
HAL Id: hal-01943606
https://hal.science/hal-01943606v1

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensor based Prediction of Human Driving Decisions
using Feed-forward Neural Networks for Intelligent

Vehicles
Shriram Jugade, Alessandro Corrêa Victorino, Véronique Cherfaoui, Stratis

Kanarachos

To cite this version:
Shriram Jugade, Alessandro Corrêa Victorino, Véronique Cherfaoui, Stratis Kanarachos. Sensor based
Prediction of Human Driving Decisions using Feed-forward Neural Networks for Intelligent Vehicles.
21st IEEE International Conference on Intelligent Transportation Systems (ITSC 2018), Nov 2018,
Maui, Hawaii, United States. pp.691-696, �10.1109/ITSC.2018.8569441�. �hal-01943606�

https://hal.science/hal-01943606v1
https://hal.archives-ouvertes.fr


Sensor based Prediction of Human Driving Decisions using Feed
forward Neural Networks for Intelligent Vehicles

Shriram C Jugade1, Alessandro C Victorino2, Véronique B Cherfaoui1, Stratis Kanarachos3

Abstract— Prediction of human driving decisions is an impor-
tant aspect of modeling human behavior for the application to
Advanced Driver Assistance Systems (ADAS) in the intelligent
vehicles. This paper presents a sensor based receding horizon
model for the prediction of human driving commands. Human
driving decisions are expressed in terms of the vehicle speed
and steering wheel angle profiles. Environmental state and
human intention are the two major factors influencing the
human driving decisions. The environment around the vehicle
is perceived using LIDAR sensor. Feature extractor computes
the occupancy grid map from the sensor data which is filtered
and processed to provide precise and relevant information to
the feed-forward neural network. Human intentions can be
identified from the past driving decisions and represented in
the form of time series data for the neural network. Supervised
machine learning is used to train the neural network. Data
collection and model validation is performed in the driving
simulator using the SCANeR studio software. Simulation results
are presented along with the analysis.

Index Terms— Intelligent vehicle, ADAS, human driving be-
havior, human driving decisions, Shared Control, Autonomous
Navigation, Neural Networks.

I. INTRODUCTION

In the last years, we have faced the need and development
of a new class of ADAS modules, taking into account
the interaction between the human and the embedded au-
tonomous navigation system. Although, these ADAS include
autonomous functionalities enabling the fully control the
displacements of the actuated intelligent vehicle, the final
control input results from the fusion between the human
driver control and the intelligent system control, in a shared
navigation strategy ([1]). Predicting the human driving be-
havior is of main interest in the development and application
to these new ADAS modules, making them more efficient
and proactive. This is the problem treated in this article.
There are several aspects of predicting the human driving
behavior. One of the aspects is to identify patterns and
classify the driving behavior ([2],[3],[4]). This helps for
the automated driving to understand the behavior of human
drivers in other vehicles.

Vehicle trajectory prediction is another major aspect of
modeling human driving behavior. The prediction of trajec-

This project has received funding from the European Commission under
the H2020 Grant agreement ITEAM No. 675999 and by LABEX MS2T,
ROBOTEX

1Sorbonne universités, Université de Technologie de Compiègne, CNRS,
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tory is either in generalized form using deep neural networks
([5], [6]) or specific to some scenarios for e.g. lane change
([7]). These trajectory prediction methods are well suited
for the behavioral cloning ([8]) or assessment of automated
driving ([9]). However, neural networks requires lot of data
for the training and validation purpose, and second the
knowledge of the future trajectory of the vehicle does not
directly provide the information about the vehicle speed and
steering profiles. Hence, it is difficult to identify human
driving commands. Another related work, with the prediction
of vehicle speed and steering wheel angle is presented in [10]
which uses deep belief nets and predicts the commands only
for one time step in the future.

As mentioned before, our main research objective for
the development of the human driving predictive model
(presented in this paper) is to apply it for the shared driving
control. The presented methodology predicts the human
driving decisions in the form of vehicle speed and steering
wheel angle with prediction horizon of medium size (4
secs). In order to avoid the problems associated to the deep
neural networks (demanding lot of data for the training and
validation), we have developed a feature extractor to filter
relevant data and process it before sending it to the neural
network. We used a driving simulator along with the SCANer
studio software for the data collection and validation.

The paper is organized as follows: Section II explain
the model architecture in detail including feature extraction,
vehicle speed prediction and steering wheel angle prediction.
Section III explain the neural network development. This
includes the data collection method and process, neural
network structural design, outlier detection and elimination
method, training and validation etc. Section IV present the
simulation results along with analysis. Section V concludes
the topic along with an insight into the future works.

II. HUMAN DRIVER MODEL ARCHITECTURE

Human driving decisions can be expressed in terms of the
vehicle speed and steering wheel angle. These are sufficient
to determine the driving behavior and to predict the vehicle
trajectory for the future time instants. The presented model
will predict the driving command profiles for a particular
time horizon based on the environment perception, human
intention and current vehicle state. The predictions will
be updated at each time sample i.e. the model is of the
receding horizon type. The time horizon considered for the
vehicle speed profile prediction is 4 secs while that for the
steering wheel angle profile is 2 secs. The rapid changes in
the steering wheel angle for a given scenario restricts the



prediction capability of the model to a shorter time horizon.
The model is of the open loop form i.e. the predictions of the
model at current time instant are not fed back for the next
prediction. This allows the model to be dependable on the
inputs rather than the past predictions. The main objective
of this strategy is to eliminate the error propagation of the
past predictions.

The model architecture (shown in Fig. 1) shows different
components each having a unique functionality. The main
function of the prediction is performed by a multi-layer feed-
forward neural network. It is trained on the input-output
driving data collected separately for the training purpose.
The inputs shown in the architecture are selected based on
the human approach towards driving decision-making and
can be classified into three categories namely: environmental
state, vehicle state and the human intention. Past information
of the inputs is used to identify the variation with respect to
time. This adds a time series perspective to the model.

Fig. 1. Model architecture for the prediction of human driving commands

A. Vehicle Speed Profile Prediction

The environment perception of the human driver can not
be captured directly. Hence, we have to rely on sensors for
environment perception which may differ a bit from that of
the human driver. The model is designed to be robust to such
errors/differences. The obstacles are identified using LIDAR
sensor and environment perception techniques. The presented
modeling methodology uses LIDAR sensor with 4 vertical
layers, 90 degrees field of view and has a range of 110 m.
The methodology can be extended to any other configuration
of LIDAR sensor. The sensor data contains lot of information
which needs to be processed and filtered before sending it
to the neural network. This function is performed by the
feature extractor. It identifies the obstacles relevant to the
driving decision, calculates the relative distance to the closest
obstacle in a given direction (that is the predicted ahead path
for the vehicle: explained later) and processes it further. This
processed data is then sent to the neural network.

The human driving decisions are not always dependent
on the environmental factors for e.g. the human driver may
slow down the vehicle because of a reason other than the
state of the obstacles. Such intentions are very hard to
predict in some difficult maneuvers but can be identified

in the form of time series. Hence, the model uses the past
information of the vehicle speed for the predictions. The past
input variation information can be represented in the form
of the polynomial coefficients obtained through polynomial
regression (quadratic). Such a representation reduces the
number of inputs of the neural network. The past information
of the feature extractor data is also represented in the form
of polynomial coefficients. The function for the polynomial
regression and extraction of the coefficients is shown as “Past
Profile” block in the Fig. 1. For the model, the past input
information is limited to 2 secs.

The driving decisions related to the vehicle speed are also
affected when the human driver is about to take a turn for e.g.
depending on the current vehicle speed and turning radius,
the human driver slows down the vehicle before taking a turn.
Hence, the turn indicator (left and right) signal is considered
to be one of the inputs to the model. The accumulator (shown
as Accumulator in Fig. 1) is a sample counter from the instant
when the turn indicator is on. This signal is relevant for this
model because the human driver does not turn the vehicle
immediately after the turn indicator signal is on. Hence, the
probability of the human driver taking the turn increases with
the accumulation signal. The accumulator value resets after
each cycle of the turn indication.

B. Steering Wheel Angle Profile Prediction

The vehicle steering future decisions are dependent mainly
on the road curvature, human intention to take the turn or
change the lane or overtake another vehicle. Currently in
this model we are not considering the road/lane orientation.
The main inputs correlated to the future steering wheel angle
decisions are the turn indicators signal, the past values of
the steering wheel angle etc. These decisions are partially
dependent on the environmental state. Hence, the neural
network uses all the inputs to find the correlations.

C. Feature Extractor

Fig. 2. Block diagram of Feature Extractor

Feature extractor (as shown in Fig. 2) is used for pro-
cessing the LIDAR sensor data and filtering out relevant
information. For the prediction of speed profile, relative
distances (between the target vehicle and the obstacles) and
their variation with time is of main interest. For e.g. if
the target vehicle is approaching a static obstacle (another
vehicle, pedestrian etc), the relative distance decreases with
time. In case of proper driving, it can be predicted that the
human driver will slow down the vehicle to avoid collision.
The LIDAR sensor data is used to form a probabilistic



occupancy grid map (one for each layer of LIDAR). The
grid maps contain information related to all the objects and
other vehicles in the environment around the target vehicle.
With respect to the variation of the vehicle speed, the driving
decisions are influenced only by the obstacles present in the
path of the vehicle. Thus, not all the information present
in the grid maps is relevant to the prediction of the future
vehicle speed profile.

The relevant information is filtered out of grid maps
by superimposing the estimated path of the vehicle onto
the map. The vehicle trajectory in general is considered
to be of circular form. Given a time instant, approximate
angular velocity of the vehicle is computed from its speed
and wheel angle (computed through the steering ratio). The
turning radius of the vehicle is computed from the speed
and angular velocity and the estimated circular trajectory of
the vehicle is superimposed on the grid maps. An example
of the grid maps with and without superimposition of the
vehicle’s estimated path is shown in Fig. 3. The width of
the path is approximately equal to the vehicle’s width. The
intersection of the estimated path and the obstacle present
in the grid maps implies that the obstacle is present in the
intended path and is thus considered to be relevant. The
distance (straight line) between the target vehicle and the
relevant obstacle is calculated for each grid map. In the case
of multiple intersections, obstacle closest to the target vehicle
is considered.

Fig. 3. Sample Occupancy Grid maps of single layer of LIDAR sensor. (a)
and (c) show the probabilistic grid map at different time instants. (b) and (d)
are the respective grid maps with the intended vehicle path superimposed
on them.

The uncertainties in the sensor data is reflected in the
grid map which affects the relative distance profile. Also, the
variation in the vehicle’s pitch create additional uncertainties
in the sensor data and hence in the grid map. These uncer-
tainties give rise to the impulses in the profile of the relative
distance (for each grid map). These impulses will affect
the training as well as performance of the neural network.
The impulses are created mainly due to the false detection
of the objects and during quick turns. Rate saturation is

applied to the variation of relative distances. This gives the
information to the neural network about the impulses. The
upper and lower threshold values for the rate saturation are
1000 m/s and 10 m/s. The lower limit of the rate saturation
is concerned with the false obstacle detection or to ignore
obstacles during the transition phase of quick turns. The
upper limit is concerned with the increase in free space in
the intended vehicle’s path. Hence, the lower rate saturation
limit is kept much less as compared to the upper limit. These
are selected by trial and error method. An example of the
relative distance profile and its rate saturated profile is shown
in Fig. 4.

Fig. 4. Relative Distance profile (one LIDAR layer) with and without rate
saturation

III. NEURAL NETWORK DEVELOPMENT

A. Architecture

As mentioned before, multi-layer feed-forward neural net-
work is used in the model development to predict the vehicle
speed and steering wheel angle profiles. The architecture of
the neural network is shown in 5. The number of input
and outputs are 30 each. The number of future profile
samples (output) of vehicle speed and steering wheel angle
are 20 and 10 respectively. Because of the complexity and
non-linearity of the correlation between inputs and outputs,
two hidden layers with 40 neurons each are considered.
The number of hidden neurons is based on the number
of inputs and outputs. The neural network trained using
supervised machine learning techniques. Hence, given the
vehicle and environment state (inputs) at a time instant, the
neural networks will predict the driving decisions. The neural
network is implemented in the Neural Network Toolbox of
Matlab.

Fig. 5. Neural Network Structure

B. Training

For the purpose of training and offline validation of the
neural networks, data is collected using the driving simulator
and SCANeR studio software as shown in Fig. 6 from a city



map inbuilt in this software. This map has various structures
and objects for e.g. buildings, multi-lane roads, trees, bridge
etc. The varied scenarios available in the map provides the
data close to the real world.

Fig. 6. Driving Simulator Setup

Data is collected at the sampling rate of 5 Hz for the
duration of 1 hour. This choice of sampling rate helps in
the removal of impulsive disturbances in the data without
lose of any important information. Virtual LIDAR sensor is
mounted on the vehicle. The variation in the pitch and roll
of the vehicle affects the sensor data, along with the built in
disturbances. These factors help in getting sensor data close
to that of the sensor in the real world.

Given the vehicle and environment state, the prediction
horizon for the vehicle speed and steering wheel angle pro-
files are 4 and 2 secs respectively. The sharp and consecutive
turns lead to the fast variation of the steering wheel angle
which makes it difficult to predict for a larger horizon. The
steering wheel angle varies mainly during curved roads, lane
changes and turns, all of which last for a shorter dura-
tion. Labeled data for the training and validation of neural
networks are created accordingly. Simulink and SCANeR
studio software are integrated for the data collection and
validation. Feature extraction algorithm is implemented in
Matlab/Simulink which processes the collected data and
forms input/output data sets.

The data set is divided into two parts (ratio 2:1) for the
purpose of training and validation respectively. Levenberg-
Marquardt optimization method is used for the training pur-
pose. It is the fastest back propagation algorithm available in
the toolbox and gives the best training results when compared
to the application of other algorithms. The performance of
the neural networks are computed in the form of mean
squared error (MSE).

C. Outlier detection and elimination

The uncertainties in the data set (for e.g. uncertainties
in the LIDAR sensor data) creates outliers, thus affecting
the learning performance of the neural networks. A higher
threshold is set for the output error to identify the outliers.
The training samples identified as outliers using this thresh-
old are assigned a zero weight and the rest are assigned
non-zero weight. The neural networks are trained again
using weighted MSE as the performance function which
ignores the training samples with zero weight. The detection

TABLE I
NEURAL NETWORK PERFORMANCE

Speed prediction Steering angle prediction
MSE (kmph) MSE (rad/sec)

Training 5.5 0.03
Validation 8.1 1.5

and elimination of outliers improves the neural network
performance. The total number of outliers eliminated is kept
under 10% of the training data set. The training and offline
performance of both the neural networks are provided in
Table I.

IV. SIMULATION RESULTS AND ANALYSIS

The validation using SCANer studio has been carried out
for various use cases and the test performance is as given in
Table I. We present the results and analysis of three of those
use cases.

Use Case 1: This use case is related to the basic collision
avoidance. At the start of the use case, the obstacles are
dynamic and they come to a halt due to a traffic light. Since
the target vehicle is driving in the same lane, the driver
applies brakes and stops the vehicle smoothly. The snap shots
of the use case are shown in Fig. 7 in a summarized form.

The profile of vehicle speed and brake pedal force is
shown in Fig. 8. The brake pedal force is not used by the
model and is considered for the analysis of the results only.
Since the human driving model uses receding horizon, it
is not possible to show the entire prediction in one graph.
Hence, for the analysis, critical instants from the use case are
considered and shown. In this use case, the driver applies
brakes at around 11 secs. It is expected from the model
to predict the decrease in the vehicle speed profile (due to
obstacles) before the driver applies brakes. This phenomenon
is of early prediction is shown in Fig. 10. For the purpose of
analysis, we have shown the profile of the relative distances
(given as outputs by Feature Extractor) in Fig. 9. The graph
clearly shows the decrease in the relative distance between
the target vehicle and relevant obstacle due to which an early
prediction is possible. The model continues with the correct
prediction in the future as shown in Fig. 11. There is no
change in the steering angle profile because of which it is
not shown here.

Fig. 9. Use Case 1: Relative distance outputs from Feature Extractor



Fig. 7. Use Case 1: Snap shots of the test scenario in the order from ‘a’
to ‘d’

Fig. 8. Use Case 1: Profiles of vehicle speed and brake pedal force

Fig. 10. Use Case 1: Vehicle Speed Profile prediction at time = 9 secs

Fig. 11. Use Case 1: Vehicle Speed Profile prediction at time = 15 secs

Use Case 2: In this use case, the target vehicle overtakes
a dynamic obstacle and comes back to its previous lane.
To add complexity, another dynamic vehicle is present in
the same lane which overtakes the same obstacle before the
target vehicle. Hence, the human driver has to wait before
overtaking the obstacle. The snapshots of the scenario are
shown in Fig. 12. The vehicle speed, brake pedal force and
the steering wheel angle profiles are shown in Fig. 13 and
14 respectively.

Similar to the previous use cases, the critical time instants
considered from the point of view of vehicle speed prediction
are 5.5 and 26 secs. The critical time instant for the steering
wheel angle prediction considered is 15 secs. The model
predictions have less accuracy as compared to the previous
use cases due to the complex nature of driving in this
scenario as shown in Fig. 15, 16 and 17. The model predicts
the future profile (output) in the form of samples. During
the prediction, the neural network does not consider these
samples to be correlated and predicts them independently.
Hence, polynomial regression (quadratic) can be performed
to these predicted future samples (for both vehicle speed
and steering wheel angle) to increase the prediction accu-
racy. This phenomenon is shown in the Fig. 15, 16 and
17. The regression is applied to the prediction only when
the predicted outputs do not form a smooth profile. This
polynomial regression is different than that applied in the
model architecture for representing the past information of
the inputs.

Fig. 12. Use Case 2: Snap shots of the test scenario in the order from ‘a’
to ‘d’



Fig. 13. Use Case 2: Profiles of vehicle speed and brake pedal force

Fig. 14. Use Case 2: Steering wheel angle profile

Fig. 15. Use Case 2: Vehicle Speed Profile prediction at time = 5.5 secs

Fig. 16. Use Case 2: Steering Wheel Angle Profile prediction at time =
15 secs

V. CONCLUSION AND FUTURE WORKS

The presented model is developed with the objective of its
application to the shared driving control methodology. Multi-
layer feed-forward neural network is used for the prediction
of the human driving decisions (vehicle speed and steering
wheel angle) for a particular time horizon. Environment

Fig. 17. Use Case 2: Vehicle Speed Profile prediction at time = 26 secs

perception, vehicle state and human intention are majorly
the three input categories considered in the methodology. The
inputs related to the environment perception are derived from
the LIDAR sensor data. Training and validation of the neural
network is performed using the driving simulator setup and
SCANeR studio software. The simulation results show that
the model can accurately predict the human driving decisions
for various scenarios. For the future works, the model is to be
implemented in the real vehicle and validated with respect to
the real vehicle data and applied to the shared driving control
methodology.
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