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Abstract— To be deployed in the real world, a self-driving car
must be capable of responding to exceptional road conditions,
such as temporary work zones, because such events can change
previously known traffic rules and road geometry. To develop
such a capability, we implemented a computer vision system
that recognizes the bounds of highway workzones by detecting
regulatory and warning workzone signs. Because it is not prac-
tical to expect perfect performance in sign recognition, we also
developed a confidence-propagation method to handle potential
sign recognition errors. The performance of highway workzone
recognition was improved by confidence-propagation, but our
approach is not easily scalable to some real-world scenarios.
Instead of only propagating sign classification confidence, in
this work we project the appearance information of previously
detected signs onto the current frame, to constrain the region
for searching. Through experiments, we show that kernel-based
tracking reduced the miss and false detection rates, result in a
better performance of highway workzone recognition. In this
paper, we present our on-going effort to further improve the
performance of our highway workzone recognition system.

I. INTRODUCTION

For the past several decades, research efforts in the de-
velopment of self-driving cars have drastically improved
related technologies. For example, researchers have advanced
consumer cars from early approaches such as equipping them
with B&W cameras, which merely follow road-markings at
a very low speed, to developing a semi-autonomous vehicle
that can drive on highway routes stretching thousands of
kilometers and containing normal traffic [6], [18] and to
designing fully autonomously vehicles that drive on 60 mile-
long (mock-) city routes while interacting with other robotic
vehicles [15], [19]. In the near future, these technological
advancements will help us realize self-driving cars that can
function in daily life.

Before fully-autonomous vehicles can be available for
daily use, they must at least be able to cope with the most
plausible driving environment for self-driving car operations:
highways where road geometry is less variable, where traffic
rules are clearly visible and where direct interactions with
other vehicles are infrequent. The benefits of deploying self-
driving cars on highway are also quite tangible as well in
that operating a self driving car is expected to reduce a large
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number of highway traffic accidents caused by lack of human
drivers attention and inefficient gas consumption. In addition,
self-driving vehicles would facilitate more efficient public
freight transportation. Finally, for automated transportation,
deployment of self-driving cars on highways would be less
expensive than building new infrastructure on highway.

On a highway, the driving behavior of an autonomous
vehicle is primarily guided by two properties of a highway:
its road geometry and the traffic rules. A map of the highway
can be manually or automatically prepared in advance to
provide the vehicle with detailed information about road
geometry and traffic rules. However, it is not possible to
describe unexpected occurrences on a map in a priori, such
as traffic accidents or road work. For safe and reliable
autonomous driving, the vehicle must be able to effectively
handle such events, which may cause temporary changes in
road conditions.

To effectively handle unexpected events on a highway,
an autonomous vehicle should first be able to identify the
bounds, e.g., the beginning/end of a workzone, and under-
stand possible changes an unexpected event imposes on the
highway, e.g., decrease in speed or blockage of a lane. We
developed a color-based sign detection system to recognize
work-zones on highways [16]. In particular, our system
learns variations of a color in sign images so as to perform
a pixel-wise binary color classification. Then our method
identifies blobs to localize sign image regions. Finally, our
method represents a sign image in a homogeneous feature
space in order to reduce variation of geometric shapes. To
handle potential sign recognition errors, we exploit temporal
redundancy of sign appearances in such a way that sign-
recognition confidence is forwarded to smooth out the effect
of any signs missed. Because we propagate only the confi-
dence, and not the appearance information about the detected
signs, our workzone recognition system can be upgraded by
improving our sign detection method.

To improve the performance of our color-based sign de-
tection method, we apply an appearance-based, sign tracking
algorithm. In particular, our approach exploits two features
of appearance of a sign in a video stream, in which a sign
appears multiple times before it disappears from the view
point. First, in the two consecutive image frames, there
are overlapping regions, particularly in the images of the
sign. Second, there are small variations of the appearances
and locations. By considering these features, the detected
sign and its rectangular region are first given as an input
to our tracking system. Then, the detected sign image is
modeled with a probability density distribution as a target.
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Fig. 1. A schematic overview of our workzone recognition system. Our sign detection module localizes a potential sign in an image at time t and the
potential sign is represented as a target probability density for an image at time t+1. The image at time t+1 and a target probability density are given as
inputs to our tracking module. Different sizes of sub-regions of an image at time t+1 are represented as candidate probability density and localized by the
mean-shift algorithm. A candidate with the highest score to a target is an output as a new target for the subsequent frame. Our classifier estimates the
target class of the localized sign from either our detection or tracking.

Next, the rectangular region from the input is projected onto
the subsequent frame as a candidate, which is also modeled
with a probability density distribution. Lastly, our approach
iteratively shifts the rectangular region until the distance
between the target and the candidate becomes minimum.

In this paper, we describe a successful application of
kernel-based tracking techniques to improve the performance
of localizing workzone signs from perspective images and the
overall performance of our workzone recognition system.

II. RELATED WORK

Many researchers have proposed traffic sign recognition
systems. The majority of these systems are composed of two
steps: detection and classification.

The color and shape of traffic signs have been used as
two dominant cues when searching traffic signs in images.
Some of the color-based sign detection methods use color-
value thresholding to detect the potential signs in an image.
For example, several researchers manually investigated color
values, while others, including us, used machine learning
techniques to obtain the optimal thresholds of target color
[13]. The shape-based sign detections usually utilize either
the gradient of gray scale image [14] or trained model from
data sets [1].

For the classification step, well-known machine learning
techniques, such as neural network (NN) [7], linear dis-
criminative analysis (LDA) [1], SURF matching [3], and
cross-correlation [17] have been applied. While Eichner and
Breckon [7] tried to classify the context of speed limit signs,
others tried to classify the appearances of the signs, e.g.,
color and shape information, rather than their contexts.

Some of the traffic sign recognition systems combine a
detection with a tracking system in order to improve the
performance. The majority of the tracking systems deal with
the dynamics of the tracked signs while the others cope with
the appearances of the tracked signs. In order to reduce the
search region and improve the detection performance, the
discrete-time dynamics of vehicles have been utilized, for

example, in Bayesian Filters [8], [11], [13], [14], [17] and
information fusion [1], in order to predict the position of a
sign in subsequent frames.

On the other hand, the appearance approach for tracking,
which is implemented in our approach, is based on the visual
appearance [12], in which the well-established Lucas-Kanade
Tracker (LKT) [2] has applied. Liu et al. [12] chose several
interesting points to overcome the computational cost of LKT
and these improvements allowed their algorithm to run in
real-time, though there might be problems when images are
blurred due to vehicle motion. Instead of requiring complex
dynamics of vehicles, our kernel-based object tracking [4]
utilizes the appearance from a sequence of images to effec-
tively handle the variations.

III. RECOGNIZING TEMPORARY TRAFFIC
CONTROL SIGNS

Our task is to understand temporary changes on highways,
such as altered road geometry and traffic rules, through
workzone sign recognition. The schematic overview of our
approach is presented in Fig. 1. Our system is composed
of three components including color-based sign detection,
kernel-based sign tracking, and sign classification. In the
following section, each component of our proposed approach
is explained.

A. Sign Detection

The appearnace of traffic sign is strictly regulated by
local and national traffic authorities. For example, all the
background color of workzone signs is orange. However it
is still challenging to identify an orange colored pixel in an
image because aging, wearing, weather, and lighting often
cause color variations. To effectively handle these issues, we
formulate learning of orange color variation as a binary color
classification using the Bayesian inference framework.

P (sign|X) = ηP (X|sign)P (sign)

where X is a total number of m-dimensional pixels and
η is a normalizer for the posterior distribution. We obtain
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the prior probability distribution, P (sign), from the ground
truth of our training data, and use AdaBoost [9] to learn the
likelihood function, P (X|sign), of a given pixel as part
of the target sign. The training data contains 29 images of
positive data and 37 images of negative data, some from
the web and the rest from our workzone images. A set of
weak-classifiers and their weights are trained by these data.

P (X|sign) = mode (∪jg (f (xj |sign)))

f (xj |sign) =

H∑
i=1

αihi (xj)

where xj is a 2-dimensional color vector which consists of
hue and saturation from pixels in an image, xj ∈ X, g is
a function to convert the binary output of AdaBoost into
a probabilistic output [10], g(f(y)) = exp(f(y))

exp(f(y))+exp(−f(y)) ,
H is the number of weak classifiers, hi represents a weak
classifier and αi is its weight. We got 97 % pixel-wise
detection accuracy using this color classifier.

This color classifier is executed on every pixel to assign
a probability for whether the pixel is part of an orange
workzone sign or not. Our sign detector runs connected-
component grouping algorithm to identify orange blobs
and uses non-maximum suppression to select the largest
bounding box when the width or height is bigger than 30
pixels. To detect a regulatory, rectangular workzone sign
which includes two colors (orange at the top and white at the
bottom), we heuristically increase the bounding box based on
the aspect ratio.

B. Sign Tracking

In this section, similar notations to [4] are used with
appropriate modifications when necessary. The bounding
box of a potential workzone sign from our sign detector
is given as an input to our sign tracking component. Since
the color variation between two consecutive frames is small,
we represent the potential workzone sign, the target, as a
probability density distribution by computing a histogram
in hue-saturation-value (HSV) color space. We chose HSV
color space since it is less affected by illumination when
compared to red-green-blue (RGB) color space. In particular,
only hue and saturation values are quantized into nh × ns
bins, where nh and ns are the bin numbers of hue and
saturation, respectively. To avoid underfitting or overfitting,
we choose both nh and ns as 20. To represent the target
model consistently with various sizes of signs, the pixel
coordinates should be normalized. Furthermore, to focus on
the appearance of a sign rather than the background, we
utilize a kernel, K, which combines Epanechinikov profile
[4] and a mask of the detected sign. In this kernel, the
pixel coordinates closer to the center get larger weights and
those within mask get weights of K(p) = ck (1− p) ·mask.
Fig. 2 illustrates this kernel. Finally, we can calculate the
probability density distribution of the target model, T =

Fig. 2. Kernel functions. The left image is the output of the detected sign,
and the middle image is a mask of shape. In order to reduce the background
effect and concentrate on the target color, Epanechinikov kernel and the
mask of shape from the detection output are combined. The right image
illustrates this combined kernel.

{tb}b=1···nh×ns
, on normalized pixel coordinates, p, as

tb = tns·(j−1)+k

= C

n∑
i=1

K
(
‖pi‖2

)
H(pi, hj , sk) (1)

where

H(pi, hj , sk) =

{
1 hue(pi) ∈ hj ∩ sat(pi) ∈ sk
0 otherwise

and C is a normalization constant.
We also need to calculate candidates, c(z), in the sub-

sequent frame to localize, where z is the new center. We
can calculate candidates same as the target except the new
normalized pixel coordinate, pnewi based on z, because the
location of the sign in the subsequent frame shifts. Also, the
size of the bounding box increases as the vehicle gets closer
to the sign. We can estimate the size of sign in the subsequent
frame, but it does not have to be exact. To increase our
performance, we apply five different sizes of kernels (0%,
2%, 5%, 7%, and 10% increased kernels) and choose one as
the tracking result. c(z) is calculated by (1) with pnewi .

The distance between these two probability density dis-
tributions is the minimum when the candidate model is
matched to the target model. Minimizing the distance can
be interpreted as maximizing the similarity, and we choose
Bhattacharrya coefficient [4], B(t, c(z)), to measure the
similarity, where B(t, c) =

∑nh×ns

b=1

√
tb · cb. Using linear

approximation around z, we are now able to use the mean-
shift algorithm [4] to find the mode of

Cs

2

n∑
i=1

wiK

(∥∥∥∥z− pnewi

s

∥∥∥∥2
)

(2)

where wi is

wi =

nh×ns∑
b=1

√
tb

cb(z)
H(pnewi , hj , vk)

We can find the maximum value of (2) by the gradient. If
Epanechnikov kernel is used, the gradient of (2) will be a
weighted summation as the standard mean-shift algorithm.
In our case, though, the mean-shift algorithm is represented
as

znew =

∑n
i=1 p

new
i wi · mask∑n

i=1 wi · mask
(3)

which is still a dot product that has low computational cost.
The mean-shift algorithm is repeatedly executed until the
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error is less than the predefined threshold or the number of
iterations is less than the maximum iteration number, which
is usual. The center position is updated in every iteration by
(3). Once all of the candidates converge, we choose the final
output which has the highest Bhattacharrya coefficient and
provide it to our sign classification component.

C. Sign Classification

A bounding box from both our sign detection and tracking
as a potential workzone sign is given as an input to our
sign classification component. The goal of this research is
to recognize temporary changes on workzones and we need
to recognize the signs by classifying them. In this purpose,
nine different workzone signs are chosen as target classes
which indicate a workzone bounds and temporary changes
and the remaining workzone signs are assigned to another
class. Table I explains the target classes in detail.

Three major issues exist to classify the detected signs.
First, the intensities of the detected signs can vary due to
the environment. Second, the dimensions of the detected
signs are various. The dimension of a sign is increasing
when the sign is closer to the camera. Third, it is almost
impossible to see the canonical shape of a workzone sign
because of the perspective projection into an image. Also,
signs can be slightly tilted or rotated while installing. In
order to effectively handle these issues, our sign classifier
first normalizes the intensity of the detected sign, and then
transforms it into a log-polar image. This log-polar transform
samples densely image intensity values near the center of a
sign image where the distortions are relatively small, and
then sparsely collects values from sign image boundaries
where the geometric distortions are large. Also, this log-polar
transformed image always have ρ by θ resolution because
the detected sign image is converted into a log-polar image
based on these two parameters: ρ is a distance between
sampling bins and the centroid and θ is a rotation angle of
sampling bins in counterclockwise. Finally, our sign classifier
can produce the same length of a column vector, |ρ× θ| × 1
(e.g., a combination of the parameters, ρ = 32 and θ = 32,
resulting in 1024× 1), for every sign.

TABLE I
THE NUMBER OF SIGN IMAGES FOR EACH TARGET CLASS.

Workzone begins Workzone ends Road work warning
61 42 86

Speed limit change Lane shift leftward Lane shift
75 26 36

Left lane closed Left lane closed Lane shift rightward
19 17 43

However the column vector still has a high-dimensionality
space compared to the number of training data. We reduce
the original dimension using principal component analysis
(PCA). We then build an eigen-space from the training data
and project a testing sign image in the log-polar coordinate
space onto this eigen-space. 10 eigen bases cover more than
93% of the total variance of perfectly labeled input data.
We use support vector machine (SVM) to classify the signs
among those eigen bases.

IV. EXPERIMENTS

This section details the experimentation measuring the
performance of our sign workzone recognition system using
images acquired under various weather conditions.

Our experiments measured the performance of detection
and classification by executing two different detection types,
‘detection only’ and ‘detection and tracking,’ to show the
improvement of our workzone recognition system when ap-
plying the tracking component. ‘Detection only’ executed our
sign detector in every frame, while ‘detection and tracking’
executed our sign detector until it satisfied the predefined
conditions. Then, our sign tracking was executed in the
remaining frames until a sign disappeared. Our classifier
predicted a target class of a sign once the sub-region image
was generated by either the detection or tracking.

We collected video sequences at 640 by 480 resolution at
15 fps under various environmental conditions. We labeled
5 video sequences among these with manually annotated
ground truths of position and target class for the testing
data. These testing data contained a sequence of a nominal
highway, a workzone, and another nominal highway under
various weather conditions. The top row of table II explains
the total number of frames, the number of images workzone
signs appearing on, and the weather condition.

To evaluate the performance of the localization, we
used the metrics used for PASCAL object detection chal-
lenges [16]. An output bounding box, oi, was considered
a potential match to the ground truth bounding box, gi,
in a given image frame, i, if their area of overlap was
greater than a predefined value, τ < Area(oi∩gi)

Area(oi∪gi) . When a
potential match was found in a given image, sign localization
performance could be further analyzed by measuring the
following: precision= Area(oi∩gi)

Area(oi)
and recall= Area(oi∩gi)

Area(gi)
.

To clearly illustrate our experimental results, we detail
one of them and summarize the whole performance. Fig.
3 illustrates one of the experimental results, i.e. video data
E, where the x-axis represents the number of image frames
organized by time and the y-axis represents the workzone
sign target class. When a classification output is matched
with the ground truth labeling, we counted it as a correct
classification. We further analyzed the classification result
with respect to the performance of our localization. Fig. 3(b)
magnifies the dashed rectangle in Fig. 3(a). “Road work
warning” signs appeared 12 times before they disappeared
from the camera’s field of view. As shown, the recall of
detection fluctuated while that of tracking was stable. We
treated our localization method missed a sign when its
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(a) A graph showing the summary of the test results. (b) This subfigure magnifies the dashed rectangle
in Fig. 3 (a).

(c) Example images of localization results. The yellow dotted rectangles are ground truths, the blue solid rectangle
are tracking results, and the red dashed rectnagle are detection results.

Fig. 3. Testing results of video data, E.

TABLE II
RESULTS OF OUR SYSTEM PERFORMANCE TESTS ON DIFFERENT DRIVING CONDITIONS.

A B C D E

Test video
Number of images 3305/445 4232/646 874/255 3148/401 3280/445

Season Winter Winter Spring Spring Spring
Weather Overcast Overcast Sunny Sunny Rainy

Detection

Number of tracked signs 97 117 49 152 98
Number of covered signs 4 11 3 20 13

Precision / Recall 0.999 / 0.879 0.988 / 0.870 0.989 / 0.885 0.962 / 0.903 0.983 / 0.882
0.957 / 0.905 0.967 / 0.823 0.967 / 0.874 0.854 / 0.925 0.956 / 0.832

Classification

Workzone Begins o/1.0/0.235 o/0.667/1.0 o/0.125/1.0 o/0.714/0.556 o/1.0/1.0
o/1.0/0.235 o/0.333/1.0 o/0.250/1.0 o/1.0/1.0 o/1.0/1.0

Workzone Ends o/1.0/1.0 o/1.0/1.0 o/1.0/1.0 o/1.0/1.0 o/1.0/0.2
o/1.0/1.0 o/1.0/1.0 o/1.0/1.0 o/1.0/1.0 o/1.0/0.25

Road work o/0.867/1.0 o/0.585/0.774 o/0.688/1.0 o/0.667/0.857 o/0.478/0.786
o/0.533/1.0 o/0.366/0.714 o/0.0625/1.0 o/0.5/1.0 o/0.0870/0.25

Speed limit change N/A N/A N/A x/0.0/0.0 o/0.2/1.0
o/0.4/1.0 o/0.2/1.0

Lane shift leftward symbol o/0.5/1.0 o/0.231/1.0 N/A N/A o/0.625/1.0
x/0.0/0.0 x/0.0/0.0 x/0.0/0.0

Lane shift text o/0.677/1.0 o/0.444/1.0 N/A N/A o/0.25/0.4
o/0.647/1.0 o/0.222/1.0 o/0.125/0.333

Left lane closed symbol N/A N/A N/A o/0.625/1.0 N/Ao/0.813/1.0

Left lane closed text N/A N/A N/A o/0.143/1.0 N/Ao/0.143/1.0

Lane shift rightward symbol N/A x/0.0/0.0 N/A o/1.0/0.7 o/1.0/0.45
x/0.0/0.0 o/1.0/0.778 o/1.0/0.356

PASCAL measurement was less than 0.65. Our detector
missed at frame 1515 and 1517. On the other hand, our
tracking module didn’t miss any signs during these frames
and provided bounding boxes with high precision and recall,
which led to a better classification performance.

We evaluated the performance of our workzone sign
recognition system in terms of localization and classification.
For the localization performance, we counted the number of
signs that were missed by our sign detection module, but
covered by our sign tracking module. Also, we calculated the
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averaged precision and recall of each instance. For the classi-
fication performance, we evaluated it in terms of nine target
classes. For comparison, two different types of localization
algorithms were executed: ‘tracking’ and ‘detection only.’
Table II further details the experimental results. The precision
and recall values were calculated from only the frames
which were executed on the tracking. (e.g., all the detection
performance before the tracking started were ignored.) The
first row in each cell represents the performance when
tracking module is included while the second row represents
the performance when only detection module is executed. In
regard of the detection performance, our tracker successfully
covered signs which were missed by our sign detector.
For example, our sign tracking covered 13 missed signs
from our sign detector. Furthermore, our tracker provided
higher precision and recall than our detector which led to
the better performance of the classification. Our recognition
performance is improved with tracking except one test data,
D. Our tracking system crops the potential sign region using
the mode and standard deviation of the intensity within
the bounding box. However, this sometimes over-crops the
sign, which causes misclassification. Most of the degraded
performance of the classification on D comes from this
reason. Also, as explained in section III-A, we heuristically
increase the bounding box for a rectangular workzone sign
which includes two colors; “workzone begins” and “speed
limit change” signs. Our tracking system only tries to track
the orange color at the top and increases the bounding box
heuristically, which is prone to error when increasing the
bounding box. We demonstrate that our system including
tracking component not only identifies the workzone bounds
but also recognizes the details of temporary changes.

V. CONCLUSIONS AND FUTURE WORK

We presented a kernel-based traffic sign tracking to im-
prove the performance of our highway workzone recog-
nition system. The experimental results demonstrated that
our improved workzone recognition system could provide
the information of temporary changes in workzones. Our
contributions in this paper include a successful application
of kernel-based sign tracking method, resulting in picking
up missed signs from our detector and improvement in our
sign detection performance, increasing the performance of
our sign classification component.

We showed promising results, but there is still a room for
improvement. The shape information of signs can be used
to further improve the performance of our sign tracker. In
addition, our sign detector may miss signs in practice due to
under- or over-exposure. In order to handle these issues, we
would like to investigate a color constancy algorithm that
estimates the illumination response function of our vision
sensor. Furthermore, we would like to explore 3D scene
geometry in order to effectively reduce the region of interest
for better detection. Finally, we would like to continue testing
under various road conditions and illuminations in order to
evaluate the capability of our workzone recognition.
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