

IEEE Copyright Notice:

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including re-
printing/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Accepted to be Published in:
Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA
Original doi : https://doi.org/10.1109/ITSC.2018.8569945

Full citation:

M. Törngren et al., "Architecting Safety Supervisors for High Levels of Automated
Driving," 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, 2018, pp. 1721-1728. doi: 10.1109/ITSC.2018.8569945

Corresponding Author email: martint@kth.se

Architecting Safety Supervisors for High Levels of
Automated Driving

Martin Törngren*, Xinhai Zhang*, Naveen Mohan*, Matthias Becker*†, Lars Svensson*, Xin Tao*,
De-Jiu Chen*, Jonas Westman*

*Department of Machine Design
†Department of Electronics and Embedded Systems

Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden
{martint, xinhai, naveenm, mabecker, larsvens, taoxin, chendj, jowestm}@kth.se

Abstract— The complexity of automated driving poses chal-

lenges for providing safety assurance. Focusing on the archi-
tecting of an Autonomous Driving Intelligence (ADI), i.e. the
computational intelligence, sensors and communication needed
for high levels of automated driving, we investigate so called
safety supervisors that complement the nominal functionality.
We present a problem formulation and a functional architec-
ture of a fault-tolerant ADI that encompasses a nominal and a
safety supervisor channel. We then discuss the sources of haz-
ardous events, the division of responsibilities among the chan-
nels, and when the supervisor should take over. We conclude
with identified directions for further work.

Keywords—Automated Driving, Safety, Safety Supervisor

I. INTRODUCTION

In automated driving, advanced sensors, functions and
processing resources are required to deal with complex tasks
and environments, with the context defined by so called
Operational Design Domains (ODD’s). An “ODD” specifies
the “conditions under which a given driving automation
system or feature thereof is designed to function, including,
but not limited to, driving modes”, [1]; an ODD may thus
e.g. specify environmental and speed restrictions, and a driv-
ing mode referring to e.g. high-speed cruising.

Driving automation requires to understand the location of
the ego-vehicle and the operational situation (e.g. road
ahead, and any obstacles such as people and other vehicles).
It further requires to plan and take action for short and inter-
mediate time horizons of the driving, referred to as opera-
tional and tactical functions part of the dynamic driving task
(DDT), [1]. Accomplishing the DDT under uncertain and
varying conditions, including mistakes/careless behavior of
other road users and the many components in an automated
vehicle that may fail, make higher levels [1] of automated
driving challenging. It is intrinsically hard to conceive all
situations that may arise a-priori, [2]. Since automated driv-
ing pushes the limits of existing technologies and methodol-
ogies, it is not surprising that there are not established best
practices on building such high-performance systems that are
sufficiently safe and reliable, while not prohibitively expen-
sive.

Traditional engineering of safety critical systems man-
dates appropriate risk reduction through a number of process

and product measures, see e.g. [3]. There is a strong tradition
towards the use of simplicity for safety critical parts, and
heavy redundancy when safety requires availability (such as
in aircraft control systems), see e.g. [4]. We believe that the
understanding of such traditional concepts in the context of
high levels of driving automation is still insufficient.

The main functionality needed for automated driving, espe-
cially for the DDT, will be highly complex, in terms of
algorithms, the use of machine learning systems with
opaque behavior and difficulty in predicting failures [5], and
in terms of its computing hardware and software. This main
functionality will also clearly be safety critical since it con-
trols the overall vehicle behavior. This means that the corre-
sponding safety integrity level of ISO26262, [3], is likely to
be the most severe one. With current safety engineering
practices, it is hard to conceive how safety assurance could
be provided. For example, while duplicating the main func-
tionality (i.e. providing redundancy), may help to improve
availability, it does not solve the issue of safety assurance.
First, the safety assurance problem remains. Secondly, it is
difficult to deal with common cause failures. Thirdly, if two
diverse and actively redundant channels are provided, how
to handle the situation when they do not agree?

The primary focus of this paper is therefore on the archi-
tecting of an Autonomous Driving Intelligence (ADI) [6],
that attempts to addresses the limitations of the state of the
art. With ADI we refer to the computational intelligence,
sensors and communication needed for high levels of
automated driving – thus on key functions for performing the
DDT. We focus on level 3 of driving automation and above,
[1], providing a problem formulation and analysis of the
architecting problem in order to address concerns for costs,
safety and availability. In particular, we present a functional
architecture of a fault-tolerant ADI that encompasses a
nominal channel as well as a safety supervisor channel,
where the safety supervisor represents a redundant and sim-
pler set of functionalities that should take over if the nominal
channel fails. We also provide a formalization of the condi-
tions of takeover by the supervisory channel in terms of the
scenarios the ADI will encounter. Overall, our approach
promises to facilitate safety assurance for the ADI as a whole
and suggests ways of providing cost-efficient fault-tolerance.

We draw upon a multidisciplinary analysis of the prob-
lem and experiences from multiple case studies and industri-This work is funded by ARCHER (2014-06260 Vinnova/FFI), AutoDrive

(Grant Agreement No. 737469) and EUREKA TRACE (proj. No. CAT311).

al collaboration [6]–[9]. While aware of the limitations of
functional safety standards for higher levels of automated
driving, [10]–[12], we make use of established concepts and
terminology as far as possible, including the ISO26262 [3].

Section II provides the overall problem formulation for a
fault-tolerant ADI. In Section III we briefly review state of
the art. In Section IV, we present our fault-tolerant ADI
architecture, discuss the sources of hazardous events (what
can go wrong), the division of responsibilities among the
nominal and supervisor channels, and when the supervisor
should take over. Finally, in section V, we provide a discus-
sion and identify directions for further work.

II. PROBLEM FORMULATION

We now present our problem formulation and the as-
sumptions made. Our main focus is to investigate ADI be-
havior at the vehicle level.

According to the ISO 26262, [3], a hazard refers to a
“potential source of harm caused by malfunctioning behav-
ior” of a system, and/or a function, (ISO26262 here uses the
term “item”). Further, a hazardous event refers to “a combi-
nation of a hazard and an operational situation”.

Aligned with these definitions, we will use the term haz-
ardous event to refer to a system level state – encompassing
the state of the ego vehicle and its environment - that may
lead to harm (in other words propagate to an accident).

In this paper we consider four sources of hazardous
events: (i) random hardware faults, (ii) systematic faults,
(iii) performance limitations of ADI functionalities, and
(iv) operational situations (relating to the states of all enti-
ties outside the ADI including the vehicle environment).

Hazardous events caused by (i) and (ii) are the focus of
ISO 26262 [3], referring to faults in the embedded system of
the ego-vehicle. Performance limitations, (iii), such as the
ability to detect surrounding objects in various conditions,
may cause improper/erroneous internal representations such
as false negatives, [10], [12], [13], and may thus lead to
hazardous events. We note that such performance limitations
only manifest in particular operational situations and that
limitations will always be present to some degree. Opera-
tional situations, (iv), could for example be due to a careless
or distracted driver of another car.

We thus conclude that hazards can be caused by vehicle
internal (i, ii), external (iv), and combined, (iii) sources.

We assume that a vehicle is composed of an ADI and a
platform that together perform the DDT. With platform we
refer to the mechanical, electrical, electronic and software
parts of a vehicle that provide basic functionalities such as
steering, braking, propulsion, power, etc. We assume that the
platform can largely be made fault-tolerant, i.e. able to com-
pensate for errors in the steering system, possibly providing
backup degraded performance. For some errors however,
such as a flat tire, fault-tolerance cannot be assumed. We
moreover assume that the platform is able to report its status
to the ADI. The ADI comprises two channels. The nominal
channel performs the DDT. The safety supervisor channel

deals with situations when the nominal channel has critical
errors, referring to sources (i) and (ii) of hazardous events,
and potentially to (iii) (further elaborated in Section IV.B).
The safety supervisor is designed to provide degraded ADI
functionality, required to reach a minimal risk condition i.e.
execute a safe maneuver within a limited time-frame. It also
needs to be able to accomplish a variety of safety maneuvers
(e.g. emergency stop, maneuver to the side of the road) in a
sufficiently deterministic fashion to enable safety assurance.

Achieving safety corresponds to ensuring appropriate
risk reduction, including the ability to achieve a minimal risk
condition ([1]) after occurrence of a system failure, an ability
required for levels 4 and 5 of automated driving. Achieving
such a condition will require (at least) a degraded ADI capa-
bility, since simply stopping when a critical error is detected
could be highly undesirable and risky in some situations (e.g.
left lane on a high-way or in a tunnel).

Fig. 1 provides a simplified hierarchical state-machine
model that depicts overall vehicle states, and how hazardous
events may arise. The top-level super-state (with three sub-
states) illustrates driving in operational situations without
critical errors in the ADI of the ego-vehicle. The sources for
hazardous events in this super-state rely on events at the
traffic level (e.g. a dangerous maneuver by another vehicle),
when the ODD is about to be exited, or by non-ADI errors
such as a flat tire. Nominal operation of the ADI involves
Monitoring the driving environment, situation Analysis (e.g.
classifying objects and assessing intentions), operational and
tactical Planning, and Execution of these plans. This corre-
sponds to elements of the classical MAPE-K control loop,
where K corresponds to knowledge used in this process,
such as models of vehicles and HD maps, [14]. The nominal
operation also encompasses situations with intended (tempo-
rary) degraded performance, e.g. a case with direct sunlight
on cameras – causing more conservative operation for a short
period of time.

Fig. 1. State machine model illustrating sources of hazardous events.

The ego-vehicle thus constantly assesses risks and would
typically aim to pro-actively minimize risks by proper plan-
ning at the tactical and operational levels, see e.g. [15], [16].
A sudden, unexpected maneuver by another vehicle may
however cause a hazardous event (transition (I) in Fig. 1).

Unless it is detected in time, a crash may ensue (transition
(III)). If the ADI on the other hand detects a hazardous event,
it may decide to initiate a safety maneuver (transition (II)),
with the purpose to transition to a minimal risk condition
(transition (IV)).

The transition from the top-level super-state (“down-
wards” in Fig. 1) is taken when a critical error in the ADI
occurs. It is clearly essential that such errors are detected
with high probability to be able to keep risks at acceptable
levels. If detection is not possible, however, the vehicle will
enter undetected “hazardous events” with unknown conse-
quences. This state could lead to a crash, later detection, or
possibly to inherent recovery back to fault-free operation (for
simplicity, these various transitions are not shown in Fig. 1).

If the nominal channel is able to detect critical ADI er-
rors, it will perform a safety maneuver. Similarly, if the error
is in a critical part of the nominal channel itself, such that it
cannot identify or deal with the error, the safety supervisor
channel should be able to take over control and perform a
safety maneuver. It then also becomes essential that the in-
teractions between the nominal and supervisor channels do
not cause new types of failure modes, further discussed in
Section V. Faults in the supervisor itself are discussed in
Section IV.B.

III. RELATED WORK

We here briefly review state of the art, positioning our
work w.r.t. the fields of computer science, embedded sys-
tems, safety and fault-tolerant computer engineering, and
perspectives from the state of practice in the industry.

A. Safety monitors

A safety monitor observes the behavior of the system of
interest (SOI) and checks it against a set of predefined safety
properties, which are derived from system requirement doc-
uments [17] or hazard analysis [18]. In the terminology used
in this domain, monitoring may encompass a range of capa-
bilities from corrective interventions to taking over full con-
trol. Safety properties are normally defined in natural lan-
guage based on system states [17]–[19]. E.g. in [18], one
safety property is defined as “the robot velocity should not
exceed v if its arm is un-folded”. Once violations are de-
tected, the safety monitor will initiate corrective [19]–[22] or
preventive [18], [22] action during runtime. Safety properties
are desirable to describe with formal languages such as first
order logic [20] or temporal logic [17]–[19], [23]. Work on
monitors have also considered various sources of uncertain-
ties including, (1) observability restriction, and (2) violation
of injective mapping from observation to the real states [17],
[23]. Related to (1), limitations of observations due to dis-
cretization, quantization, and measurement errors are dis-
cussed in [17]. Commonly used techniques for dealing with
uncertainty in the context of safety monitoring include ap-
proaches such as Bayesian method [24], and Dempster-
Shafer Logic [2].

The concept of the safety monitor can be considered as a
variant of the Simplex architecture [21], in which the behav-
ior of a high-performance controller is monitored and where

control is switched to a high assurance controller if neces-
sary. It is assumed that a state space envelope can be deter-
mined at design time, and under which the high assurance
controller will be able to take over control. This envelope
can then be used to determine when the monitor should
switch over to the high assurance controller. The application
of Simplex architecture promotes the use of structured diver-
sity in a high assurance control subsystem. Our work can be
seen as an extension of the Simplex architecture, by employ-
ing structured diversity, but where we relax its “closed world
assumption” and consider also alternative approaches to
heavy redundancy for the high assurance channel.

B. Safety and fault-tolerance engineering

Safety engineering is concerned with methods to assess,
eliminate and/or reduce risk to acceptable levels where risk
is seen as the combination of probability of occurrence of
harm and severity of that harm [3]. The core of most relevant
safety standards (e.g. the ISO 26262 [3] and IEC 61508 [25])
lies in the identification of hazards and hazardous events that
may occur during the operation of the system, identifying the
risks they pose and the means to eliminate or mitigate them
to acceptable levels.

Fault-tolerance has the purpose to use either application
specific or systematic techniques to increase the reliability of
a system, in particular such that it can tolerate a certain num-
ber and types of faults [4]. The dependability terminology by
Avižienis et al. [26], uses the terms faults, errors and failures,
where a fault is the cause of an error which represents the
incorrectness of a state in the system. This may cause a fail-
ure in the system i.e. inability to deliver correct service –
which in turn may result in a hazardous event.

Diversity such as the use of N-version programming, or
diverse underlying hardware is common in fault-tolerant
systems, requiring sufficient independency between the
channels [3]. It is however also seen as controversial. For
example, the FAA DO 178B discourages the use of N-
version programming as a primary tool to achieve software
reliability, since it is very hard to quantify its effects, [27].
Diversity per se is not guaranteed to enhance neither availa-
bility nor safety. However, a structured approach to diversity
with anchoring in the architecture including recovery blocks
and forward recovery techniques [26], [28], has been argued
to be key for enhanced availability and cost-efficiency [21].

Automotive systems where a minimal risk condition is
usually available in a time duration that is of much shorter
duration than the mission time, can use a safety system to
ensure the system is safe by compromising on the mission
itself. Koopman et al. [5] suggest that this compromise of
availability for the purposes of safety might be the first step
in getting the vehicles into market.

While the risk of hazards caused due to the performance
limitations of intended functionality can be limited to a cer-
tain extent by the limitation/modification of the ODD (e.g. a
separate lane for automated vehicles, specific V2X infra-
structure to provide additional information), there are practi-
cal limits to how much this can be achieved without com-
promising the utility of the function. A consequence of this,

as discussed in [2], is that it may be necessary to adopt run-
time risk assessment and run time verification techniques to
achieve the reduction in risk. To this end, concepts such as
monitors and constraints (section III.A) - (such as the defini-
tion of operational envelopes used in [29]) can be used to
allow for the nominal channel to operate freely within a set
of bounded conditions. The responsibility of detection of a
potential violation of the bounds resides within the monitor
leaving the nominal channel to be classified at lower ASIL
levels. In this paper we further elaborate on the use of such
monitors and the challenges in dealing with multiple sources
of hazardous events (Section II).

C. Industrial safety practices for automated vehicles

In terms of the state of practice in the industry, the safety
reports released by General Motors [30] and Waymo [31],
show the incorporation of several of the techniques discussed
in this section. Common themes of redundancies include
duplication of all critical subsystems and the use of diversity.
Diversity is for example used for the independent collision
avoidance systems and for perception in conjunction with the
overlap of the sensory fields of view. Little detail is however
given for how various types of faults (such as those we de-
scribed in Section 2) are dealt with and how inconsistencies
between the duplicated channels are resolved.

IV. A FAULT-TOLERANT FUNCTIONAL ARCHITECTURE FOR

AUTOMATED DRIVING

We here address topics related to the architectural design
of a fault-tolerant ADI, including, (i) high-level design prin-
ciples (this Section), (ii) structural design of the fault-tolerant
ADI (Section IV.A), (iii) division of responsibilities among
the channels of the fault-tolerant ADI (Section IV.B), and
(iv) safety constraints which describe the conditions when
the safety supervisor should take over control from the nom-
inal channel, (Section IV.C).

In developing the fault-tolerant ADI, we have adopted a
number of principles that have guided our design choices:

- P1: No single point failures in the ADI.

- P2: Failures of the supervisor must be handled by
transitioning to a minimal risk condition.

- P3: The design should support instantiations to
technical architectures that in various ways trade-
off cost, safety and availability.

- P4: Determinism and transparency support safety
assurance in the supervisory channel. Achieving
transparence favors the use of first principles (mod-
el-) based algorithms. This also implies that we aim
for diverse solutions (recall end of section III.A).

- P5: Common cause failures between the nominal
and supervisor channels should be avoided. A
common mode failure could otherwise cause both
channels to fail at once.

- P6: Coherence in design among the two channels
should be emphasized so that the safety supervisor

only takes over control when necessary, and that it
does not miss taking over control when needed.

Actual availability and reliability requirements for a
fault-tolerant ADI will depend on the intended vehicle usage,
and the desired level of vehicle availability.

A. A functional architecture for automated driving

As depicted in Fig. 2., the ADI is composed of two chan-
nels, the nominal and the safety supervisor (for simplicity the
latter is in the following referred to as supervisor for short).
Both channels contribute to automated driving safety.

Each channel incorporates MAPE-K loops with corre-
sponding 5 components, M, A, P, E and K, where a super-
script refers to the channel number, with “1” referring to the
nominal channel, and “2” and “3” referring to the supervisor
(“2” vs. “3” explained in the following). These loops are
briefly elaborated in the following:

Nominal channel (Nc): The MAPE-K loop of the Nc is
depicted in Fig. 2. We note that the Nc includes a world
model – corresponding to the K1-component, incorporating
models of for example object’s behaviors and maps, and a
metric or function for assessing risk dynamically. Using
these models and sensory observations from M1, the A1 will
detect and localize objects, predict their near-term behavior,
and based on this assess the current risk. This enables to
determine dynamic driving envelopes which are considered
to have acceptable risk. The envelopes will evolve dynami-
cally as the ego-vehicle and other object moves, and as new
static and moving objects appear, [15], [16]. The P1 compo-
nent is usually comprised of three functions. A behavior
decision function selects an appropriate driving behavior for
the current traffic scene, e.g., "continue in current lane" or
"change lane left". Accordingly, the trajectory planning
function generates a reference trajectory avoiding static and
dynamic obstacles and subject to vehicle dynamic con-
straints. Motion control functionality computes appropriate
steering, throttle and brake input such that the reference
trajectory is precisely followed. The platform is considered
as a shared resource that provides the E (execution) compo-
nent for both (nominal and supervisor) channels.

Supervisor channel (Sc): The Sc incorporates two
MAPE-K loops, where one (labelled with superscript nota-
tion 3) has the special role to detect critical errors in Nc, and
switch the control from the Nc to the Sc when such errors are
detected. Control is then handed over to the Sc MAPE-K
loop with superscript notation 2, referring to functionality
that corresponds to a degraded version of the Nc.

M2 is shared among the two MAPE-K loops of Sc. A3 as-
sesses internal and external monitored states, and P3 is re-
sponsible for the critical decision for taking over control –
triggering the switch to remove the nominal channel from
control (see control flow IX in Fig. 2.). Once the control has
been switched, the M2A2P2 components will control the
vehicle (i.e. monitor, analyze and plan for the execution). We
remark that A2P2 – as responsible for continued situation
analysis, safe maneuver planning and choice of maneuver –
are always active during runtime, such that the supervisor is

readily available to take over once the switch occurs. K23 for
the Sc includes a simplified world model as well as “safety
constraints” which for the Sc define the conditions when it
should take over control from the Nc (relating to principle
P4). For simplicity the connection of K to other components
within the corresponding channel are not shown explicitly.

The interactions between the platform, the Sc and the Nc
are illustrated in Fig. 2. The platform provides a set of states
to both the Nc and Sc (flow IV). These states describe the
actual state and capabilities of the platform in terms of nom-
inal or degraded modes. The Sc optionally (depending on the
configuration) – provides a “live signal” to the Nc (flow
VIII). This allows a potentially cost-efficient way of dealing
with hardware failures of the supervisor channel (referring to
principles P2 and P3). As an option, the supervisor channel
could be configured to be redundant (P3). The Nc communi-
cates 3 sets of states to the Sc (flows I, II and III):

 Flow I: Status of sensory systems and, depending on
the perception system configuration, also access to
some sensory data (e.g. objects from smart sensors)
as well as the self-diagnostic information of the Nc.

 Flow II: Nearby objects and their expected intents.

 Flow III: Near term execution plan including intent of
maneuver (e.g. a safety maneuver)

We consider that the Sc should have an additional set of
sensors that are independent to the Nc. These sensors need to

be highly reliable for use in the short-term safety maneuvers
of the Sc. They could be seen as an evolution of today’s
sensors used in active safety systems.

B. Division of responsibilities – dealing with failures

Since both channels contribute to automated driving safe-
ty, the question arises about division of responsibilities. The
main responsibility of the Nc is to accomplish the DDT and
deal with hazardous events due to the operational situations
within the given ODD, originating from other objects or
from the platform of the ego-vehicle. The main responsibility
of the Sc, on the other hand, is to monitor and analyze
whether the Nc is healthy, and to provide back-up function-
ality and risk mitigation when needed. Translating this to the
sources of hazardous events discussed, yields the following
division of responsibilities, as illustrated in TABLE I. We
use X to denote responsibility for run-time detection and
handling, and the right-most column identifies needed de-
sign-time measures. Y is used to denote a responsibility
which requires further investigation.

Referring to the four sources of hazardous events de-
scribed in section II, the Sc is designed to handle systematic
and random hardware faults of Nc. Questions remain wheth-
er Sc can also mitigate hazardous events caused by external
events and performance limitations of Nc. Using simpler and
more defensive perception for Sc might help to address cer-
tain performance limitations of Nc but may also cause new
types hazardous events, e.g. caused by false positives. There-
fore, it is reasonable to assume that the Sc cannot overcome
all the performance limitations of Nc, or at least that this is
non-trivial and requires further investigation (see Section V).
As mentioned previously, the Nc will monitor the Sc, requir-
ing that the Sc has its own error detection mechanisms.

C. Safety constraints and interactions between the channels

Safety constraints determine when the Sc should take
over from the Nc. Safety constraints can be divided into two
sets: internal safety constraints (ISCs) that are defined using
the status of the Nc and the vehicle platform, and external
safety constraints (ESCs) that are defined with respect to
driving scenarios. According to TABLE I., the Sc can only
take over when critical errors of the Nc are detected.

ISCs describe for which critical errors of the Nc and the
vehicle platform, the Sc shall take over. The detection of Nc
errors is facilitated if the Sc has access to internal states of
the Nc, which include the communication ports of the soft-
ware components (referring to the flows I, II and III in Fig.
2.) as well as status and diagnostic information (e.g., error
flags/reporting from online diagnosis or watchdogs, referring
to flows I and IV). If self-diagnosed errors are reported from
the Nc, the Sc will directly take over. Besides listening to the
error reporting, the Sc will also check the behavior of the
safety critical functions (M1-A1-P1) in the Nc against their
expected behavior through techniques like runtime verifica-
tion and plausibility checks. Sc may for example check the
deviation between the intended trajectory of the ego-vehicle,
generated by the trajectory planner of the Nc, with the actual
trajectory observed by the Sc.

Fig. 2. A functional architecture for an ADI for high levels of driving
automation. (Meanings of the flows: (I): Sensor status, Nc diagnostic
states; (II): Objects, pos/vel etc. (III): Near term trajectory; (IV)
Platform status and diagnostic states; (V): Nc set-points for platform;
(VI): Sc set-points for platform; (VII) Set-points for platform; (VIII):
Sc live signal; (IX): Control flow to mode switch)

Due to the complexity of the Nc, complete error detec-
tion can hardly be guaranteed. Therefore, ESCs also need to
be monitored to guarantee safety on the vehicle level.

ESCs describe the boundary of acceptable driving sce-
narios. They are normally derived from system requirements
[17] or hazard analysis [18], and will be used for the design
of both the Nc and the Sc. Each driving scenario consists of
the behavior of the ego-vehicle and also the environment.
According to the theory in [17], each driving scenario can be
defined using relevant system level states 𝑞ଵ, 𝑞ଶ, … , 𝑞 of
types 𝑄ଵ, 𝑄ଶ,… , 𝑄, with 𝑆𝑡 ൌ 𝑄ଵ ൈ 𝑄ଶ ൈ …ൈ 𝑄 denoting
the physical states of the ego vehicle and its environment.
These states can be further classified into two sets:

 The controlled states, 𝑞ଵ, 𝑞ଶ, … , 𝑞, i.e., the behavior
of the ego-vehicle (e.g., position, speed and accelera-
tion. Uncontrolled states include the behaviors of all
the traffic users, the road condition and the traffic in-
formation).

 The monitored states, 𝑞, 𝑞ାଵ, … , 𝑞 , i.e., the ones
that are monitored by the perception and localization
systems (i.e. components M1 and M2 in Fig. 2.).
They reflect the observed driving scenario. Most of
the controlled states are also monitored. One example
of controlled but not monitored states can be the
lighting of the vehicle.

The dynamics of these states are modelled as functions of
time. A particular driving scenario can be represented by a
function pair as 𝑑௧ ൌ ሺ𝑚௧, 𝑐௧ሻ , where 𝑚௧ and 𝑐௧ are state
functions of time 𝑡 with 𝑚௧:ℝ → 𝑄 ൈ 𝑄ାଵ ൈ …ൈ 𝑄 de-
fining the behavior of the monitored environment, and
𝑐௧: ℝ → 𝑄ଵ ൈ 𝑄ଶ ൈ …ൈ 𝑄 defining the behavior of the ego-
vehicle. 𝑑௧ሺ𝑡ሻ denotes the particular values of the states at
time 𝑡, while 𝑑௧ refers to the corresponding state function. If
𝑡 is given as the ending time of the driving scenario, 𝑑௧ de-
notes all the previous states (i.e., a trajectory on 𝑆𝑡) before 𝑡.
All the possible driving scenarios are represented by the set
𝐷 ൌ ሼ𝑑ଵ

௧, 𝑑ଶ
௧ , … ሽ. Therefore, the ESCs determine the bounda-

ry of the set 𝐸𝑆𝐶 ⊆ 𝐷 of all the safe driving scenarios, while
unsafe driving scenarios (i.e., the hazardous events) are the
ones outside the safety constraints, denoted as 𝐸𝑆𝐶തതതതത ൌ 𝐷 ∖
𝐸𝑆𝐶.

Due to the inertia of the vehicle dynamic, and the sto-
chastic nature of an uncontrolled environment, a hazardous
event (ℎ𝑑௧ ∈ 𝐸𝑆𝐶തതതതത) should be defined based on risk (refer-
ring to severity and probability). Examples of ℎ𝑑௧ include
driving too close to the vehicle in front or changing to a lane
with an approaching vehicle. Therefore, ESCs can be defined
as 𝐸𝑆𝐶 ൌ ൛𝑑௧ห𝑅ሺ𝑚௧, Δ𝑡ሻ ൏ 𝑅௫ൟ , where 𝑅ሺ𝑚௧, Δ𝑡ሻ de-
notes the estimated safety risk within the coming Δ𝑡 seconds
based on 𝑚௧, 𝑅௫ is the risk threshold and Δ𝑡 is considered
as a reasonable time to react. As mentioned before, most of
the ℎ𝑑௧ ∈ 𝐸𝑆𝐶തതതതത are derived during design-time. However, it
is impossible to predefine all the hazardous events, leading
to the need to perform 𝑅ሺ𝑚௧, Δ𝑡ሻ at run-time (in both Nc and
Sc). If the estimated risk exceeds 𝑅௫ (referring to the state
“hazardous event due to operational situation” in Fig. 1), a
safety maneuver (in Nc) should be triggered.

There are two causes of the violations of ESCs: hazard-
ous events due to an operational situation (e.g., unsafe be-
havior of other vehicles) and hazardous events due to the
(propagation of) critical Nc errors. Ideally, the first cause
should be handled by triggering the safety maneuver of the
Nc and the second cause should be detected earlier as a vio-
lation of ISCs.

Therefore, when driving in a known operational situation
(referring to the nominal operation state in Fig. 1), control
decisions made by the Nc should always guarantee that 𝑑௧ ∈
𝐸𝑆𝐶, while the Sc checks 𝑚௧ against 𝐸𝑆𝐶തതതതത. If 𝑚௧ ∈ 𝐸𝑆𝐶തതതതത is
detected, it means an undetected error occurred in the Nc and
the Sc shall take over. When driving in a hazardous opera-
tional situation with 𝑅ሺ𝑚௧, Δ𝑡ሻ 𝑅௫, the Nc should per-
form its safety maneuver, If the safety maneuver (Nc) is not
performed or ISCs are violated during the safety maneuver
(Nc), the Sc shall take over.

To this end, the Sc needs to access both 𝑆𝑡 (the environ-
ment/“physical” states) to monitor ESCs and the internal
states of the nominal channel (the “cyber” states) to monitor
ISCs. It is clearly a challenge to ensure full coverage (com-
pleteness) of ISCs and ESCs. The incompleteness of ISCs
can be at least partly compensated by the monitoring of
ESCs. The incompleteness of ESCs can be compensated by a
generic 𝑅ሺ𝑚௧, Δ𝑡ሻ calculated at runtime. The ISCs and ESCs

TABLE I. DIVISION OF RESPONSIBILITIES IN DEALING WITH FAULTS/FAILURES (DESIGN TIME AND OPERATIONAL CHANNELS)

Sources for Hazardous
Events

Run time: Detection responsibility Design time measures
 Nc Sc

External Sources X (detected by A1) ‐ Determining risk estimation functions
Faults in the platform X (detected by A1) ‐ Design to detect and handle
Random HW faults in Nc X (internal error detection) X (through safety constraints) Ensure independence.
Random HW faults in Sc X (detection by absent Sc live signal) X (internal error detection) Configuration according to actual require‐

ments
Systematic faults in Nc X (internal error detection) X (through safety constraints) Eliminated as far as practically possible
Systematic faults in Sc X (detection by absent Sc live signal) X (internal error detection) Risk reduction through best safety practices
Common Cause faults ‐ ‐ Best safety practices; efforts to avoid nega‐

tive interactions among Nc and Sc
Performance limitations
in Nc

Y Y (through safety constraints) Potential design of active safety like func‐
tionality as part of Sc, e.g. to deal with a
false negative in perception by the Nc

Performance limitations
in Sc

Y Y Design to minimize risk of false positives
and negatives.

thus complement each-other and combining them should
improve the error detection coverage.

V. DISCUSSION AND DIRECTIONS FOR FUTURE WORK

We have presented a proposal for a fault-tolerant ADI
that relies on structured diversity. There are several possible
variations of the proposed architecture. For example, the
configuration of the Sc may include various levels of redun-
dancy depending on the achievable error detection coverage,
cost constraints and availability requirements. The safety and
availability requirements will in turn depend on the ODD,
determining the feasibility of these options (for example the
light weight redundancy option where the Sc provides a “live
signal” to the Nc).

Even though both faults and performance limitations of
the ADI may propagate to hazardous events, they are intrin-
sically different and should be treated in different ways dur-
ing safety analysis. ISO 26262 [3] assumes that faults can be
identified, fixed or tolerated (via e.g., independent redundan-
cy). Performance limitations, on the other hand, will always
remain to some extent, but can be mitigated by sensor redun-
dancy/diversity, fusion, tracking, etc. (see e.g. [7]). Faults
and performance limitations can both propagate and cause
hazardous events.

During hazard analysis and risk assessment (HARA),
ISO 26262 [3] assumes that faults are independent of opera-
tional situations. However, manifestations of performance
limitations are commonly dependent on the operational situa-
tions. In other words, the exposure of the performance limi-
tation likely implies the exposure of the corresponding haz-
ardous event. In addition, machine learning algorithms are
generally inscrutable (hence difficult for code review and
white-box testing) and inductive (hence no formal require-
ments for formal verification and requirement-based testing)
[5]. Therefore, the safety engineering methodology proposed
by ISO 26262 [3] is not sufficient for dealing with hazardous
events due to performance limitations of intended functions.

A key takeaway from our work is the difficulty in formu-
lating and deriving safety constraints, as conditions or risk
measures that cover all relevant hazardous events. Dealing
with hazardous events stemming from both the operational
situation and critical ADI errors makes design difficult. With
a well-controlled ODD, many traffic related hazardous
events will be unlikely or disappear, implying that it may be
possible to simplify the design of the fault-tolerant ADI and
that it will be easier to define safety constraints.

The design space and “fault” space (sources of hazardous
events) to be considered in designing the fault-tolerant ADI
is large. We have had many lengthy discussions on which
functionality should be assigned where and to find a coherent
division of responsibilities. Establishing and reasoning about
confidence in perception is a challenging topic on its own.

We see this work as representing both a position paper
and problem formulation. There are consequently many
avenues for further work.

Design, realization and evaluation of the fault-tolerant
ADI is a natural continuation that we plan to pursue, both
through modelling/simulation and real implementation with
experiments. Supervisor development requires the design of
its core functionalities, i.e. realizing the components of a
minimalistic and verifiable, yet sufficiently capable (degrad-
ed performance) MAPE-K control loop, inevitably involving
trade-offs. Further work is needed to address the error cover-
age of the combined ISC and ESC mechanisms, suitable risk
estimation functions, as well as potential causes for common
mode failures between the Nc and the Sc. This also requires
consideration of various uncertainties that the Sc has to deal
with. Realization of the technical architecture of the ADI
requires considering appropriate levels of redundancy and
centralized vs. decentralized realizations of the supervisor –
and corresponding analysis of availability and reliability. As
one extension, one could envision that the supervisor could
leave control back to the Nc. It is also of interest to investi-
gate if the architecture can be extended to further exploit the
redundancy among the channels – for example to enhance
availability. The Nc will likely be equipped with a variety of
diverse and redundant sensors. It would be relevant to inves-
tigate if and how the fault-tolerant ADI may have the Sc to
make use of a subset of these for safety maneuvers. This
relates to the topic of whether/how the Sc can mitigate the
hazardous events caused by the performance limitations.

Another interesting direction is to evaluate and elaborate
the proposed functional architecture towards a functional
safety concept, [3]. The architecture that we have introduced
is a first step towards a functional safety concept by describ-
ing safety measures and mechanisms as part of the architec-
ture. To conform to a functional safety concept, safety goals
and safety requirements need to be elaborated, and the feasi-
bility of the approach proposed by ISO26262 has to be in-
vestigated (given that ISO26262 was not developed with
automated driving in mind). It is clear that the supervisor as a
whole, as well as its components/functionalities, will be
highly critical. Stringent risk reduction measures need to be
applied.

In contrast to a functional safety concept, however, we
have considered system safety – in terms of a broader set of
sources of hazardous events. A further step is to extend this
fault model to incorporate cybersecurity considerations into
the architecture design.

Finally, while we have presented work towards architec-
tural solutions, this paper also highlights the complexity
inherent in automated driving and the fact that the architec-
ture alone will not suffice, (refer to TABLE I). It will be
imperative for automotive organizations to emphasize safety
engineering and complexity management, in terms of archi-
tectures, processes and organizations [32].

REFERENCES
[1] On-Road Automated Driving (ORAD) committee, “J3016

Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles,” 2018.

[2] A. Wardzinski, “Dynamic risk assessment in autonomous vehicles
motion planning,” in 2008 1st International Conference on
Information Technology, 2008, no. May, pp. 1–4.

[3] International Organization for Standardization, “ISO 26262: Road
vehicles--Functional safety,” no. 1. 2011.

[4] N. Storey, Safety Critical Computer Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1996.

[5] P. Koopman and M. Wagner, “Autonomous Vehicle Safety: An
Interdisciplinary Challenge,” IEEE Intell. Transp. Syst. Mag., vol. 9,
no. 1, pp. 90–96, 2017.

[6] N. Mohan et al., “Challenges in Architecting Fully Automated
Driving; with an Emphasis on Heavy Commercial Vehicles,” in
2016 Workshop on Automotive Systems/Software Architectures
(WASA), 2016, pp. 2–9.

[7] S. Behere and M. Törngren, “A functional reference architecture for
autonomous driving,” Inf. Softw. Technol., vol. 73, pp. 136–150,
May 2016.

[8] N. Mohan, P. Roos, J. Svahn, M. Törngren, and S. Behere,
“ATRIUM — Architecting under uncertainty: For ISO 26262
compliance,” in 2017 Annual IEEE International Systems
Conference (SysCon), 2017, pp. 1–8.

[9] X. Zhang, N. Mohan, M. Törngren, J. Axelsson, and D.-J. Chen,
“Architecture exploration for distributed embedded systems: a gap
analysis in automotive domain,” in 2017 12th IEEE International
Symposium on Industrial Embedded Systems (SIES), 2017, pp. 1–10.

[10] R. Salay, R. Queiroz, and K. Czarnecki, “An Analysis of ISO 26262:
Machine Learning and Safety in Automotive Software,” in SAE
Technical Paper, 2018.

[11] G. Griessnig and A. Schnellbach, “Development of the 2nd Edition
of the ISO 26262,” in Systems, Software and Services Process
Improvement. EuroSPI 2017. Communications in Computer and
Information Science, vol. 748, Springer, Cham, 2017, pp. 535–546.

[12] H. Monkhouse, I. Habli, J. Mcdermid, S. Khastgir, and G.
Dhadyalla, “Why functional safety experts worry about automotive
systems having increasing autonomy,” in International Workshop on
Driver and Driverless Cars: Competition or Coexistence, 2017.

[13] “ISO/WD PAS 21448 Road vehicles -- Safety of the intended
functionality (SOTIF),” 2018.

[14] IBM, “An Architectural Blueprint for Autonomic Computing,” IBM
White Paper. Autonomic Computing White Paper, 2005.

[15] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion
prediction and risk assessment for intelligent vehicles,”
ROBOMECH J., vol. 1, no. 1, p. 1, Dec. 2014.

[16] B. Kim, Y. Son, and K. Yi, “Probabilistic threat assessment with
environment description and rule-based multi-traffic prediction for
integrated risk management system,” in 2015 IEEE Intelligent
Vehicles Symposium (IV), 2015, pp. 642–647.

[17] D. K. Peters and D. L. Parnas, “Requirements-based monitors for
real-time systems,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 146–
158, 2002.

[18] M. Machin, J. Guiochet, H. Waeselynck, J. Blanquart, M. Roy, and
L. Masson, “SMOF: A Safety Monitoring Framework for

Autonomous Systems,” IEEE Trans. Syst. Man, Cybern. Syst., vol.
48, no. 5, pp. 702–715, May 2018.

[19] P. Daian, S. Shiraishi, A. Iwai, B. Manja, and G. Rosu, “RV-ECU:
Maximum Assurance In-Vehicle Safety Monitoring,” in SAE
Technical Paper, 2016.

[20] M. Wu, H. Zeng, C. Wang, and H. Yu, “INVITED: Safety Guard:
Runtime Enforcement for Safety-Critical Cyber-Physical Systems,”
DAC ’17 Proc. 54th Annu. Des. Autom. Conf. 2017 Artic. No. 84,
2017.

[21] Lui Sha, “Using simplicity to control complexity,” IEEE Softw., vol.
18, no. 4, pp. 20–28, Jul. 2001.

[22] P. E. Lanigan, S. Kavulya, P. Narasimhan, T. E. Fuhrman, and M. a.
Salman, “Diagnosis in Automotive Systems: A Survey,” Last
accessed Sept 10, 2011.

[23] C. M. Wilcox and B. C. Williams, “Runtime Verification of
Stochastic, Faulty Systems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 6418 LNCS, no. 960101,
2010, pp. 452–459.

[24] D. Sadigh and A. Kapoor, “Safe Control under Uncertainty with
Probabilistic Signal Temporal Logic,” in Robotics: Science and
Systems XII, 2016.

[25] “IEC 61508 Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related
Systems,” 2010.

[26] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, 2004.

[27] Radio Technical Commission for Aeronautics and European
Organisation for Civil Aviation Equipment, “DO-178C, Software
Considerations in Airborne Systems and Equipment Certification,”
2012.

[28] N. Leveson, Engineering a safer world: Systems thinking applied to
safety. MIT Press, 2012.

[29] P. Koopman and M. Wagner, “Challenges in Autonomous Vehicle
Testing and Validation,” SAE Int. J. Transp. Saf., vol. 4, no. 1, pp.
2016-01–0128, Apr. 2016.

[30] General Motors Inc., “2018 Self-Driving Safety Report,” 2018.
[Online]. Available:
https://web.archive.org/web/20180302210540/https://www.gm.com/
content/dam/gm/en_us/english/selfdriving/gmsafetyreport.pdf
[Accessed: 18-Apr-2018].

[31] Waymo, “Waymo Autonomous Vehicle Disengagement Report
2017,” Report to California DMV, 2017. [Online]. Available:
https://waymo.com/safety/ [Accessed: 04-Feb-2018].

[32] M. Parseh, F. Asplund, and M. Törngren, “Industrial Safety-related
Considerations to Introducing Full Autonomy in the Automotive
Domain,” Ada User J., vol. 38, no. 4, p. p218–221. 4p, 2017.

