
ar
X

iv
:1

30
3.

68
17

v1
 [

cs
.N

I]
 2

7
M

ar
 2

01
3

Modeling the interdependency of low-priority
congestion control and active queue management

YiXi Gong∗, Dario Rossi∗, Emilio Leonardi†
∗ Telecom ParisTech, France –firstname.lastnameenst.fr
† Politecnico di Torino, Italy –emilio.leonardipolito.it

Abstract—Recently, a negative interplay has been shown to
arise when scheduling/AQM techniques and low-priority conges-
tion control protocols are used together: namely, AQM resets
the relative level of priority among congestion control protocols.
This work explores this issue by (i) studying a fluid model that
describes system dynamics of heterogeneous congestion control
protocols competing on a bottleneck link governed by AQM and
(ii) proposing a system level solution able to reinstate priorities
among protocols.

I. PROBLEM STATEMENT

It comes to no surprise that our daily activities increas-
ingly require ubiquitous Internet access. In a typical day,we
call friends with Skype or Gtalk, socialize on Twitter and
Facebook, upload pictures to Picasa and Flickr, backup or
share data with BitTorrent, Dropbox and Mega, and upload
new tunes to GoogleMusic, etc. Moreover, as a side-effect of
the proliferation of connected household devices, the needto
synchronize data between the numerous appliances arises. As
copies of the data are increasingly stored in some datacen-
ters, this translates into frequent upload/downloads to/from
the Cloud. At the same time, the periphery of the Internet
infrastructure was designed having in mind that users would
mostly be data consumer (as opposite to data producer), as for
instance testified by the deployment of Asymmetric Digital
Subscriber Line (ADSL) in Europe. While this fact was al-
ready challenged by peer-to-peer traffic (P2P), current uploads
to the Cloud further clash the infrastructure asymmetry.

This mismatch may lead to “bufferbloat” [8], i.e., very large
queuing delays, up to several seconds, experienced by Internet
users. While the “persistently full buffer” phenomenon is not
new [9], it has been exacerbated by the ubiquitous presence
of significantly large buffers at the access (made relatively
cheap by today’s technology), that the loss-based congestion
control of TCP is apt to fill: as TCP regulates its sending rate
(halving the sending window) only in occurrence oflosses, the
buffer is forcibly filled up1. Moreover, while infrastructural
solutions to the bufferbloat have been proposed in the liter-
ature, such as scheduling (SFQ [26], DRR [33]) and Active
Queue Management (RED [14], Choke [29]), their adoption
has been rather limited. The situation has only recently started
to change, with worldwide operators implementing scheduling

1Notice that buffer sizes involved are often small in absolute terms (few
KBs), but are relatively large to capacities of the narrow cable, ADSL or
WiFi links (few Kbps) in front of these buffers, yielding possibly multi-second
queueing delays [21].

policies in the upstream of the ADSL modem to improve the
quality of user experience (e.g., in France, Free implements
SFQ since 2005 [3]), and with new promising AQM techniques
under active development such as CoDel [28].

At the same time, recent evolution of Internet application
landscape has also seen a proliferations of new applications
–or “apps”, as the Internet is now often accessed through
smartphones or portable devices– that control the flow of
traffic to and from the Cloud. Due to the lack of infrastructural
solution to the bufferbloat problem, and since deployment of
all-software solution is much easier with respect to infrastruc-
tural upgrades, applications have started proposing alternative
models to the standard TCP best effort congestion control.
Notable examples include Microsoft Background Intelligent
Transfer Service (BITS), Picasa background upload option,
and BitTorrent low extra delay background transport (LED-
BAT) [32]. The latter is especially interesting since BitTorrent
still represents a sizeable amount of Internet traffic and,
according to Bram Cohen, “LEDBAT is now the bulk of
all BitTorrent traffic, [...] most consumer ISPs have seen the
majority of their upload traffic switching to a UDP-based
protocol” [5]. The rationale behind the design of LEDBAT is
that user ADSL link represent likely the uplink bottleneck,
so that congestion is typicallyself-inducedby concurrent
traffic sessions generated by the same user –such as BitTorrent
transfers in parallel with Skype call and other Cloud uploads–
which LEDBAT is designed to avoid.

Our recent work [18] shows, by means of simulation and
experiments, a negative interplay when scheduling/AQM tech-
niques and low-priority congestion control (LPCC) protocols
such as LEDBAT are combined: namely, AQM resets the
relative level of priority among congestion control protocols.
In this work, we first study a fluid model that describes system
dynamics when flows adhering to heterogeneous congestion
control protocols, such as LEDBAT and TCP, compete on
a bottleneck link governed by AQM. Then, we propose a
system-level solution able to reinstate priorities among pro-
tocols.

The remainder of this papers is organized as follows. Sec. II
overviews closest related work. Fluid model is presented in
Sec. III, and an extensive set of numerical results, gathered
on the scenario described in Sec. IV are reported in Sec. V
and compared againstns2 simulations. System design of a
feasible solution is then described in Sec. VI, before Sec. VII
concludes the paper and outlines our next steps.

http://arxiv.org/abs/1303.6817v1

II. BACKGROUND

It would be extremely cumbersome to comprehensively
retrace over 20 years of Internet research in these few pages.
An historical viewpoint is sketched in [17]: we extend this
viewpoint by reporting in Fig. 1 a timeline of research
in scheduling/AQM algorithms and LPCC protocols. The
timeline clearly shows a temporal separation of these two
research topics, which in our opinion helps understand why
the AQM vs. LPCC interaction assessed in this paper was
only barely previously exposed. In this section, we overview
the related work separately considering (i) the AQM vs. LPCC
interaction, (ii) fairness of congestion control protocols, (iii)
LEDBAT and other low priority protocols, (iv) fluid modeling
of TCP and AQM.

LPCC:

AQM:

[ref]

year

SFQ

[26]

1990

RED

[14]

1993

DRR

[33]

1995

Choke

[29]

2000

NICE

[34]

2002

LP

[22]

2003

LEDBAT

[32]

2010

CoDel

[28]

2012

Fig. 1. Timeline of AQM and LPCC algorithms.

A. Interaction

To the best of our knowledge, aside our previous work [18],
only [31] mentions AQM and a LPCC (namely, LEDBAT) in
the same paper. In one of the tests, the authors experiment with
a home gateway that implement some (non-specified) AQM
policy other than DropTail. When LEDBAT and TCP are both
marked in the same “background class”, the “TCP upstream
traffic achieves a higher throughput than the LEDBAT flows
but significantly lower than” under DropTail [31]. This is
known explicitly in the LEDBAT RFC, stating that under AQM
is possible that “LEDBAT reverts to standard TCP behavior,
rather than yield to other TCP flows” [32].

In our previous work [18], we further show that this
behavior is general and can arise from the interaction of
any scheduling/AQM discipline and LPCC protocol shown in
Fig. 1, using a twofold methodology includingns2 simulation
and experiments from both controlled testbed and wild Inter-
net. The present work differs from [18] in both its depth and
methodology: indeed, we adopt a more narrow but profound
scope, selecting LEDBAT and RED as representative examples
of the LPCC and scheduling/AQM design space that we then
analytically model.

B. Fairness

Our main focus in this paper concerns fairness of the
capacity share among heterogeneous control protocols on a
bottleneck governed by AQM. While fairness is a long studied
subject, its investigation generally considered rather different
settings. First, it has often been tackled in theintra-protocol
case [7], [15], [16], [30]: i.e., heterogeneous settings ofa single
protocol flavor. For instance, [15] studies RTT unfairness
of TCP Reno. Similarly, we pointed out the existence of a

LEDBAT latecomer unfairness issue [30] – that we show to
be less relevant in the case of short lived flows and solve for
backlogged connections in [7], [16].

Fairness in theinter-protocol case, thus closer to ours
heterogeneous control protocols settings, has long been studied
as well [4], [12], [13]. Old works especially focused on
undesirable side-effect of delay-based congestion control of
Vegas, that makes it back off in presence of TCP Reno [4].
Even more recent work on the topic studies different issues
than ours. Authors of [12], [13] focus on several high-
speed variants of TCP: in their case, fairness between the
different protocols is thus desirable, while in our settings
unfairness would be desirable(as it would imply that low-
priority property is maintained). Complementary to this work,
authors in [12] design and analyze an AQM scheme (named
AFpFT after Approximate Fairness through Partial Finish
Tag), that they show vians2 simulations to reinstate fairness
in the heterogeneous protocols case [13].

C. Low priority

Protocols such as NICE [34], LP [22], 4CP [23] and [20]
share the same low-priority spirit of LEDBAT. We carried out
a simulation-based comparison of NICE, LP and LEDBAT
in [6], showing that LEDBAT has the lowest level of priority.

Some important differences among the above protocols are
worth stressing. NICE [34] extends the delay-based behavior
of TCP Vegas with a multiplicative decrease reaction to early
congestion (detected when the number of packets experiencing
a large delay in an RTT exceeds a given threshold). Differently
from LEDBAT, that reacts to instantaneous one-way delay
(OWD) variations, NICE instead react to RTT variations, thus
possibly reducing the sending window in one direction due to
growing delay in the opposite direction.

LP [22] enhances the loss-based behavior of NewReno
with an early congestion detection based on the distance of
the OWD from a weighted moving average calculated on
all observations. In case of congestion, the protocol halves
the rate and enters an inference phase, during which, if
further congestion is detected, the congestion window is set to
zero and normal NewReno behavior is restarted. This differs
from LEDBATthat aims at explicitly bounding the maximum
delay introduced in the bottleneck queue, which is particularly
important for VoIP, gaming and all other interactive delay-
sensitive applications.

D. Fluid modeling

Other work [19], [24], [25], [27] relate to this as far
as its methodology is concerned. We point out that, since
generally a single dominant TCP flavor is modeled [19], [27]
(optionally including unresponsive background traffic [24] or
short-lived connections [25]), the novelty in this contextlies
in the definition of a fluid model ofheterogeneousresponsive
sources, notably including LEDBAT.

As our main innovation is not on the technique per se, but on
its application to the study of a particular problem, we resort
to classic models for TCP [24] and RED [27], that we extend
to incorporate novel popular protocols such as LEDBAT.

TCP1

LPCC1

REDTCPNw

…

LPCCNZ

…

C
B

minth

maxth

maxp

τ

Fig. 2. Network scenario

III. F LUID MODEL

We describe the network scenario we model with the help of
Fig. 2. A user device generates a number of long-lived flows
competing on the same bottleneck of capacityC, with a buffer
of sizeB full size packets. Applications on the device either
use a best-effort TCP congestion control, or a lower-than-best-
effort LEDBAT control. We denote the TCP and LEDBAT
window at timet asW (t) andZ(t) respectively.

For TCP, we neglect the slow-start phase, which is instead
only optional in LEDBAT. As such, we limitedly model the
TCP congestion window behavior in congestion avoidance
phase. At the reception of the(n+1)-th ack at timetn+1,
the TCP congestion window is updated as follows:

W (tn+1) =

{

1
2W (tn) if packet loss,

W (tn) +
1

W (tn)
otherwise

(1)

As for LEDBAT, it reacts to losses by halving the congestion
window as TCP does, but otherwise its congestion window
increase is not larger than TCP ramp-up in congestion avoid-
ance, and more precisely is proportional to the distance of the
queuing delayq(t) from the delay targetτ :

Z(tn+1) =

{

1
2Z(tn) if packet loss,

Z(tn) +
1

Z(tn)
τ−q(tn)

τ
otherwise

(2)

with the current queuing delayq(t) measured as:

q(tn) = D(tn)−Dmin (3)

Dmin = min
n

D(tn) (4)

where D(tn) represents the instantaneous one-way delay
(OWD) estimate, while the base delayDmin is the minimum
observed OWD. The rationale is that, over a sufficiently
large number of observationsDmin accurately represents the
fixed component of the delay (i.e., propagation delay plus
negligible transmission delay, which should be the one found
when queues are empty) so that theD(tn)−Dmin difference
represents the variable component of the delay (i.e., queuing
delay plus negligible processing delay).

Notice that host synchronization over the Internet is known
to be hard. As such, it is worth stressing that the OWD estimate
D(tn) is affected by an unknown clock offset between the
two endpoints, and is thus of no practical use. Conversely, the
offset cancels in the difference operation in (3), which is only
affected by clock drift – that is of much smaller magnitude
and furthermore easier to correct [11].

From (2), we gather that ramp-up is as fast as TCP only
whenever the queue is empty (3), i.e.,limq→0

τ−q

τ
= 1 .

Furthermore, whenever the queuing delay hits the targetτ ,
the congestion window settles, i.e.,limq→τ

τ−q

τ
= 0.

A. Ordinary Differential Equation System

To analyze the interactions between sources and queue
dynamics, we adopt a continuous time fluid approach [19],
[24], [25], [27] in which the average dynamics of both
sources and queues are described by deterministic Ordinary
Differential Equations (ODE). To write the ODE system, we
denote byWi(t) the instantaneous congestion window at time
t for connectioni in the fluid system, byRi(t) the Round Trip
Time (RTT) and byp(t) the packet dropping probability at the
buffer. We consider the case ofNW TCP andNZ LEDBAT
connections sharing the same bottleneck, where flow-level
congestion window evolution the TCP case is adopted from
[27]:

dWi(t)

dt
=

1

Ri(t)
− Wi(t)W (t−Ri(t))

2R(t−Ri(t))
p(t−Ri(t)) (5)

dZi(t)

dt
=
τ − q(t)/C

τ

1

Ri(t)
− Zi(t)Z(t−Ri(t))

2Ri(t−Ri(t))
p(t−Ri(t))

(6)

dq(t)

dt
=

[

NW
∑

i=1

Wi(t)

Ri(t)
+

NZ
∑

i=1

Zi(t)

Ri(t)

]

(1 − p(t))− C1Q(t)≥0

(7)

In accordance with RED specifications the packet dropping
probability at the buffer,p(t), is a function f(·) of the
estimated average queue sizeQ(t), with:

f(Q) =







0 Q < minth
maxp

Q−minth

maxth −minth
minth ≤ Q ≤ maxth

1 Q > maxth

Q(t) is obtained byq(t) through an exponential weighted
moving average from samples taken everyδ seconds. The fluid
equation that relatesQ(t) to q(t) is given as in [27] by:

dQ(t)

dt
= − log(1− α)

δ
Q(t) +

log(1− α)

δ
q(t) (8)

Notice that in general case, the RTTRi(t) = Tp,i+ q(t)/C
cannot be considered to be constant since the component due
to queuing delay can be predominant over the propagation
delay q(t)/C > Tp,i – which is especially true in case of
bufferbloat due to FIFO buffering. Conversely, in case AQM
is used, it could be reasonable to assume the reverseq(t)/C <
Tp,i to hold.

B. Equilibrium point

The equilibrium point of the above dynamical sys-
tem is given by the stationary (i.e. constant) solution
(W ∗, Z∗, q∗, Q∗) of the system of differential equations, (5),
(6), (7) and (8). In our case, we are going to prove the existence
of at most one unique equilibrium point. We remark that the
existence of the equilibrium point can be always granted by

properly setting the RED parameters. For the sake of simplicity
we consider a homogeneous case, i.e. a case in which all
the connections exhibit the same RTT, however we would
like to remark that the extension to a more general case is
straightforward.

From (8), (5) and (6) respectively, with simple algebra we
obtain:

q∗ = Q∗ (9)

W ∗ =

√

2

p∗
(10)

Z∗ =

{ √

2
p∗

τ−q∗

τ
if q∗ < τ

0 if q∗ ≥ τ
(11)

where we have ignored the upper/lower clipping effects on the
window size in both LEBDAT and TCP. From (7) we obtain
that q∗ (with q∗ ∈ [0,maxth]), has to be the solution of the
equation:

(Tp + q/C)

√

f(q)

1− f(q)
=

{ √
2NW+

√
2 τ−q

τ
NZ

C
if q∗ < τ√

2NW

C
if q∗ ≥ τ

(12)

Observe that the existence of at most one solution for (12)
is granted by the fact that while the expression on the left is
weakly increasing withq (it takes the value 0 forq = 0), the
expression on the right is, instead, weakly decreasing (being
strictly positive for anyq > 0). Thus, a unique solution exists
iff:

(

Tp +
maxth
C

)

√
maxp

1−maxp
>

>







√
2NW+

√

2
τ−maxth

τ
NZ

C
if τ > maxth√

2NW

C
if τ ≤ maxth

(13)

Observe that by properly settingmaxp we can always meet
(13), indeed the term on the left tends to infinite asmaxp → 1.

As long as RED is configured to keep the queue shorter
with respect to the LEDBAT target (i.e., as long asq∗ ≤ τ)
a non-perfect prioritization between TCP flows and LEBDAT
flows is experienced, indeed LEBDAT flows are still able to
grab a non-negligible fraction of the bottleneck bandwidth. As
discussed in Sec. IV, this is the most likely case in practice.

IV. SCENARIOS

A. User applications

We argue that the most challenging scenario, in terms of
matching results gathered via simulation and fluid mode, is
the one with few number of flows. This is intuitive since
in the case of multiple backlogged connections, statistical
multiplexing will smooth out the impact of events, such as
TCP retransmission time out, that would otherwise cause
discontinuities in the case of few connections. At the same
time, we also argue that the most practically relevant scenario
is precisely one with a relatively small number of flows.
Indeed, since the bottleneck sits at the user access, the number

of concurrent connections will be bound, even considering
multiple applications/users in the household.

We consider both the Cloud and the P2P cases. In the Cloud
case, it is easy to see that a small number of connections will
be opened, at any given time, for a specific service. While
considering a single user, even the server contacted will evolve
over time (e.g., due to load balancing), this likely happens
over time-scales that are much larger with respect to the short
time-frames that we consider as “backlogged” data transfers
(i.e., from tens of seconds to minutes) in this paper. Hence,
the number of backlogged connections is upper-bounded by
the number of Cloud services the user subscribes to, such
as DropBox for data, GoogleMusic for music and Picasa
for pictures/videos. Additionally, the number of simultaneous
connections also depends on the on/off synchronization pattern
toward the Cloud. As users are not continuously generating all
kind of data at the same time, it thus reasonable to envision
only a moderate number of concurrent backlogged connections
per household, some of which may be lower priorities (e.g.,
pictures) over others (e.g., critical data, backup).

Consider next the P2P case, where it makes sense to
consider file-sharing applications such as BitTorrent due to
its popularity, and since it introduced LEDBAT in the first
place precisely due to the bufferbloat problem. In BitTorrent,
pipelining of piece requests at the application-level can cause
multiple chunks to be transmitted consecutively over the
same connection at transport-level. Since BitTorrent limits the
number of concurrent slots to about2 4 per torrent, the number
of concurrent connections will be again small. Moreover, Bit-
Torrent peers periodically evaluate the throughput towardother
peers every 10s of seconds, and connections are maintained
in case of good end-to-end throughput: coupled to pipelining,
this entails that over the tens of seconds to minute timescale,
connections can be considered backlogged.

From the above discussion, in the following we will limit-
edly consider an equal numberN = NW = NZ of flows,
and let the total number of flows vary in2N ∈ [2, 10]
range. Unless otherwise stated, we consider homogeneous
RTT delay settings with propagation delayTp = 50ms (to
which we add a jittering component of 1 ms to avoid synchro-
nization of the congestion window dynamics). To precisely
characterize system equilibrium properties, we will let the
LEDBAT target τ vary – that in the uTorrent implementa-
tion of LEDBAT, this can be easily done by tweaking the
net.utp_target_delay settings.

B. Network configuration

Without loss of generality, we consider a single access
bottleneck and fix the capacity toC=1Mbps, typical range for
ADSL/Cable access. The bottleneck buffer can accommodate
up to B = 100 packets that, consideringP=1250 Bytes sized
packets for simplicity, corresponds to a maximum queuing
delay of 1000ms. Notice that these values are commonplace
nowadays, with modem buffers able to hold up to 4 seconds

2The limit actually increases with the square root of the uplink capacity

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9 10

R
at

es
 [K

bp
s]

τ=10 pkts, DropTail

W(t)
Z(t)

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9 10

τ=10 pkts, RED

W(t)
Z(t)

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9 10

τ=20 pkts, RED

W(t)
Z(t)

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9 10

τ=40 pkts, RED

W(t)
Z(t)

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10

Q
ue

ue
 [p

kt
s]

Time [s]
(a)

Q(t)

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10

Time [s]
(b)

Q(t)

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10

Time [s]
(c)

Q(t)

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10

Time [s]
(d)

Q(t)

Fig. 3. Reprioritization phenomenon: Time evolution ofW (t), Z(t) andQ(t) under DropTail (a) and RED (b,c,d) for different values ofτ .

worth of traffic [21]. To precisely characterize system equi-
librium properties, we explore variations of the RED settings
minth,maxth (in packets),maxp settings to cover the full
support3. For convenience, we may express the targetτ in
milliseconds or packets: notice that due to our settings, a
packet is worth 10 ms of queuing delay.

As previously observed, the reprioritization phenomenon
vanishes in caseq∗ > τ : in other words, when the queue
size at the equilibrium exceeds the LEDBAT queuing delay
targetτ , all LEDBAT flows will by design yield to TCP and
the system will behave as [19], [27]. At the same time, this
scenario is unlikely to hold in practice. Consider indeed that
end-to-end congestion control protocols such as LEDBAT rely
on noisy measures of queuing delay, so that they will not be
able to guarantee protocol efficiency whenτ → 0.

Then, notice that for the typical ADSL transmission speed
of 500Kbps, the transmission of a full MTU packet takes about
24 ms: initial versions of LEDBAT used to setτ = 25 ms, i.e., a
packet worth of queuing. However, due to practical limitations
(including timestamp precision in Windows OS, clock drift of
several ppm in off-the-shelf PCs, etc.) this setting did notallow
to fully exploit the link capacity, reason why the target was
later increased toτ =100 ms. While a 100 ms target may be
reasonable for an end-to-end protocol, an AQM may be more
precise in measuring the queue size and in adopting more
aggressive dropping policy (e.g.,minth < maxth < τ for
RED, or lower packet sojourn time thanτ for CoDel), so that
it is reasonable to assume that the target AQM queue size will
be q∗ ≤ τ in practice.

V. RESULTS

In this section, we present and discuss numerical results of
the ODE describing the system dynamics. Numerical results

3Notice that we do not aim at providing tuning guidelines of RED, which
is notoriously difficult [10] and scenario dependent [19], but rather to provide
thorough characterization of the equilibrium.

are gathered either (i) finding roots to the equilibrium equation
via bisection method or (ii) integrating the ODE via Runge-
Kutta, and are organized as follow. After a description of the
scenario (Sec. IV), we depict the temporal system evolutionto
show the reprioritization phenomenon (Sec. V-A) that we will
investigate further at the equilibrium (Sec. V-B). We then carry
out a sensitivity analysis (Sec. V-C) and discuss local conver-
gence properties (Sec. V-D) of the model. Finally, we validate
a subset of the numerical results against those obtained from
ns2 simulator (Sec. V-E) using our own implementation of
LEDBAT, which is available as open source at [1]. Validation
is performed on the most challenging (in terms of matching
the simulation vs. fluid model results) and relevant scenarios
(in terms of practical relevance).

A. Reprioritization

We start by showing the time-evolution of the system
equations whenNW = NZ = 1 in Fig. 3 under either DropTail
(a) or RED (b,c,d) disciplines. Top plot shows theW (t), Z(t)
andW (t) +Z(t) congestion windows evolution, while queue
Q(t) is reported in bottom plots.

In the DropTail case, we setτ =10 packets and observe
the same behavior shown vians2 simulation in [30]: i.e.,
LEDBAT yields to TCP as expected under DropTail. In the
RED case, we setmaxth = B = 100,minth = 10,maxp = 1
for the sake of illustration and letτ grow from 10 (b) to 20 (c)
and 50 (d) packets. Notice that in case (b), RED drastically
reduces the queue size and let TCP window fluctuates at about
the capacity. Yet, when the target increases in (c) and (d),
LEDBAT becomes increasingly aggressive under RED, and
competes more fairly against TCP.

To avoid cluttering the pictures, we instead avoid reporting
the behavior of LEDBAT for increasing targetτ under Drop-
Tail: from the sensitivity simulation-based sensitivity analysis
reported in [6], it emerges that LEDBAT yields to TCP for a
large range ofτ < B values, and only wheneverτ approaches

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

T
C

P
 s

ha
re

 ρ*

Target τ / minth

maxp=1/10
maxp=1/4
maxp=1/2

maxp=1

N={1, 5}
maxp={1/10, 1/4, 1/2, 1}
minth={10, 20, 50, 100}

Fig. 4. Equilibrium analysis of TCP share ratioρ∗ at the equilibrium as
a function ofτ/minth for various flow numberN , LEDBAT τ , and RED
minth, maxp settings.

(or exceeds) the buffer sizeB LEDBAT behavior becomes
loss-based as TCP.

Shortly, in the following we will refer to this difference in
LEDBAT aggressiveness with respect to TCP as a “repriori-
tization” phenomenon induced by RED, which indeed resets
the relative level of priorities between LEDBAT and TCP.

B. Equilibrium

While it is hard to get closed form solution of the equi-
librium point, we can numerically find roots of the ODE
equations via the bisection method. We now characterize
the reprioritization as a function of system parameters. For
convenience, we define the TCP share ratio as the ratio
betweenW (t) andZ(t):

ρ(t) =
W (t)

W (t) + Z(t)
(14)

at the equilibrium we have:

ρ∗ =
1

1 +
√

τ−q∗

τ

(15)

Notice that in Fig. 3 we have purposely selected settings
that show that the system may actually fluctuate around the
equilibrium point (maxp = 1), though for many settings
the equilibrium is actually smoothly reached. We depict in
Fig. 4 the TCP share ratioρ∗ at the equilibrium for varying
user scenarios (i.e., number of TCP and LEDBAT flowsN ,
LEDBAT target settingsτ , and RED settingsminth and
maxp).

Fig. 4 shows that under AQM the TCP share exhibits a
sharp transition phase as soon asτ exceedsminth, quickly
dropping with an hyperbolic slope from a monopoly situation
(ρ∗ → 1 for values ofτ close toq∗) to a fair share (ρ∗ ≈ 0.58
for τ = 2q∗). Interestingly, [6] shows that in the DropTail
case, a sharp transition phase from TCP monopoly to a fair
share happens wheneverτ → B. This difference is rooted on
the fact that RED dropping rates are strictly positive as soon

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 s

iz
e

q*

(N,minth,maxp)
(1,5,0.1)
(1,5,1.0)

(10,5,1.0)
(10,10,1.0)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

T
C

P
 s

ha
re

 ρ*

Target τ [pkts]

N=1
N=10

minth={5,10,25,50}

Fig. 5. Sensitivity analysis of TCP share ratioρ∗ and Queue sizeq∗ at the
equilibrium as a function ofτ for various flow numberN , LEDBAT τ , and
RED minth,maxp settings.

as the queue size exceedsminth, whereas DropTail decisions
have to wait until the queue exceedsB.

C. Sensitivity

From Fig. 4 we also gather that different RED settings yield
only minimally affect the reprioritization phenomenon. For
completeness, we depict in Fig. 5 the values of the queue
q∗ (top plot) and the TCP shareρ∗ (bottom plot) at the
equilibrium for several RED settings. This time,q∗ andρ∗ are
reported directly as a function ofτ . (i.e., we avoid normalizing
over the REDminth parameter.) Trivially, since no dropping
happens forq < minth, this parameter plays the biggest role in
determining the queue size at the equilibrium. Next comes the
load factor, i.e., number of flows insisting on the bottleneck,
followed by the maximum dropping probabilitymaxp of the
RED profile.

The impact of the LEDBAT targetτ on the queue size
has almost a step-like behavior, that can be explained taking
into account that LEDBAT flows activate only whenτ > q∗

(or, τ > minth given the above remark). Recalling the
sharp transition phase in LEDBAT aggressiveness as soon as
τ > minth, the impact of LEDBAT flows after activation is
to increase the load profile, about as a TCP flow would do.

Bottom plot of Fig. 5 reports similar information to previous

Fig. 4, although lines are now clearly separated for different
minth profiles. We stress that large values ofminth ≥ 50
could avoid the reprioritization, but at the price of an already
sizeable bufferbloat.

D. Convergence

We now observe evolution of the primitiveW (t), Z(t), q(t)
variables and of theρ(t) observable toward the equilibrium
W ∗, Z∗, q∗, ρ∗. Some examples of trajectories are shown in
Fig. 7. In more details, top plots report the case for initial
conditionsW (0) = Z(0) = q(0) = 0, while bottom plots
report the trajectories of 100 random initial conditions. For
convenience, we express the relative error with respect to the
equilibrium, so that we can superpose multiple trajectories on
the same graph.

Top-left plot shows the relative distance of(W (t), ρ(t))
from the equilibrium (W ∗, q∗), while top-right plot shows
(W (t), q(t)), for two different scenarios. Especially, it can
be seen that after an initial oscillation, the queue converges
to the equilibrium (also reflected in the breakdown), while
convergence is smoother for the other variables.

Bottom-left plot considers 100 random initial conditions and
focuses on the initial phase (t < t′) of the system evolution
shown in the top-left counterpart. Similarly, the bottom-right
plot considers 100 random initial conditions but focuses on
later times when the system is about to reach convergence
(t > t′′).

While further steps are necessary to prove the local system
stability (e.g., studying a linearized version of the system at the
equilibrium, which is part of our ongoing work), this simple
visual inspection has already provided useful insights about
the convergence of the equilibrium point for different initial
conditions and scenarios.

E. Validation

We confirm the validity of the model by contrasting in
Fig. 6 the valueρ∗ of the TCP share at the equilibrium
against simulation results obtained via our own LEDBAT
ns2 implementation [1]. We point out that we have already
extensively analyzed the reprioritization phenomena via both
experiments and simulations [18], making thens2 scripts
available at [2] to reproduce the phenomenon. Hence, our
main aim here is not to provide a coverage of those results,
but rather to validate the most representative instance of our
results – which is clearly represented by the TCP share ratio
that precisely quantifies the reprioritization.

As we have previously seen,minth has by far the biggest
role in determining the TCP share curve, followed by the
number of flows in the bottleneck and bymaxp at last. At
the same time, while the traffic scenario depends on the user
and is a free parameter, from the discussion in Sec. IV we do
not considerminth as a free parameter, whilemaxp is less
interesting to study due to its more limited impact.

Hence, we fixminth = 10, maxth = B = 100, maxp = 0.1
and consider two traffic scenariosNW = NZ = {1, 5}. Fig. 6
contrasts average simulation results (solid point, with standard

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.2 0 0.2 0.4 0.6 0.8 1

(ρ
∗ -

 ρ
(t

))
 /

ρ∗

(W∗ - W(t)) / W∗

τ =10
τ =20

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

-0.2 0 0.2 0.4 0.6 0.8 1

(Q
∗ -

 Q
(t

))
 /

Q∗

(W∗ - W(t)) / W∗

τ =10
τ =20

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.975 0.98 0.985 0.99 0.995 1

(ρ
∗ -

 ρ
(t

))
 /

ρ∗

(W∗ - W(t)) / W∗

t<t, -- (W0,Z0,Q0) ~ U(0,1)

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-0.05 0 0.05 0.1 0.15 0.2 0.25

(Q
∗ -

 Q
(t

))
 /

Q∗

(W∗ - W(t)) / W∗

t>t,, -- (W0,Z0,Q0) ~ U(0,1)

Fig. 7. Convergence to the equilibrium.

deviation bars over multiple runs) against the equilibrium(12)
previously discussed (dotted line) and a slightly more accurate
version (solid black line) that compensates two simplifications
of the fluid model that we discuss next. Notice indeed that (12)
captures reasonably well the essence of the reprioritization
phenomenon. Still, two quantitative discrepancies arise.

First, it can be seen that for values ofτ > minth the model
underestimates the TCP share. This results from a known
problem of the TCP model presented in [24] that this work
extends: i.e., [24] is known to underestimate TCP congestion
window with respect to simulation, which can be easily
compensated by taking into account a multiplicative decrease
factor of 1.5 (instead of 2) as in [24]. The refined equilibrium
takes into account this correction, and is significantly more
accurate whenτ > minth.

Second, recall that whenτ < q∗, the model degenerates
into a simpler one in which only TCP flows compete on the
bottleneck, henceρ∗ = 1. In practice however, we know that
LEDBAT will keep sending a minimum of 1 packet per RTT:
this is done to continuously measure the queuing delay, at very
low frequency and intrusiveness. LEDBAT does this in order
to promptly react to queuing delay reduction and effectively
utilize the spare capacity as soon as the link becomes free
again. Hence, in caseτ < q∗, a refined estimation could
upper boundρ∗ by reducing the capacity available for TCP
proportionally to the number of LEDBAT flows, i.e.,

ρ∗ < 1− N
CTp

P
+ q∗

The refined equilibrium takes into account also this second
correction, and is significantly more accurate with respectto
(12) whenτ < minth. Yet, we argue that such low level of
detail can be better captured withns2 simulations, and that
quantifying theexact level of reprioritization is less relevant
for practical purposes – i.e., as users will likely be interested in
knowing whether their non-critical bulky transfers are indeed
lower-priority with respect to critical continuous backups, or
if they compete on a roughly equal basis.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

T
C

P
 s

ha
re

Target τ [pkts]

N=1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

Target τ [pkts]

N=5

Refined ρ*
ρ* from (12)
ns2 simulation

Fig. 6. Simulation validation of TCP share ratioρ∗ at the equilibrium as a function ofτ for various traffic scenariosNW = NZ = {1, 5}.

VI. SYSTEM-LEVEL SOLUTION

Recent evolutions on the Internet applications and infras-
tructure seem to suggest that AQM and Low priority conges-
tion control (LPCC) protocols will have to coexist: indeed,
popular applications are developing delay-based congestion
control protocols such as BitTorrent/LEDBAT on the one hand,
operators are starting to deploy AQM/scheduling on the user
access uplink on the other hand. As such, it is imperative to
find solutions to the negative AQM/LPCC interplay we have
shown in this paper. While a general solution is hard to find,
as testified by the current standpoint after over 20 years of
research, a patch to this specific problem may be within reach.

Some might argue that small buffers would be enough to
solve bufferbloat altogether. Yet, there are several reasons why
this simple solution is not sufficient. First, in presence of
too small buffers, it would be difficult for TCP and other
congestion control to fully saturate the capacity, causingan
undesirable efficiency loss. Second, deciding a buffer size
is a matter of concern per se: consider indeed WiFi links,
where the capacity may fluctuates widely over time, so that
no single buffer size can at the same time (i) be large enough to
support TCP congestion control and (ii) rule out bufferbloat
in a fast-to-slow transition from 54Mbps to 2Mbps. Finally,
jeopardization of relative priorities are not solved by small
buffers [18].

An ideal solution should achieve two goals: (i) meet quality
of service constraints while (ii) respecting relative levels
of priorities among protocols. Quality of service constraints
clearly translate into upper-bounding the queuing delay, that
we know is used by protocols to enforce their relative pri-
orities. Since even a single TCP flow may bufferbloat the
others, the solutionneeds AQM, as otherwise the quality of
service constraints would be violated. At the same time, to
avoid the LPCC reprioritization phenomenon, we argue that
classification capabilities will be needed in AQM to account

for flows’ explicitly advertisedlevel of priority.

Although in the more general case classification has failed
to be adopted (IP TOS field, DiffServ, etc.), and the ability
to claim higher priority could be easily gamed, in a hybrid
AQM vs. LPCC world it makes sense for flows to claim a
lower priority. We believe that this subtle difference can make
an important practical difference in terms of deplorability.

A simple way would be to let application exploit IP TOS
field. While the overloading of the IP TOS can be troublesome
within an operator network, this is not an issue in the home.
Indeed, the usefulness of the IP TOS is not end-to-end but
merely meant as a low-priority signal to the box in the user
home. Hence, IP TOS could be leveraged by the ISP CPE in
the user home to apply differential treatment to best-effort and
low-priority traffic (e.g., different AQM loss profiles, different
scheduling weights), after which the end-user IP TOS value is
no longer useful and can be rewritten by the CPE (or at the
DSLAM, or BRAS, etc.) in the network of an operator using
DiffServ if needed.

We further stress that the firmware governing home-routers
and WiFi APs is generally based on some variants of the Linux
kernel, possibly open-source as in the OpenWrt or CeroWrt
cases. We point out that the above solution is therefore already
implementable without any additional development effort –
e.g., using strict priority queuing or shaping. In the Linux
traffic control (tc) suite, this can be achieved with thePRIO
queuing discipline (qdisc) that implements non-shaping con-
tainer for a configurable number of classes which are dequeued
in order. This first solution allows for easy prioritizationof
traffic, where lower classes are only able to send if higher ones
have no packets available. A second solution offered by Linux
tc is represented by theCBQ qdisc that offers shaping and
finer-grained prioritization capabilities.

VII. C ONCLUSIONS AND FUTURE WORK

This work models an interdependency phenomenon between
heterogeneous congestion control protocols and active queue
management. Specifically, in case a low-priority congestion
control protocol (e.g., LEDBAT) competes against TCP on a
bottleneck link governed by AQM (e.g., RED), the relative
level of priority of the congestion control protocols is reset,
and the protocols compete on a roughly equal basis.

We model the problem as a system of Ordinary Differential
Equations that we solve numerically and validate against
simulation results. Our main results is that the TCP share at
the equilibrium equalsρ∗ =

(

1 +
√

(τ − q∗)/τ
)−1

, whereτ
is LEDBAT target queuing delay andq∗ is the length of the
queue at the equilibrium determined by RED settings.

By reason of increasing deployment of both low-priority
congestion control and AQM techniques, the problem may
be of significant practical relevance. As we believe that it
may be desirable for end-users (or end-user applications) to
autonomously and coarsely set their relative level of priorities,
we have proposed simple yet effective system-level design and
practices that can solve the issue we have characterized in this
paper.

Our future work moves along two main paths. On the one
hand, we aim at refining our investigation by means of a
control theoretic analysis of the properties of the linearized
system, to e.g., prove local stability of the equilibrium. On
the other hand, as we know by [18] the problem to hold in
general for several AQM and LPCCs, another line of work
goes in the direction of extending the model in both the AQM
(e.g., CoDel [28]) and low-priority congestion control (e.g.,
NICE [34]) directions.

ACKNOWLEDGMENTS

This work was carried out at LINCS http://www.lincs.fr.
The research leading to these results has received funding
from the European Union under the FP7 Grant Agreement
n. 318627 (Integrated Project ”mPlane”).

REFERENCES

[1] http://www.enst.fr/∼drossi/ledbat.
[2] http://www.enst.fr/∼drossi/dataset/ledbat+aqm.
[3] Aduf - historique firmware, 01/07/2005.

http://88.191.250.12/viewtopic.php?t=164746&view=previous.
[4] J. Ahn, P. Danzig, Z. Liu, and L. Yan. Evaluation of tcp vegas: emulation

and experiment. InACM SIGCOMM Computer Communication Review,
volume 25, pages 185–195. ACM, 1995.

[5] B.Cohen. How has bittorrent as a protocol evolved over time.
http://www.quora.com/BitTorrent-protocol-company.

[6] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa. A hands-on
Assessment of Transport Protocols with Lower than Best Effort Priority.
In IEEE LCN, 2010.

[7] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti. The quest for
LEDBAT fairness. InGlobecom, 2010.

[8] V. Cerf, V. Jacobson, N. Weaver, and J. Gettys. Bufferbloat: what’s
wrong with the internet?Communications of the ACM, 55(2):40–47,
2012.

[9] S. Cheshire. It’s the latency, stupid!
http://rescomp.stanford.edu/∼cheshire/rants/Latency.html, 1996.

[10] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith. Tuning red for web
traffic. In ACM SIGCOMM CCR, volume 30, pages 139–150, 2000.

[11] B. Cohen and A. Norberg. Correcting for clock drift in uTP and
LEDBAT. In 9th USENIX International Workshop on Peer-to-Peer
Systems (IPTPS’10), 2010.

[12] A. Eshete and Y. Jiang. Approximate fairness through limited flow list.
In Proceedings of the 23rd International Teletraffic Congress(ITC23),
pages 198–205, 2011.

[13] A. Eshete, Y. Jiang, and L. Landmark. Fairness among high speed
and traditional tcp under different queue management mechanisms.
In Proceedings of the ACM Asian Internet Engineeering Conference
(AINTEC), pages 39–46. ACM, 2012.

[14] S. Floyd and V. Jacobson. Random early detection gateways for conges-
tion avoidance.IEEE/ACM Transactions on Networking, 1(4):397–413,
1993.

[15] Sally Floyd. Connections with multiple congested gateways in packet-
switched networks part 1: one-way traffic.ACM SIGCOMM Computer
Communication Review, 21(5):30–47, 1991.

[16] D. Rossi C. Testa S. Valenti G. Carofiglio, L. Muscariello. Rethinking
low extra delay backtround transport protocols.Elsevier Computer
Networks, to appear.

[17] J. Gettys and K. Nichols. Bufferbloat: dark buffers in the internet.
Communications of the ACM, 55(1):57–65, 2012.

[18] Y. Gong, D. Rossi, C. Testa, S. Valenti, and D. Taht. Fighting the
bufferbloat: on the coexistence of aqm and low priority congestion
control. In IEEE INFOCOM Workshop on Traffic Measurement and
Analysis (TMA’13), Turin, Italy, April 14-19 2013.

[19] CV Hollot, V. Misra, D. Towsley, and W. Gong. A control theoretic
analysis of red. InIEEE INFOCOM’01, volume 3, pages 1510–1519,
2001.

[20] P. Key, L. Massoulié, and B. Wang. Emulating low-priority transport
at the application layer: a background transfer service. InACM
SIGMETRICS, New York City, NY, June 2004.

[21] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illumi-
nating the edge network. InACM SIGCOMM Internet Measurement
Conference (IMC’10), pages 246–259, 2010.

[22] A. Kuzmanovic and E.W. Knightly. TCP-LP: A distributedalgorithm
for low priority data transfer. InIEEE INFOCOM, 2003.

[23] S. Liu, M. Vojnovic, and D. Gunawardena. 4cp: Competitive and
considerate congestion control protocol. InACM SIGCOMM, September
2006.

[24] Y. Liu, F. Lo Presti, V. Misra, D. Towsley, and Y. Gu. Fluid models and
solutions for large-scale ip networks. InACM SIGMETRICS, volume 31,
pages 91–101. ACM, 2003.

[25] M Ajmone Marsan, Michele Garetto, Paolo Giaccone, Emilio Leonardi,
Enrico Schiattarella, Tarello, and A. Using partial differential equations
to model tcp mice and elephants in large ip networks.IEEE/ACM
Transactions on Networking,, 13(6):1289–1301, 2005.

[26] P.E. McKenney. Stochastic fairness queueing. InIEEE INFOCOM,
1990.

[27] V. Misra, W. Gong, and D. Towsley. Fluid-based analysisof a network
of aqm routers supporting tcp flows with an application to red. ACM
SIGCOMM, 30(4):151–160, 2000.

[28] K. Nichols and V. Jacobson. Controlling queue delay.Commun. ACM,
55(7):42–50, July 2012.

[29] R. Pan, B. Prabhakar, and K. Psounis. Choke - a statelessactive queue
management scheme for approximating fair bandwidth allocation. In
IEEE INFOCOM, 2000.

[30] D. Rossi, C. Testa, S. Valenti, and L. Muscariello. LEDBAT: the new
BitTorrent congestion control protocol. InIEEE ICCCN, 2010.

[31] J. Schneider, J. Wagner, R. Winter, and H.J.Kolbe. Out of my way
– evaluating low extra delay background transport in an ADSLaccess
network. In ITC22, 2010.

[32] S Shalunov. Low Extra Delay Background Transport (LEDBAT). IETF
Draft, March 2010.

[33] M. Shreedhar and George Varghese. Efficient fair queueing using deficit
round robin. InACM SIGCOMM, 1995.

[34] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism
for background transfers. InUSENIX OSDI, 2002.

http://www.lincs.fr
http://www.enst.fr/~drossi/ledbat
http://www.enst.fr/~drossi/dataset/ledbat+aqm
http://88.191.250.12/viewtopic.php?t=164746&view=previous
http://www.quora.com/BitTorrent-protocol-company
http://rescomp.stanford.edu/~cheshire/rants/Latency.html

	I Problem statement
	II Background
	II-A Interaction
	II-B Fairness
	II-C Low priority
	II-D Fluid modeling

	III Fluid model
	III-A Ordinary Differential Equation System
	III-B Equilibrium point

	IV Scenarios
	IV-A User applications
	IV-B Network configuration

	V Results
	V-A Reprioritization
	V-B Equilibrium
	V-C Sensitivity
	V-D Convergence
	V-E Validation

	VI System-level solution
	VII Conclusions and future work
	References

