then it detects the

beacon signal successfully and it transmits an acknowledgment
(ACK) back to the BS, denoted as ci,k=1. Otherwise, it sends
a negative-ACK (NACK), denoted as ci,k=0, to inform the BS
that no beacon has been detected. We assume that the feedback
message ci,k ∈ {0, 1} is received without error by the BS,
within the end of the slot. This can be accomplished over a
reliable low-frequency control channel, which does not require
directional transmission and reception [18]. Additionally, we
assume that the beacon is detected with no false-alarm nor mis-
detection errors. This assumption requires a dedicated beam
design to achieve small error probabilities [19]. Thus, we can
express the feedback signal as

Ck,i = χ(Θi ∈ Bk). (4)

Given the sequence of feedback signals Ck ,
(c0,1, c0,2 · · · ck,1, ck,2) received up to slot k, and the
sequence of beam shapes Bk , (B0, · · · ,Bk) used for
beam-alignment, the BS updates the PDF on the MUs’
angular coordinate based on Bayes’ rule as

Sk+1(θ1, θ2) = f(θ1, θ2 | Bk, Ck−1, ck,1, ck,2) (5)

(a)
=

P(ck,1, ck,2 | θ1, θ2,Bk, Ck−1)f(θ1, θ2 | Bk, Ck−1)∫
[−π,π]2 P(ck,1, ck,2 | θ̃,Bk, Ck−1)f(θ̃ | Bk, Ck−1)dθ̃

(b)
=

P(ck,1 | θ1,Bk)P(ck,2 | θ2,Bk)Sk(θ1, θ2)∫ π
−π
∫ π
−π P(ck,1 | θ̃1,Bk)P(ck,2 | θ̃2,Bk)Sk(θ̃1, θ̃2)dθ̃1dθ̃2

,



where f(·|·) denotes conditional PDF. In step (a), we ap-
plied Bayes’ rule; in step (b), we used the previous PDF
f(θ1, θ2|Bk, Ck−1i ) = Sk(θ1, θ2) and the fact that ck,i is a
function of Θi and Bk via (4).

B. Communication Phase
In the communication phase of duration Tcm, the BS sched-

ules the two MUs using time division multiplexing (TDM).
Specifically, it transmits to MU1 over a portion τ1 ≤ Tcm
of the data communication interval, using the transmission
power PL,1 and beam with shape BL,1, and to MU2 over the
remaining interval of duration Tcm− τ1, with power PL,2 and
using a beam with shape BL,2.

The powers PL,i and beam-shapes BL,i for both MUs,
and the time allocation τ1 are designed based on the PDF
of the MUs’ angular direction SL at the beginning of the
communication phase, so as to support the rate Ri over the
entire frame. The beam-shape BL,i for MUi is chosen so as
to provide coverage to guarantee successful transmission, i.e.,

BL,i = SL,i. (6)

Thus, we can express the rate Ri [bps/Hz] for both MUs as

R1 =
τ1
Tfr

log2

(
1 + γ1

PL,1
ωL,1

)
, (7)

R2 =
Tcm − τ1
Tfr

log2

(
1 + γ2

PL,2
ωL,2

)
, (8)

where γi ≡
λ2d−αi

8πN0Wtot
is the SNR scaling factor, α is the path

loss exponent, N0 is the noise power spectral density, Wtot is
the total bandwidth and ωL,i , |BL,i| is the overall beam-
width of the transmission beam. These equations presume
that the transmission power PL,i is spread evenly across the
transmit directions defined by the beam shape BL,i, so that
the received SNR is γiPL,i/ωL,i. We then express the energy
expenditure as a function of the rate requirements as

E1 , τ1PL,1 = ωL,1ε1 (τ1) , (9)

E2 , (Tcm − τ1)PL,2 = ωL,2ε2(Tcm − τ1), (10)

where we have defined

εi(τ) , τ
2
Tfr
τ Ri − 1

γi
(11)

as the energy per radian required to transmit with average rate
Ri to MUi over an interval of duration τ .

III. OPTIMIZATION AND ANALYSIS

We define a policy π as a function that, given the PDF
Sk, selects the beam-shape Bk in each beam-alignment slot
k = 0, 1, . . . , L−1, the power PL,i, beam-shape BL,i and time
allocation τ1, Tcm− τ1 for both MUs during the data commu-
nication interval. The goal is to design π so as to minimize
the average power consumption in the data communication
phase, with rate constraints R1 and R2 for both MUs. This
optimization problem is expressed as

P̄avg , min
π

Eµ
[ωL,1
Tfr

ε1 (τ1) +
ωL,2
Tfr

ε2 (Tcm − τ1)
]
, (12)

where the expectation is with respect to the beam-shapes
and time allocation prescribed by policy π, and the angular

coordinates of the MUs. We neglect the energy consumption
in the beam-alignment phase, studied in [20] for the single-
user case, and thus assume that data communication is the
most energy-hungry operation.

A. Markov Decision Process formulation
We formulate the optimization problem as a MDP, with state

given by the PDF of the angular coordinates of the two MUs,
Sk in slots k = 0, 1, . . . , L. During the beam-alignment phase,
policy π dictates the beam-shape in slot k as

Bk = πk(Sk). (13)

At the end of the beam-alignment phase, the BS selects the
time allocation τ1 for MU1 and Tcm− τ1 for MU2 to be used
during the communication phase. As explained previously, the
beam-shape is chosen via (6) to provide coverage, and the
power PL,i via (7)-(8) to support the rate demands. Thus,
policy π dictates the time allocation as

τ1 = πL(SL). (14)

Given the PDF Sk and the beam-shape Bk during the beam-
alignment slots, the MUs generate the feedback (Ck,1, Ck,2)
via (4), with probability distribution

P (Ck,1=c1, Ck,2=c2|Sk,Bk) =

∫
Bc1k ×B

c2
k

Sk(θ1, θ2)dθ1dθ2, (15)

where we have defined the set operation

A1 ≡ A, A0 ≡ [0, 2π] \ A. (16)

Optimizating π is challenging due to the continuous PDF
space. We now prove some structural properties of the model,
which allow to simplify the state space.

Theorem 1. We have that

Sk(θ1, θ2) = Sk,1(θ1) · Sk,2(θ2) (independence), (17)

Sk,i(θi) =
1

|Sk,i|
χ(θi ∈ Sk,i) (uniform distribution). (18)

Moreover, either Sk,1 ≡ Sk,2 or Sk,1 ∩ Sk,2 ≡ ∅.

Proof. See Appendix A.

The independence and uniform distribution expressed by
Theorem 1 imply that the feedback signals generated
by the two MUs are statistically independent of
each other, i.e., P (Ck,1 = c1, Ck,2 = c2|Sk,Bk) =
P (Ck,1 = c1|Sk,1,Bk)P (Ck,1 = c1|Sk,2,Bk) , with the
probability of ACK given by

P (Ck,i = 1|Sk,i,Bk) =
|Bk ∩ Sk,i|
|Sk,i|

, (19)

since Θi is uniformly distributed in the support Sk,i. The next
state Sk+1 is then a deterministic function of the PDF Sk,
beam-shape Bk and feedback (ck,1, ck,2) via Bayes’ rule, as
in (5), and the support Sk+1,i for each MU is given by

Sk+1,i ≡ Sk,i ∩ B
Ck,i
k , ∀i ∈ {1, 2}. (20)

We define the uncertainty width for MUi as Uk,i , |Sk,i|.
Note that, the larger Uk,i, the more the uncertainty on the



angular coordinate of MUi. Additionally, let ρk , χ(Sk,1 ≡
Sk,2) be the binary variable indicating whether Sk,1 ≡ Sk,2
(the two MUs are within the same uncertainty region, ρk = 1)
or Sk,1 ∩ Sk,2 ≡ ∅ (the two MUs are in different uncertainty
regions, ρk = 0). We also define ωi , |Sk,i ∩ Bk| as the
beam-width within the uncertainty region of MUi. Note that,
if ρk = 1, then it follows that Sk,1 ≡ Sk,2, hence ωk,1 = ωk,2.
We have the following result.

Theorem 2. (Uk,1, Uk,2, ρk) is a sufficient statistic to select
(ω1, ω2) at time k. Given (ω1, ω2), the beam-shape Bk may
be arbitrary provided that |Sk,i ∩ Bk| = ωi,∀i ∈ {1, 2}.

Proof. See Appendix B.

Therefore, in the following we can focus on the design of
the beam-widths (ω1, ω2). With this notation, the probability
of ACK can be written as

P (Ck,i = 1|Uk,i, ωk,i) =
ωk,i
Uk,i

. (21)

Thus, given the state (Uk,1, Uk,2, ρk) in slot k = 0, 1, . . . , L−1
and the beam-widths (ωk,1, ωk,2), the new state becomes
(Uk+1,1, Uk+1,2, ρk+1) where

Uk+1,i =

{
|Bk ∩ Sk,i| = ωk,i Ck,i = 1,
|B0k ∩ Sk,i| = Uk,i − ωk,i Ck,i = 0,

(22)

and

ρk+1 =

{
ρk ck,1 = ck,2,
0 ck,1 6= ck,2,

(23)

with probabilities given by (21). The rule (22) expresses the
fact that, if an ACK is received, then the support of Sk+1,i

becomes Sk+1,i ≡ Sk,i ∩ Bk as given by (20), with width
ωk,i = |Sk+1,i|. In contrast, if a NACK is received, then MUi
is located in the complement region Sk+1,i ≡ Sk,i \ Bk, with
width Uk,i − ωk,i. Rule (23) describes the evolution of ρk.
When ρk = 0, the two MUs are located in disjoint uncertainty
regions. In the next slot, they will still be in disjoint regions,
irrespective of the feedback received at the BS. In contrast,
when ρk = 1, if the MUs send discordant feedback signals
(Ck,1 6= Ck,2), the BS infers that they are located in disjoint
uncertainty regions, hence ρk+1 = 0; if the MUs send concor-
dant feedback signals (Ck,1 = Ck,2), the BS infers that they
are still in the same uncertainty region, hence ρk+1 = 1. The
optimal beam-alignment algorithm and MU scheduling can be
found via dynamic programming (DP). At the beginning of
the communication phase, given the state (UL,1, UL,2, ρL) the
optimal time allocation τ1 is the minimizer of (see (12) and
(6) with ωL,i = |BL,i| = |SL,i| = UL,i)

VL(UL,1,UL,2,ρL)= min
τ1∈(0,Tcm)

UL,1ε1(τ1)+UL,2ε2(Tcm−τ1). (24)

Note that the objective function is convex in τ1 ∈ (0, Tcm),
and it diverges for τ1 → 0 and τ1 → Tcm. Thus, the optimal
τ∗1 is the unique solver of

ε′2 (Tcm − τ∗1 )

ε′1 (τ∗1 )
=
UL,1
UL,2

, (25)

where ε′i(τ) is the first order derivative of εi(τ) with respect
to τ . The function VL(UL,1, UL,2, ρL) denotes the cost-to-go
function at the beginning of the communication phase. During

the beam-alignment phase (slots k = 0, 1, . . . , L − 1), the
optimal value function for the cases ρk = 1 and ρk = 0 is
computed recursively as

Vk(U,U, 1)= min
ω∈[0,U ]

E

Vk+1(Uk+1,1, Uk+1,2, ρk+1)

∣∣∣∣∣∣
ωk,i=ω,
Uk,i=U,
ρk=1


= min
ω∈[0,U ]

ω2

U2
Vk+1(ω, ω, 1)+

(
1−ω

U

)2
Vk+1(U−ω,U−ω, 1)

+
ω

U

(
1−ω

U

)[
Vk+1(ω,U−ω, 0) + Vk+1(U−ω, ω, 0)

]
(26)

and

Vk(U1, U2, 0)= min
ωi∈[0,Ui]

E

Vk+1(Uk+1,1, Uk+1,2, ρk+1)

∣∣∣∣∣∣
ωk,i=ωi,
Uk,i=Ui,
ρk=0


= min
ω∈[0,Uk]

ω1

U1

ω2

U2
Vk+1(ω1, ω2, 0)

+
ω1

U1

(
1−ω2

U2

)
Vk+1(ω1, U2−ω2, 0)

+

(
1−ω1

U1

)
ω2

U2
Vk+1(U1−ω1, ω2, 0)

+

(
1− ω1

U1

)(
1− ω2

U2

)
Vk+1(U1 − ω1, U2 − ω2, 0). (27)

These expressions are obtained by computing the expectation
of Vk+1(Uk+1,1, Uk+1,2, ρk+1), with respect to the realization
of the feedback signals (Ck,1, Ck,2), with distribution (21),
and the state dynamics given by (22) and (23).

In the next theorem, we prove the optimality of a bisection
beam-alignment algorithm, which selects the beam-widths as
ωk,i = Uk,i/2 in each slot.

Theorem 3. The optimal beam-widths during the beam-
alignment phase are given by

ωk,i =
1

2
Uk,i. (28)

Then,

P̄avg =
σ

Tfr2L

[
ε1 (τ∗1 ) + ε2 (Tcm − τ∗1 )

]
, (29)

where τ∗1 uniquely satisfies

ε′2 (Tcm − τ∗1 )

ε′1 (τ∗1 )
= 1. (30)

Proof. See Appendix C.

Note that, in the special case γ1 = γ2 = γ, (30) yields

τ∗1 =
R1

R1 +R2
Tcm (31)

and

P̄avg =
σ

γ2L
Tcm
Tfr

(
2
Tfr
Tcm

(R1+R2) − 1
)
. (32)



IV. NUMERICAL RESULTS

In this section, we compare the total power consumption
versus the sum rate Rtot = R1 +R2 under:
• The proposed joint beam-alignment bisection algorithm.
• Single-user beam-alignment [9]: in this scheme, odd

frames are allocated to MU1 using L1 slots for beam-
alignment, even frames to MU2 using L2 slots for beam-
alignment. Beam-alignment is executed using the bisec-
tion scheme, whose optimality has been proved in [9] for
the single user scheme. To achieve the target rate demand
Ri over a period of two frames, the rate demand for MUi
is set to 2×Ri in the corresponding allocated frame.

• Joint exhaustive search: the BS scans exhaustively up to
K = 2L beams, each with beam-width 2π/K, starting
from beam index 1 to beam index K. When both MUs
are detected, the communication phase starts, using the
TDM scheme described in Section II-B. If MUi is located
in the beam with index idi, beam-alignment will take
max{id1, id2} slots, followed by data communication
over the remaining interval Tfr −max{id1, id2}T .

The parameters L, L1, L2 are optimized to achieve the
minimum power consumption, constrained to L,L1, L2 ≤ 7.
Thus, the minimum beam resolution is given by 2π/128.

We consider this scenario: Tfr = 2ms, σ = 2π, T = 10µs,
di = 50m, Wtot = 500MHz, λ = 5mm (carrier frequency
60GHz), α = 2, N0 = −174dBm. It follows that γ1 = γ2. We
vary R1 and let R2 = ψR1, for a fixed parameter ψ ∈ [0, 1].

The results are plotted in Fig. 3. We notice that, when the
rate for both MUs are equal (ψ = 1), both joint and single-user
beam-alignment have the same performance. We note that the
power consumption under the joint beam-alignment scheme
with bisection is independent of ψ, but only depends on the
sum rate, as can be seen in (32). Using a similar argument as
to derive (32), the same holds under joint exhaustive search.
In contrast, the power consumption under single-user beam-
alignment is highly affected by ψ. This is due to the fact that
an entire frame is allocated to MU2, despite its rate demand is
only a fraction ψ of that of MU1. This causes great imbalances
in the power allocated to the two MUs (such imbalance
disappears when ψ = 1, so that the rate demands are the
same). Instead, with joint beam-alignment, the two MUs
are scheduled optimally based on TDM, yielding significant
power savings. We note that the joint beam-alignment scheme
with bisection has the least power consumption, with 3dB
power saving compared to joint exhaustive search, and up to
7dB compared to single-user beam-alignment, for moderate
imbalances on the rate demands (ψ = 0.5).

V. CONCLUSIONS

In this paper, we studied the design of energy efficient
joint beam-alignment protocols for two users, with the goal
to minimize the power consumption during data transmission,
subject to rate constraints for both users, under analog beam-
forming constraints. We prove that a bisection search algorithm
is optimal. In addition we schedule optimally the two users
during data communication via time division multiplexing,
based on the outcome of beam-alignment. Our numerical
results show significant power savings compared to exhaustive
search and a single-user beam-alignment scheme taking place
separately for each user.
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Fig. 3: Power versus sum rate under different algorithms.

APPENDIX A: PROOF OF THEOREM 1

Note that (4) along with Bayes’ rule (5) imply (20). We
prove the theorem by induction. The induction hypothesis
holds for k = 0, see (1). Now, assume that it holds in slot
k ≥ 0. We show that this implies that it holds in slot k+ 1 as
well. Thus, assume that either Sk,1 ≡ Sk,2 or Sk,1∩Sk,2 ≡ ∅.
First, let us consider the case Sk,1 ≡ Sk,2 with Ck,1 = Ck,2.
From (20) we have that

Sk+1,1 ≡ Sk,1 ∩ B
Ck,1
k ≡ Sk,2 ∩ B

Ck,2
k ≡ Sk+1,2,

and thus Sk+1,1 ≡ Sk+1,2. For all other cases, we have that

Sk+1,1 ∩ Sk+1,2 ≡ (Sk,1 ∩ Sk,2) ∩ (BCk,1k ∩ BCk,2k ) ≡ ∅,

since either Sk,1 ∩ Sk,2 ≡ ∅ from the induction hypothesis,
or Sk,1 ≡ Sk,2 but Ck,1 6= Ck,2, yielding BCk,1k ∩ BCk,2k ≡
B0k ∩ B1k ≡ ∅. Thus, it follows that either Sk,1 ≡ Sk,2 or
Sk,1 ∩ Sk,2 ≡ ∅.

Now, assume that Sk satisfies (17) and (18) in slot k. By
specializing Bayes’ rule (5) to this case, we obtain

Sk+1(θ1, θ2) =

∏
i∈{1,2} χ(θi ∈ Sk,i ∩ B

ck,i
k )∫ π

−π
∫ π
−π
∏
i∈{1,2} χ(θ̃i ∈ Sk,i ∩ B

ck,i
k )dθ̃1dθ̃2

,

where we have used (4) and (16), and the fact that χ(θi ∈
Bck,ik )χ(θi ∈ Sk,i) = χ(θi ∈ Sk,i∩B

ck,i
k ). Solving the integral

in the denominator and using (20) we obtain

Sk+1(θ1, θ2) =
∏

i∈{1,2}

1

|Sk+1,i|
χ(θi ∈ Sk+1,i),

thus proving the induction step. The theorem is proved.

APPENDIX B: PROOF OF THEOREM 2

We prove this theorem by induction. Let Vk(Sk) be the
value function from state Sk in slot k. At the beginning of the
communication phase, from (12) we have that

VL(SL) = min
τ1

UL,1ε1 (τ1) + UL,2ε2 (Tcm − τ1) , (33)

since the condition (6) implies ωL,i = |BL,i| = |SL,i| = UL,i.
Therefore,

VL(SL) = VL(|SL,1|, |SL,2|, χ(SL,1 ≡ SL,2)). (34)



Now, let k < L and assume that (Uk+1,1, Uk+1,2, ρk+1) is a
sufficient statistic to choose ωj,i for j ≥ k + 1, with Bj such
that |Sj,i ∩ Bj | = ωj,i,∀i ∈ {1, 2}, i.e.,

Vk+1(Sk+1) = Vk+1(|Sk+1,1|, |Sk+1,2|, χ(Sk+1,1 ≡ Sk+1,2)).

The dynamic programming iteration yields

Vk(Sk) = min
Bk

E [Vk+1(Sk+1)|Bk,Sk] (35)

= min
Bk

E [Vk+1(|Sk+1,1|, |Sk+1,2|, χ(Sk+1,1≡Sk+1,2))|Bk,Sk],

where we have used the induction hypothesis.
Note that Sk+1,i is obtained via (20). If Sk,1 ≡ Sk,2 (ρk =

1), it follows that Sk+1,1 ≡ Sk+1,2 (ρk+1 = 1) iff Ck,1 =
Ck,2, yielding ρk+1 = χ(Ck,1 = Ck,2). If Sk,1 ∩ Sk,2 ≡ ∅
(ρk = 1), it follows that Sk+1,1∩Sk+1,2 ≡ ∅, hence ρk+1 = 0.
Therefore, we can write

ρk+1 = ρkχ(Ck,1 = Ck,2). (36)

By computing the expectation with respect to the feedback
distribution given by (19), and using (20), we then obtain

Vk(Sk) = min
Bk

∑
(c1,c2)∈{0,1}2

|Bc1k ∩ Sk,1|
|Sk,1|

|Bc2k ∩ Sk,2|
|Sk,2|

× Vk+1(|Sk,1 ∩ Bc1k |, |Sk,2 ∩ B
c2
k |, ρkχ(c1 = c2))).

Now, letting ωk,i , |Sk,i∩Bk| and |Sk,i| = Uk,i, we find that
|Sk,i ∩ B0k| = Uk,i − ωk,i, yielding

Vk(Sk) = min
Bk

∑
(c1,c2)∈{0,1}2

∏
i∈{1,2}

ωcik,i(Uk,i − ωk,i)1−ci

Uk,i

× Vk+1(ωc1k,1(Uk,1 − ωk,1)1−c1 , ωc2k,2(Uk,2 − ωk,2)1−c2

, ρkχ(c1 = c2)).

Note that, given (ωk,1, ωk,2) and (Uk,1, Uk,2, ρk), the objective
function is independent of Bk and Sk. Thus, the minimization
over Bk can be restricted to a minimization over (ωk,1, ωk,2),
with the additional constraint that ωk,1 = ωk,2 if Sk,1 ≡ Sk,2
(ρk = 0), yielding

Vk(Sk) = Vk(Uk,1, Uk,2, ρk). (37)

The induction step is proved, hence the theorem.
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We prove the theorem by induction. In particular, we show

that, for all k = 0, 1, . . . , L,

Vk(U1, U2, ρ) = VL

(
U1

2L−k
,
U2

2L−k
, 0

)
, ∀ρ ∈ {0, 1}. (38)

This condition clearly holds for k = L, since VL(U1, U2, ρ) =
VL (U1, U2, 0) from (27). Thus, let k < L and assume that

Vk+1(U1, U2, ρ) = VL

(
U1

2L−k−1
,

U2

2L−k−1
, 0

)
. (39)

We prove that this implies (38). Vk is computed from Vk+1

via DP, as in (26) and (27).
We start from the case ρk = 0, and then consider the case

ρk = 1 (which implies Uk,1 = Uk,2 and ωk,1 = ωk,2). Let

g(x1, x2) , x1x2Vk+1(x1, x2, 0). (40)

Then, we can write the DP recursion (27) as

Vk(U1, U2, 0) = min
ωi∈[0,Ui]

1
2g(ω1, ω2) + 1

2g(U1 − ω1, ω2)

U1U2/2

+
1
2g(ω1, U2 − ω2) + 1

2g(U1 − ω1, U2 − ω2)

U1U2/2
. (41)

We denote the objective function in (41) as h(ω1, ω2), so
that we can rewrite Vk(U1, U2, 0) = minωi∈[0,Ui] h(ω1, ω2).
In the final part of the proof, we will show that g(x1, x2) is
a convex function of xi, i ∈ {1, 2} (although not necessarily
jointly convex with respect to (x1, x2)). By applying Jensen’s
inequality to h(ω1, ω2) in (41), first with respect to the first
argument of the function g(·, ·), and then with respect to the
second argument, it follows that

h(ω1, ω2) ≥
1
2g
(
U1

2 , ω2

)
+ 1

2g
(
U1

2 , U2 − ω2

)
U1U2/4

≥
g
(
U1

2 ,
U2

2

)
U1U2/4

.

Thus, it follows that

Vk(U1, U2, 0) ≥ 4
g(U1/2, U2/2)

U1U2
. (42)

Indeed, it can be seen by inspection that such lower bound is
achievable by the bisection policy ωi = Ui/2, which proves
the induction step for the case ρk = 0.

We now consider the case ρk = 1. Using the fact that
Vk+1(U1, U2, 0) = Vk+1(U1, U2, 1) from the induction hy-
pothesis, from (26) we obtain

Vk(U,U, 1)= min
ω∈[0,U ]

E

Vk+1(Uk+1,1, Uk+1,2, 0)

∣∣∣∣∣∣
ωk,i=ω,
Uk,i=U,
ρk=1


≥ min

(ω1,ω2)∈[0,U ]2
E

Vk+1(Uk+1,1, Uk+1,2, 0)

∣∣∣∣∣∣
ωk,i=ωi,
Uk,i=U,
ρk=1


= Vk(U,U, 0), (43)

where the inequality follows from the fact that we have
extended the optimization interval to (ω1, ω2) ∈ [0, U ]2, and
therefore Vk(U,U, 1) ≥ Vk(U,U, 0). We have seen that, for
the case ρk = 0, the value function is optimized by the
bisection policy. By inspection, we can see that the lower
bound Vk(U,U, 0) is also attained by the bisection policy
ωk,1 = ωk,2 = U/2, which satisfies the requirement ωk,1 =
ωk,2 when ρk = 1. Thus, we have proved the induction step.

By letting k=0 in (38) with U1=U2=σ, and using (24),
we finally obtain (29) after dividing the energy consumption
by the frame duration Tfr. τ∗1 is the unique solution of (25),
yielding (30) since UL,i = σ/2L under bisection.

It remains to prove that g(x1, x2) is a convex function of
xi, i ∈ {1, 2}. Due to the symmetry of g(x1, x2) with respect
to its arguments, it is sufficient to prove convexity with respect
to x1 only, with x2 fixed. We have

g(x1, x2) = x1x2VL

( x1
2L−k−1

,
x2

2L−k−1
, 0
)

=
1

2L−k−1
min

τ1∈(0,Tcm)
x21x2ε1 (τ1) + x1x

2
2ε2 (Tcm − τ1) .



Note that the convexity of g(·) is unaffected by k, thus we let
k = L− 1. Let τ1(x1) be the minimizer above, as a function
of x1. We obtain

dg(x1, x2)

dx1
= 2x1x2ε1 (τ1(x1)) + x22ε2 (Tcm − τ1(x1))

+ τ ′1(x1)x1x2 [x1ε
′
1 (τ1(x1))− x2ε′2 (Tcm − τ1(x1))] ,

where τ ′1(x1) , dτ1(x1)
dx1

. Note that τ1(x1) must satisfy (25)
(with UL,i = xi), yielding

dg(x1, x2)

dx1
= 2x1x2ε1 (τ1(x1)) + x22ε2 (Tcm − τ1(x1)) .

The second derivative of g(x1, x2) with respect to x1 is then
given by

d2g(x1, x2)

dx21
= 2x2ε1 (τ1(x1)) + x1x2ε

′
1 (τ1(x1)) τ ′1(x1)

+ τ ′1(x1)x2 [x1ε
′
1 (τ1(x1))− x2ε′2 (Tcm − τ1(x1))] . (44)

Using again the fact that τ1(x1) must satisfy (25), we obtain

d2g(x1, x2)

dx21
= 2x2ε1 (τ1(x1)) +ε′1 (τ1(x1))x1x2τ

′
1(x1). (45)

From (25), we have that τ1(x1) must satisfy
x2ε
′
2 (Tcm−τ1(x1)) =x1ε

′
1 (τ1(x1)). By computing the

derivative with respect to x1 on both sides of this equation,
we obtain τ ′1(x1) as

τ ′1(x1) =
1

x2

[ε′1 (τ1(x1))]2[
−ε′1 (τ1(x1)) ε′′2 (Tcm − τ1(x1))
−ε′′1 (τ1(x1)) ε′2 (Tcm − τ1(x1))

] . (46)

Thus, by substituting in (45), the convexity of g(x1, x2)

(d
2g(x1,x2)

dx2
1

> 0) becomes equivalent to

−2ε1ε
′
1ε
′′
2 − 2ε1ε

′′
1ε
′
2 + ε′2[ε′1]2 > 0 (47)

where εi, ε′i, ε
′′
i is shorthand notation for εi(τi(x1)), ε′i(τi(x1)),

ε′′i (τi(x1)), with τ2(x1) = Tcm − τ1(x1), respectively.
Let y1 = Tfr

τ1
R1 and y2 = Tfr

Tcm−τ1R2. We obtain
εi = 2yi−1

yi
TfrRi
γi

,

ε′i = 2yi−1
γi
− 2yi

γi
ln(2)yi,

ε′′i = 2yi

γiTfrRi
[ln(2)]2y3i .

(48)

Substituting in (47), convexity becomes equivalent to

q(y1, y2) , 2y2 [ln(2)y2 − 1 + 2−y2 ]2[1− 2−y1 ][ln(2)]2y21

− 2y2 [ln(2)y2 − 1 + 2−y2 ][ln(2)y1 − 1 + 2−y1 ]2 (49)

+ 2
R1

R2
[1− 2−y1 ][ln(2)y1 − 1 + 2−y1 ][ln(2)]2

2y2y32
y1

> 0,

which we are now going to prove. Using the fact that ln(2)y1−
1 + 2−y1 > 0, we have that

q(y1, y2) ≥ 2y2 [ln(2)y2 − 1 + 2−y2 ]2[1− 2−y1 ][ln(2)]2y21

− 2y2 [ln(2)y2 − 1 + 2−y2 ][ln(2)y1 − 1 + 2−y1 ]2 (50)

∝ 2[1− 2−y1 ][ln(2)]2y21 − [ln(2)y1 − 1 + 2−y1 ]2 , q̂(y1),

where ∝ denotes proportionality up to the multiplicative
positive factor 2y2 [ln(2)y2 − 1 + 2−y2 ] > 0. The derivative
of q̂(y1) with respect to y1 is given by

dq̂(y1)

dy1
= 2 ln(2)[1− 2−y1 ]2

+ 2 ln(2) ln(2)y1[1− 2−y1 + 2−y1 ln(2)y1] > 0. (51)

Therefore, we obtain q(y1, y2) ≥ 2y2 [ln(2)y2 − 1 +
2−y2 ]q̂(y1) > 2y2 [ln(2)y2−1 + 2−y2 ]q̂(0) = 0. The convexity
of g(x1, x2) with respect to xi is proved, hence the theorem.
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